Next Article in Journal
Endoscopic Transluminal Stent Placement for Malignant Afferent Loop Obstruction
Previous Article in Journal
The Relationship between the Frequency and Duration of Physical Activity and Depression in Older Adults with Multiple Chronic Diseases
Previous Article in Special Issue
Expert Clinical Management of Severe Immune-Related Adverse Events: Results from a Multicenter Survey on Hot Topics for Management
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Editorial

Cancer Immunotherapy: Harnessing the Immune System to Fight Cancer

1
Struttura Semplice Dipartimentale di Oncologia Medica per la Presa in Carico Globale del Paziente Oncologico “Don Tonino Bello”, I.R.C.C.S. Istituto Tumori “Giovanni Paolo II”, Viale Orazio Flacco 65, 70124 Bari, Italy
2
Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Via Albertoni-15, 40138 Bologna, Italy
3
Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, 40138 Bologna, Italy
4
Medical Oncology Unit, Macerata General Hospital, 62100 Macerata, Italy
*
Author to whom correspondence should be addressed.
J. Clin. Med. 2022, 11(21), 6356; https://doi.org/10.3390/jcm11216356
Submission received: 22 October 2022 / Accepted: 26 October 2022 / Published: 27 October 2022
The advent of cancer immunotherapy has represented an unprecedented revolution in patients with hematological and solid tumors [1,2,3]. Immunotherapy with immune checkpoint inhibitors (ICIs) has been suggested to induce durable and robust anticancer responses in cancer patients [4,5,6]. For example, the treatment landscape for metastatic renal cell carcinoma (mRCC) has changed dramatically over the last decade, with the standard of care shifting from tyrosine kinase inhibitor (TKI) monotherapy to combination treatments, including ICIs [7,8]. In this genitourinary tumor, there are several approved immune-based combinations, including two ICIs or an ICI plus a multitarget TKI, and these treatments have significant clinical benefit compared to monotherapy [9,10,11,12]. Several successful clinical trials have expanded the use of ICIs in an impressive number of solid tumors, ranging from urothelial carcinoma to gastric carcinoma, colorectal cancer, hepatocellular carcinoma, and head and neck squamous cell carcinoma [13,14,15,16,17,18,19]. In addition, following the approval in tissue-agnostic malignancies with microsatellite instability, the PD-1 inhibitor pembrolizumab became the first agent to be selectively approved according to a molecular biomarker rather than by the primary tumor site [20,21].
However, several questions regarding modern immunotherapy remain unanswered. Among these, ICIs present a specific set of treatment-related toxicities, which are commonly known as immune-related adverse events (irAEs) and are a result of the erroneous activation of the immune system against self-antigens [22,23,24]. Several organ systems may be affected by irAEs, including the thyroid, pancreas, and liver, with the incidence and severity of irAEs depending on multiple factors, including the type of ICI, the tumor type, and the disease setting [25,26,27]. Another fundamental issue in current and future cancer immunotherapy is the identification of reliable biomarkers of response or resistance [28,29]. In fact, while ICIs have found their role in several tumors in monotherapy or as part of combinatorial strategies, the lack of validated biomarkers of response represents an important issue, since not all cancer patients benefit from immunotherapy [30,31]. Based on these concepts, a greater understanding of the role of potential biomarkers, including programmed death ligand 1 (PD-L1) expression, tumor mutational burden (TMB), microsatellite instability (MSI) status, gut microbiota, concomitant medications, and several others, is fundamental [32,33,34,35,36,37,38,39,40]. Additionally, clinical trials on cancer immunotherapy frequently differ in terms of drugs, patients, designs, terms of study phases, and inconsistent clinical outcomes.
This Special Issue aims to highlight unanswered questions and future perspectives in modern cancer immunotherapy, including novel immune checkpoint inhibitors and immune-based combinations, mechanisms of action, potential biomarkers predictive of response, experimental treatments, and other timely and emerging topics. International experts in this field will examine key approaches under active investigation in clinical and preclinical research, presenting critical analyses and integrating their own perspectives on promising drugs in clinical trials and the latest therapeutic strategies.

Author Contributions

Conceptualization, A.R., V.M., M.S. and F.M.; methodology, A.R., V.M., M.S. and F.M.; software, A.R., V.M., M.S. and F.M.; validation, A.R., V.M., M.S. and F.M.; formal analysis, A.R., V.M., M.S. and F.M.; investigation, A.R., V.M., M.S. and F.M.; resources, A.R., V.M., M.S. and F.M.; data curation, A.R., V.M., M.S. and F.M.; writing—original draft preparation, A.R., V.M., M.S. and F.M.; writing—review and editing, A.R., V.M., M.S. and F.M.; visualization, A.R., V.M., M.S. and F.M.; supervision, A.R., V.M., M.S. and F.M.; project administration, A.R., V.M., M.S. and F.M.; funding acquisition, all authors. All authors have read and agreed to the published version of the manuscript.

Funding

This research received no external funding.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Reck, M.; Rodríguez-Abreu, D.; Robinson, A.G.; Hui, R.; Csőszi, T.; Fülöp, A.; Gottfried, M.; Peled, N.; Tafreshi, A.; Cuffe, S.; et al. Updated Analysis of KEYNOTE-024: Pembrolizumab Versus Platinum-Based Chemotherapy for Advanced Non-Small-Cell Lung Cancer With PD-L1 Tumor Proportion Score of 50% or Greater. J. Clin. Oncol. 2019, 37, 537–546. [Google Scholar] [CrossRef] [PubMed]
  2. Powles, T.; Walker, J.; Andrew Williams, J.; Bellmunt, J. The evolving role of PD-L1 testing in patients with metastatic urothelial carcinoma. Cancer Treat. Rev. 2020, 82, 101925. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  3. Massari, F.; Rizzo, A.; Mollica, V.; Rosellini, M.; Marchetti, A.; Ardizzoni, A.; Santoni, M. Immune-Based combinations for the treatment of metastatic renal cell carcinoma: A meta-analysis of randomised clinical trials. Eur. J. Cancer. 2021, 154, 120–127. [Google Scholar] [CrossRef] [PubMed]
  4. Motzer, R.J.; Tannir, N.M.; McDermott, D.F.; Arén Frontera, O.; Melichar, B.; Choueiri, T.K.; Plimack, E.R.; Barthélémy, P.; Porta, C.; George, S.; et al. CheckMate 214 Investigators. Nivolumab plus Ipilimumab versus Sunitinib in Advanced Renal-Cell Carcinoma. N. Engl. J. Med. 2018, 378, 1277–1290. [Google Scholar] [CrossRef] [PubMed]
  5. Massari, F.; Mollica, V.; Rizzo, A.; Cosmai, L.; Rizzo, M.; Porta, C. Safety evaluation of immune-based combinations in patients with advanced renal cell carcinoma: A systematic review and meta-analysis. Expert Opin. Drug Saf. 2020, 19, 1329–1338. [Google Scholar] [CrossRef]
  6. de Miguel, M.; Calvo, E. Clinical Challenges of Immune Checkpoint Inhibitors. Cancer Cell. 2020, 38, 326–333. [Google Scholar] [CrossRef]
  7. Motzer, R.J.; Rini, B.I.; McDermott, D.F.; Arén Frontera, O.; Hammers, H.J.; Carducci, M.A.; Salman, P.; Escudier, B.; Beuselinck, B.; Amin, A.; et al. CheckMate 214 investigators. Nivolumab plus ipilimumab versus sunitinib in first-line treatment for advanced renal cell carcinoma: Extended follow-up of efficacy and safety results from a randomised, controlled, phase 3 trial. Lancet Oncol. 2019, 20, 1370–1385. [Google Scholar] [CrossRef]
  8. Rini, B.I.; Plimack, E.R.; Stus, V.; Gafanov, R.; Hawkins, R.; Nosov, D.; Pouliot, F.; Alekseev, B.; Soulières, D.; Melichar, B.; et al. KEYNOTE-426 Investigators. Pembrolizumab plus Axitinib versus Sunitinib for Advanced Renal-Cell Carcinoma. N. Engl. J. Med. 2019, 380, 1116–1127. [Google Scholar] [CrossRef]
  9. Dizman, N.; Arslan, Z.E.; Feng, M.; Pal, S.K. Sequencing Therapies for Metastatic Renal Cell Carcinoma. Urol. Clin. N. Am. 2020, 47, 305–318. [Google Scholar] [CrossRef]
  10. Massari, F.; Di Nunno, V.; Mollica, V.; Graham, J.; Gatto, L.; Heng, D. Adjuvant Tyrosine Kinase Inhibitors in Treatment of Renal Cell Carcinoma: A Meta-Analysis of Available Clinical Trials. Clin. Genitourin Cancer 2019, 17, e339–e344. [Google Scholar] [CrossRef]
  11. Powles, T.; ESMO Guidelines Committee. Recent eUpdate to the ESMO Clinical Practice Guidelines on renal cell carcinoma on cabozantinib and nivolumab for first-line clear cell renal cancer: Renal cell carcinoma: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 2021, 32, 422–423. [Google Scholar] [CrossRef] [PubMed]
  12. Thana, M.; Wood, L.A. What do International Guidelines Say about First-Line Therapy for Clear-Cell Metastatic Renal Cell Carcinoma? Eur. Urol. Focus 2020, 6, 48–52. [Google Scholar] [CrossRef] [PubMed]
  13. Yang, Y. Cancer immunotherapy: Harnessing the immune system to battle cancer. J. Clin. Investig. 2015, 125, 3335–3337. [Google Scholar] [CrossRef] [Green Version]
  14. Hodi, F.S.; O’Day, S.J.; McDermott, D.F.; Weber, R.W.; Sosman, J.A.; Haanen, J.B.; Gonzalez, R.; Robert, C.; Schadendorf, D.; Hassel, J.C.; et al. Improved survival with ipilimumab in patients with metastatic melanoma. N. Engl. J. Med. 2010, 363, 711–723. [Google Scholar] [CrossRef]
  15. Hwu, P. Treating cancer by targeting the immune system. N. Engl. J. Med. 2010, 363, 779–781. [Google Scholar] [CrossRef]
  16. Ancevski Hunter, K.; Socinski, M.A.; Villaruz, L.C. PD-L1 Testing in Guiding Patient Selection for PD-1/PD-L1 Inhibitor Therapy in Lung Cancer. Mol. Diagn. Ther. 2018, 22, 1–10. [Google Scholar] [CrossRef]
  17. Santoni, M.; Massari, F.; Bracarda, S.; Grande, E.; Matrana, M.R.; Rizzo, M.; De Giorgi, U.; Basso, U.; Aurilio, G.; Incorvaia, L.; et al. Cabozantinib in Patients with Advanced Renal Cell Carcinoma Primary Refractory to First-Line Immunocombinations or Tyrosine Kinase Inhibitors. Eur. Urol. Focus 2022, 19. [Google Scholar] [CrossRef]
  18. Bergerot, P.; Lamb, P.; Wang, E.; Pal, S.K. Cabozantinib in Combination with Immunotherapy for Advanced Renal Cell Carcinoma and Urothelial Carcinoma: Rationale and Clinical Evidence. Mol Cancer Ther. 2019, 18, 2185–2193. [Google Scholar] [CrossRef] [Green Version]
  19. Cheng, A.L.; Hsu, C.; Chan, S.L.; Choo, S.P.; Kudo, M. Challenges of combination therapy with immune checkpoint inhibitors for hepatocellular carcinoma. J. Hepatol. 2020, 72, 307–319. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  20. Lemery, S.; Keegan, P.; Pazdur, R. First FDA Approval Agnostic of Cancer Site—When a Biomarker Defines the Indication. N. Engl. J. Med. 2017, 377, 1409–1412. [Google Scholar] [CrossRef]
  21. Yarchoan, M.; Hopkins, A.; Jaffee, E.M. Tumor Mutational Burden and Response Rate to PD-1 Inhibition. N. Engl. J. Med. 2017, 377, 2500–2501. [Google Scholar] [CrossRef]
  22. Santoni, M.; Rizzo, A.; Mollica, V.; Matrana, M.R.; Rosellini, M.; Faloppi, L.; Marchetti, A.; Battelli, N.; Massari, F. The impact of gender on the efficacy of immune checkpoint inhibitors in cancer patients: The MOUSEION-01 study. Crit. Rev. Oncol. Hematol. 2022, 170, 103596. [Google Scholar] [CrossRef] [PubMed]
  23. Rizzo, A.; Mollica, V.; Marchetti, A.; Nuvola, G.; Rosellini, M.; Tassinari, E.; Molina-Cerrillo, J.; Myint, Z.W.; Buchler, T.; Monteiro, F.S.M.; et al. Adjuvant PD-1 and PD-L1 Inhibitors and Relapse-Free Survival in Cancer Patients: The MOUSEION-04 Study. Cancers 2022, 14, 4142. [Google Scholar] [CrossRef] [PubMed]
  24. Hu, D.; Zhang, W.; Tang, J.; Zhou, Z.; Liu, X.; Shen, Y. Improving safety of cancer immunotherapy via delivery technology. Biomaterials 2021, 265, 120407. [Google Scholar] [CrossRef] [PubMed]
  25. Rizzo, A.; Ricci, A.D. Biomarkers for breast cancer immunotherapy: PD-L1, TILs, and beyond. Expert Opin. Investig. Drugs 2022, 31, 549–555. [Google Scholar] [CrossRef]
  26. Rizzo, A.; Santoni, M.; Mollica, V.; Logullo, F.; Rosellini, M.; Marchetti, A.; Faloppi, L.; Battelli, N.; Massari, F. Peripheral neuropathy and headache in cancer patients treated with immunotherapy and immuno-oncology combinations: The MOUSEION-02 study. Expert Opin. Drug Metab. Toxicol. 2021, 17, 1455–1466. [Google Scholar] [CrossRef]
  27. Herzyk, D.J.; Haggerty, H.G. Cancer Immunotherapy: Factors Important for the Evaluation of Safety in Nonclinical Studies. AAPS J. 2018, 20, 28. [Google Scholar] [CrossRef]
  28. Rizzo, A.; Mollica, V.; Cimadamore, A.; Santoni, M.; Scarpelli, M.; Giunchi, F.; Cheng, L.; Lopez-Beltran, A.; Fiorentino, M.; Montironi, R.; et al. Is There a Role for Immunotherapy in Prostate Cancer? Cells. 2020, 9, 2051. [Google Scholar] [CrossRef]
  29. Sheng, I.Y.; Rini, B.I. Immunotherapy for renal cell carcinoma. Expert Opin. Biol. Ther. 2019, 19, 897–905. [Google Scholar] [CrossRef]
  30. Wang, Z.; Duan, J.; Cai, S.; Han, M.; Dong, H.; Zhao, J.; Zhu, B.; Wang, S.; Zhuo, M.; Sun, J.; et al. Assessment of Blood Tumor Mutational Burden as a Potential Biomarker for Immunotherapy in Patients with Non-Small Cell Lung Cancer With Use of a Next-Generation Sequencing Cancer Gene Panel. JAMA Oncol. 2019, 5, 696–702. [Google Scholar] [CrossRef]
  31. Santoni, M.; Bracarda, S.; Nabissi, M.; Massari, F.; Conti, A.; Bria, E.; Tortora, G.; Santoni, G.; Cascinu, S. CXC and CC chemokines as angiogenic modulators in nonhaematological tumors. Biomed. Res. Int. 2014, 2014, 768758. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  32. Goodman, A.M.; Kato, S.; Bazhenova, L.; Patel, S.P.; Frampton, G.M.; Miller, V.; Stephens, P.J.; Daniels, G.A.; Kurzrock, R. Tumor Mutational Burden as an Independent Predictor of Response to Immunotherapy in Diverse Cancers. Mol. Cancer Ther. 2017, 16, 2598–2608. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  33. Santoni, M.; Massari, F.; Del Re, M.; Ciccarese, C.; Piva, F.; Principato, G.; Montironi, R.; Santini, D.; Danesi, R.; Tortora, G.; et al. Investigational therapies targeting signal transducer and activator of transcription 3 for the treatment of cancer. Expert Opin. Investig. Drugs 2015, 24, 809–824. [Google Scholar] [CrossRef]
  34. Chalmers, Z.R.; Connelly, C.F.; Fabrizio, D.; Gay, L.; Ali, S.M.; Ennis, R.; Schrock, A.; Campbell, B.; Shlien, A.; Chmielecki, J.; et al. Analysis of 100,000 human cancer genomes reveals the landscape of tumor mutational burden. Genome Med. 2017, 9, 34. [Google Scholar] [CrossRef] [Green Version]
  35. Mollica, V.; Santoni, M.; Matrana, M.R.; Basso, U.; De Giorgi, U.; Rizzo, A.; Maruzzo, M.; Marchetti, A.; Rosellini, M.; Bleve, S.; et al. Concomitant Proton Pump Inhibitors and Outcome of Patients Treated with Nivolumab Alone or Plus Ipilimumab for Advanced Renal Cell Carcinoma. Target Oncol. 2022, 17, 61–68. [Google Scholar] [CrossRef] [PubMed]
  36. Santoni, M.; Buti, S.; Conti, A.; Porta, C.; Procopio, G.; Sternberg, C.N.; Bracarda, S.; Basso, U.; De Giorgi, U.; Rizzo, M.; et al. Prognostic significance of host immune status in patients with late relapsing renal cell carcinoma treated with targeted therapy. Target Oncol. 2015, 10, 517–522. [Google Scholar] [CrossRef]
  37. Rizzo, A.; Ricci, A.D.; Brandi, G. Durvalumab: An investigational anti-PD-L1 antibody for the treatment of biliary tract cancer. Expert Opin. Investig. Drugs 2021, 30, 343–350. [Google Scholar] [CrossRef]
  38. Di Nunno, V.; Frega, G.; Santoni, M.; Gatto, L.; Fiorentino, M.; Montironi, R.; Battelli, N.; Brandi, G.; Massari, F. BAP1 in solid tumors. Future Oncol. 2019, 15, 2151–2162. [Google Scholar] [CrossRef]
  39. Iacovelli, R.; Massari, F.; Albiges, L.; Loriot, Y.; Massard, C.; Fizazi, K.; Escudier, B. Evidence and Clinical Relevance of Tumor Flare in Patients Who Discontinue Tyrosine Kinase Inhibitors for Treatment of Metastatic Renal Cell Carcinoma. Eur. Urol. 2015, 68, 154–160. [Google Scholar] [CrossRef]
  40. Rizzo, A.; Ricci, A.D.; Gadaleta-Caldarola, G.; Brandi, G. First-Line immune checkpoint inhibitor-based combinations in unresectable hepatocellular carcinoma: Current management and future challenges. Expert Rev. Gastroenterol. Hepatol. 2021, 15, 1245–1251. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Share and Cite

MDPI and ACS Style

Rizzo, A.; Mollica, V.; Santoni, M.; Massari, F. Cancer Immunotherapy: Harnessing the Immune System to Fight Cancer. J. Clin. Med. 2022, 11, 6356. https://doi.org/10.3390/jcm11216356

AMA Style

Rizzo A, Mollica V, Santoni M, Massari F. Cancer Immunotherapy: Harnessing the Immune System to Fight Cancer. Journal of Clinical Medicine. 2022; 11(21):6356. https://doi.org/10.3390/jcm11216356

Chicago/Turabian Style

Rizzo, Alessandro, Veronica Mollica, Matteo Santoni, and Francesco Massari. 2022. "Cancer Immunotherapy: Harnessing the Immune System to Fight Cancer" Journal of Clinical Medicine 11, no. 21: 6356. https://doi.org/10.3390/jcm11216356

APA Style

Rizzo, A., Mollica, V., Santoni, M., & Massari, F. (2022). Cancer Immunotherapy: Harnessing the Immune System to Fight Cancer. Journal of Clinical Medicine, 11(21), 6356. https://doi.org/10.3390/jcm11216356

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop