Clinical Pharmacology of Factor XI Inhibitors: New Therapeutic Approaches for Prevention of Venous and Arterial Thrombotic Disorders
Abstract
:1. Introduction
2. Targeting Factor XI
3. Clinical Pharmacology of Anti FXI and FXIa
3.1. mAbs anti FXI and FXIa
3.1.1. Abelacimab
Mechanism of Action
Pharmacokinetics
Pharmacodynamics
3.1.2. Osocimab
Mechanism of Action
Pharmacokinetics
Pharmacodynamics
3.1.3. BAY 1831865
Mechanism of Action
Pharmacokinetics
Pharmacodynamics
3.1.4. AB023/Xisomab 3G3
Mechanism of Action
Pharmacokinetics
Pharmacodynamics
3.2. Small Molecules Anti FXI and FXIa
3.2.1. Asundexian
Mechanism of Action
Pharmacokinetics
Pharmacodynamics
3.2.2. Milvexian
Mechanism of Action
Pharmacokinetics
Pharmacodynamic
3.3. Antisense Oligonucleotides (ASO)
3.3.1. Fesomersen (IONIS-FXI-LRx/ISIS 416858/ BAY2306001)
Mechanism of Action
Pharmacokinetics
Pharmacodynamics
4. Completed Phase 2 Trials
5. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hawes, E.M.; Viera, A.J. Anticoagulation: Indications and risk classification schemes. FP Essent. 2014, 422, 11–17. [Google Scholar] [PubMed]
- Hindricks, G.; Potpara, T.; Dagres, N.; Arbelo, E.; Bax, J.J.; Blomström-Lundqvist, C.; Boriani, G.; Castella, M.; Dan, G.A.; Dilaveris, P.E.; et al. ESC Scientific Document Group. 2020 ESC Guidelines for the diagnosis and management of atrial fibrillation developed in collaboration with the European Association for Cardio-Thoracic Surgery (EACTS): The Task Force for the diagnosis and management of atrial fibrillation of the European Society of Cardiology (ESC) Developed with the special contribution of the European Heart Rhythm Association (EHRA) of the ESC. Eur. Heart J. 2021, 42, 373–498. [Google Scholar] [PubMed]
- Ortel, T.L.; Neumann, I.; Ageno, W.; Beyth, R.; Clark, N.P.; Cuker, A.; Hutten, B.A.; Jaff, M.R.; Manja, V.; Schulman, S.; et al. American Society of Hematology 2020 guidelines for management of venous thromboembolism: Treatment of deep vein thrombosis and pulmonary embolism. Blood Adv. 2020, 4, 4693–4738. [Google Scholar] [CrossRef] [PubMed]
- Piran, S.; Schulman, S. Treatment of bleeding complications in patients on anticoagulant therapy. Blood 2019, 133, 425–435. [Google Scholar] [CrossRef] [Green Version]
- Larsen, T.B.; Skjoth, F.; Nielsen, P.B.; Kjaeldgaard, J.N.; Lip, G.Y. Comparative effectiveness and safety of non-vitamin K antagonist oral anticoagulants and warfarin in patients with atrial fibrillation: Propensity weighted nationwide cohort study. BMJ 2016, 353, i3189. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chai-Adisaksopha, C.; Crowther, M.; Isayama, T.; Lim, W. The impact of bleeding complications in patients receiving target-specific oral anticoagulants: A systematic review and metaanalysis. Blood 2014, 124, 2450–2458. [Google Scholar] [CrossRef]
- Proietti, M.; Romanazzi, I.; Romiti, G.F.; Farcomeni, A.; Lip, G.Y.H. Real-world use of apixaban for stroke prevention in atrial fibrillation: A systematic review and meta-analysis. Stroke 2018, 49, 98–106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caldeira, D.; Barra, M.; Pinto, F.J.; Ferreira, J.J.; Costa, J. Intracranial hemorrhage risk with the new oral anticoagulants: A systematic review and meta-analysis. J. Neurol. 2015, 262, 516–522. [Google Scholar] [CrossRef] [PubMed]
- Wilson, D.; Seiffge, D.J.; Traenka, C.; Basir, G.; Purrucker, J.C.; Rizos, T.; Sobowale, O.A.; Sallinen, H.; Yeh, S.J.; Wu, T.Y.; et al. Outcome of intracerebral hemorrhage associated with different oral anticoagulants. Neurology 2017, 88, 1693–1700. [Google Scholar] [CrossRef]
- Boulouis, G.; Morotti, A.; Pasi, M.; Goldstein, J.N.; Gurol, M.E.; Charidimou, A. Outcome of intracerebral haemorrhage related to nonvitamin K antagonists oral anticoagulants versus vitamin K antagonists: A comprehensive systematic review and meta-analysis. J. Neurol. Neurosurg. Psychiatry 2018, 89, 263–270. [Google Scholar] [CrossRef] [PubMed]
- Hsu, C.; Hutt, E.; Bloomfield, D.M.; Gailani, D.; Weitz, J.I. Factor XI Inhibition to Uncouple Thrombosis from Hemostasis: JACC Review Topic of the Week. J. Am. Coll. Cardiol. 2021, 78, 625–631. [Google Scholar] [CrossRef]
- Poenou, G.; Dumitru Dumitru, T.; Lafaie, L.; Mismetti, V.; Heestermans, M.; Bertoletti, L. Factor XI Inhibition for the Prevention of Venous Thromboembolism: An Update on Current Evidence and Future perspectives. Vasc. Health Risk Manag. 2022, 18, 359–373. [Google Scholar] [CrossRef] [PubMed]
- Kluge, K.E.; Seljeflot, I.; Arnesen, H.; Jensen, T.; Halvorsen, S.; Helseth, R. Coagulation factors XI and XII a possible targets for anticoagulant therapy. Thromb. Res. 2022, 214, 53–62. [Google Scholar] [CrossRef] [PubMed]
- Sharman Moser, S.; Chodick, G.; Ni, Y.G.; Chalothorn, D.; Wang, M.D.; Shuldiner, A.R.; Morton, L.; Salomon, O.; Jalbert, J.J. The Association between Factor XI Deficiency and the Risk of Bleeding, Cardiovascular, and Venous Thromboembolic Events. Thromb. Haemost. 2022, 122, 808–817. [Google Scholar] [CrossRef]
- Salomon, O.; Steinberg, D.M.; Zucker, M.; Varon, D.; Zivelin, A.; Seligsohn, U. Patients with severe factor XI deficiency have a reduced incidence of deep vein thrombosis. Thromb. Haemost. 2011, 105, 269–273. [Google Scholar] [CrossRef] [PubMed]
- Meijers, J.C.; Tekelenburg, W.L.; Bouma, B.N.; Bertina, R.M.; Rosendaal, F.R. High levels of coagulation factor XI as a risk factor for venous thrombosis. N. Engl. J. Med. 2000, 342, 696–701. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Cheng, Q.; Xu, L.; Feuerstein, G.Z.; Hsu, M.Y.; Smith, P.L.; Seiffert, D.A.; Schumacher, W.A.; Ogletree, M.L.; Gailani, D. Effects of factor IX or factor XI deficiency on ferric chloride-induced carotid artery occlusion in mice. J. Thromb. Haemost. 2005, 3, 695–702. [Google Scholar] [CrossRef] [PubMed]
- Tucker, E.I.; Marzec, U.M.; White, T.C.; Hurst, S.; Rugonyi, S.; McCarty, O.J.; Gailani, D.; Gruber, A.; Hanson, S.R. Prevention of vascular graft occlusion and thrombus-associated thrombin generation by inhibition of factor XI. Blood 2009, 113, 936–944. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grover, S.P.; Mackman, N. Tissue Factor: An Essential Mediator of Hemostasis and Trigger of Thrombosis. Arterioscler. Thromb. Vasc. Biol. 2018, 38, 709–725. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Campello, E.; Spiezia, L.; Radu, C.M.; Bon, M.; Gavasso, S.; Zerbinati, P.; Woodhams, B.; Tormene, D.; Prandoni, P.; Simioni, P. Circulating microparticles in carriers of factor V Leiden with and without a history of venous thrombosis. Thromb. Haemost. 2012, 108, 633–639. [Google Scholar] [CrossRef] [PubMed]
- Campello, E.; Henderson, M.W.; Noubouossie, D.F.; Simioni, P.; Key, N.S. Contact System Activation and Cancer: New Insights in the Pathophysiology of Cancer-Associated Thrombosis. Thromb. Haemost. 2018, 118, 251–265. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yi, B.A.; Freedholm, D.; Widener, N.; Wang, X.; Simard, E.; Cullen, C.; Al-Saady, N.M.; Lepor, N.E.; Coulter, S.; Lovern, M.; et al. Pharmacokinetics and pharmacodynamics of Abelacimab (MAA868), a novel dual inhibitor of Factor XI and Factor Xia. J. Thromb. Haemost. 2022, 20, 307–315. [Google Scholar] [CrossRef] [PubMed]
- Verhamme, P.; Yi, B.A.; Segers, A.; Salter, J.; Bloomfield, D.; Büller, H.R.; Raskob, G.E.; Weitz, J.I.; ANT-005 TKA Investigators. Abelacimab for Prevention of Venous Thromboembolism. NEJM 2021, 385, 609–617. [Google Scholar] [CrossRef]
- Thomas, D.; Thelen, K.; Kraff, S.; Schwers, S.; Schiffer, S.; Unger, S.; Yassen, A.; Boxnick, S. BAY 1213790, a fully human IgG1 antibody targeting coagulation factor XIa: First evaluation of safety, pharmacodynamics, and pharmacokinetics. Res. Pract. Thromb. Haemost. 2019, 3, 242–253. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weitz, J.I.; Bauersachs, R.; Becker, B.; Berkowitz, S.D.; Freitas, M.; Lassen, M.R.; Metzig, C.; Raskob, G.E. Effect of Osocimab in Preventing Venous Thromboembolism Among Patients Undergoing Knee Arthroplasty: The FOXTROT Randomized Clinical Trial. JAMA 2020, 323, 130–139. [Google Scholar] [CrossRef] [PubMed]
- Nowotny, B.; Thomas, D.; Schwers, S.; Wiegmann, S.; Prange, W.; Yassen, A.; Boxnick, S. First randomized evaluation of safety, pharmacodynamics, and pharmacokinetics of BAY 1831865, an antibody targeting coagulation factor XI and factor XIa, in healthy men. J. Thromb. Heamost. 2022, 20, 1684–1695. [Google Scholar] [CrossRef] [PubMed]
- Lorentz, C.U.; Verbout, N.G.; Wallisch, M.; Hagen, M.W.; Shatzel, J.J.; Olson, S.R.; Puy, C.; Hinds, M.T.; McCarty, O.; Gailani, D.; et al. Contact Activation Inhibitor and Factor XI Antibody, AB023, Produces Safe, Dose-Dependent Anticoagulation in a Phase 1 First-In-Human Trial. Arterioscler. Thromb. Vasc. Biol. 2019, 39, 799–809. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lorentz, C.U.; Tucker, E.I.; Verbout, N.G.; Shatzel, J.J.; Olson, S.R.; Markway, B.D.; Wallisch, M.; Ralle, M.; Hinds, M.T.; McCarty, O.; et al. The contact activation inhibitor AB023 in heparin-free hemodialysis: Results of a randomized phase 2 clinical trial. Blood 2021, 138, 2173–2184. [Google Scholar] [CrossRef]
- Thomas, D.; Kanefendt, F.; Schwers, S.; Unger, S.; Yassen, A.; Boxnick, S. First evaluation of the safety, pharmacokinetics, and pharmacodynamics of BAY 2433334, a small molecule targeting coagulation factor Xia. J. Thromb. Haemost. 2021, 19, 2407–2416. [Google Scholar] [CrossRef]
- Piccini, J.P.; Caso, V.; Connolly, S.J.; Fox, K.; Oldgren, J.; Jones, W.S.; Gorog, D.A.; Durdil, V.; Viethen, T.; Neumann, C.; et al. Safety of the oral factor XIa inhibitor asundexian compared with apixaban in patients with atrial fibrillation (PACIFIC-AF): A multicentre, randomised, double-blind, double-dummy, dose-finding phase 2 study. Lancet 2022, 399, 1383–1390. [Google Scholar] [CrossRef]
- Rao, S.V.; Kirsch, B.; Bhatt, D.L.; Budaj, A.; Coppolecchia, R.; Eikelboom, J.; James, S.K.; Jones, W.S.; Merkely, B.; Keller, L.; et al. A Multicenter, Phase 2, Randomized, Placebo-Controlled, Double-Blind, Parallel-Group, Dose-Finding Trial of the Oral Factor XIa Inhibitor Asundexian to Prevent Adverse Cardiovascular Outcomes Following Acute Myocardial Infarction. Circulation 2022, 146, 1196–1206. [Google Scholar] [CrossRef] [PubMed]
- Perera, V.; Abelian, G.; Li, D.; Wang, Z.; Zhang, L.; Lubin, S.; Chen, W.; Bello, A.; Murthy, B. Single-Dose Pharmacokinetics of Milvexian in Participants with Mild or Moderate Hepatic Impairment Compared with Healthy Participants. Clin. Pharmacokinet. 2022, 61, 857–867. [Google Scholar] [CrossRef] [PubMed]
- Perera, V.; Wang, Z.; Luettgen, J.; Li, D.; DeSouza, M.; Cerra, M.; Seiffert, D. First-in-human study of milvexian, an oral, direct, small molecule factor XIa inhibitor. Clin. Transl. Sci. 2022, 15, 330–342. [Google Scholar] [CrossRef] [PubMed]
- Weitz, J.I.; Strony, J.; Ageno, W.; Gailani, D.; Hylek, E.M.; Lassen, M.R.; Mahaffey, K.W.; Notani, R.S.; Roberts, R.; Segers, A.; et al. Milvexian for the Prevention of Venous Thromboembolism. NEJM 2021, 385, 2161–2172. [Google Scholar] [CrossRef] [PubMed]
- Sharma, M.; Molina, C.A.; Toyoda, K.; Bereczki, D.; Kasner, S.E.; Lutsep, H.L.; Tsivgoulis, G.; Ntaios, G.; Czlonkowska, A.; Shuaib, A.; et al. Rationale and design of the AXIOMATIC-SSP phase II trial: Antithrombotic treatment with factor XIa inhibition to Optimize Management of Acute Thromboembolic events for Secondary Stroke Prevention. J. Stroke Cerebrovasc. Dis. 2022, 31, 106742. [Google Scholar] [CrossRef]
- Liu, Q.; Bethune, C.; Dessouki, E.; Grundy, J.; Monia, B.P.; Bhanot, S. ISIS-FXIRx, A Novel and Specific Antisense Inhibitor of Factor XI, Caused Significant Reduction in FXI Antigen and Activity and Increased aPTT without Causing Bleeding in Healthy Volunteers. Blood 2011, 118, 97–98. [Google Scholar] [CrossRef]
- Bethune, C.; Walsh, M.; Jung, B.; Yu, R.; Geary, R.; Bhanot, S. Pharmacokinetics and Pharmacodynamics of Ionis-FXIRx, an Antisense Inhibitor of Factor XI, in Patients with End-Stage Renal Disease on Hemodialysis. Blood 2017, 130, 1116. [Google Scholar]
- Walsh, M.; Bethune, C.; Smyth, A.; Tyrwhitt, J.; Jung, S.W.; Yu, R.Z.; Wang, Y.; Geary, R.S.; Weitz, J.; Bhanot, S.; et al. Phase 2 Study of the Factor XI Antisense Inhibitor IONIS-FXIRx in Patients With ESRD. Kidney Int. Rep. 2022, 7, 200–209. [Google Scholar] [CrossRef] [PubMed]
- Buller, H.R.; Bethune, C.; Bhanot, S.; Gailani, D.; Monia, B.P.; Raskob, G.E.; Segers, A.; Verhamme, P.; Weitz, J.I. Factor XI antisense oligonucleotide for prevention of venous thrombosis. NEJM 2015, 372, 232–240. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koch, A.W.; Schiering, N.; Melkko, S.; Ewert, S.; Salter, J.; Zhang, Y.; McCormack, P.; Yu, J.; Huang, X.; Chiu, Y.H.; et al. MAA868, a novel FXI antibody with a unique binding mode, shows durable effects on markers of anticoagulation in humans. Blood 2019, 133, 1507–1516. [Google Scholar] [CrossRef] [Green Version]
- Schaefer, M.; Buchmueller, A.; Dittmer, F.; Straßburger, J.; Wilmen, A. Allosteric Inhibition as a New Mode of Action for BAY 1213790, a Neutralizing Antibody Targeting the Activated Form of Coagulation Factor XI. J. Mol. Biol. 2019, 431, 4817–4833. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.; Sinha, D.; Shikov, S.; Yip, C.K.; Walz, T.; Billings, P.C.; Lear, J.D.; Walsh, P.N. Factor XI homodimer structure is essential for normal proteolytic activation by factor XIIa, thrombin, and factor Xia. J. Biological Chem. 2008, 283, 18655–18664. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferri, N.; Bellosta, S.; Baldessin, L.; Boccia, D.; Racagni, G.; Corsini, A. Pharmacokinetics interactions of monoclonal antibodies. Pharmacol. Res. 2016, 111, 592–599. [Google Scholar] [CrossRef] [PubMed]
- Heitmeier, S.; Visser, M.; Tersteegen, A.; Dietze-Torres, J.; Glunz, J.; Gerdes, C.; Laux, V.; Stampfuss, J.; Roehrig, S. Pharmacological profile of asundexian, a novel, orally bioavailable inhibitor of factor Xia. J. Thromb. Haemost. 2022, 20, 1400–1411. [Google Scholar] [CrossRef]
- Dilger, A.K.; Pabbisetty, K.B.; Corte, J.R.; De Lucca, I.; Fang, T.; Yang, W.; Pinto, D.; Wang, Y.; Zhu, Y.; Mathur, A.; et al. Discovery of Milvexian, a High-Affinity, Orally Bioavailable Inhibitor of Factor XIa in Clinical Studies for Antithrombotic Therapy. J. Med. Chem. 2022, 65, 1770–1785. [Google Scholar] [CrossRef] [PubMed]
- Younis, H.S.; Crosby, J.; Huh, J.I.; Lee, H.S.; Rime, S.; Monia, B.; Henry, S.P. Antisense inhibition of coagulation factor XI prolongs APTT without increased bleeding risk in cynomolgus monkeys. Blood 2012, 119, 2401–2408. [Google Scholar] [CrossRef]
Medical Condition | Unresolved Issues |
---|---|
Atrial fibrillation | End-stage renal disease (ClCR < 15 mL/min) Elderly patients (age ≥ 85 years) Concomitant acute coronary syndrome Concomitant heart valvular prothesis Medical devices Resumption of anticoagulation after major bleeding |
Venous thromboembolism | End-stage renal disease Patients with gastro-intestinal or genito-urinary cancer Drug-drug interactions Antiphospholipid antibody syndrome |
Compound Name | Developer | Target | Inhibitory Class | Phase of Development | Population | Trial Design | Number of Patients | Ref. |
---|---|---|---|---|---|---|---|---|
Abelacimab (MAA868) | Anthos Therapeutics Novartis AG | FXI and FXIa | Fully human mAb IgG1 | Phase 1 | Healthy volunteers and patents with AF | Randomized, subject-and investigator-blinded, placebo-controlled study | 18 | [22] |
Phase 2 | Patients undergoing total knee arthroplasty | Open-label, parallel-group trial | 412 | [23] | ||||
Osocimab (BAY1213790) | Bayer Pharmaceuticals | FXIa | Fully human mAb IgG1 | Phase 1 | Healthy volunteers | Randomized, single-blind, placebo-controlled, dose-escalation study | 81 | [24] |
Phase 2 | Patients undergoing total knee arthroplasty | Randomized, open-label, adjudicator-blinded, noninferiority trial | 813 | [25] | ||||
BAY1831865 | Bayer Pharmaceuticals | FXI | Humanized mAb IgG1 | Phase 1 | Healthy volunteers | Randomized, single-blind (participant), parallel-group, placebo-controlled, dose-escalation | 70 | [26] |
AB023/ Xisomab 3G3 | Aronora | FXIa | Fully human monoclonal IgG1 antibody | Phase 1 | Healthy volunteers | Randomized, double-blind, placebo-controlled, single ascending bolus dose study | 21 | [27] |
Phase 2 | Patients with end stage renal disease on chronic hemodialysis | Randomized, Double-Blind, Placebo-Controlled Study | 24 | [28] | ||||
Asundexian (BAY 2433334) | Bayer Pharmaceuticals | FXIa | Small molecule | Phase 1 | Healthy volunteers | Single-blind, placebo-controlled, dose-escalation study | 70 | [29] |
Phase 2 | Patients with AF | Randomized, double-blind, double-dummy, dose-finding | 755 | [30] | ||||
Phase 2 | Patients with | Randomized, placebo-controlled, double-blind, parallel-group, dose-finding | 1601 | [31] | ||||
Milvexian (BMS-986177 JNJ- 70033093) | Janssen of Johnson and Johnson and Bristol-Myers Squibb | FXIa | Small molecule | Phase 1 | Healthy and mild or moderate hepatic impairment | Open-label | 26 | [32] |
Phase 1 | Healthy volunteers | Randomized, double-blind, placebo-controlled, single and multiple ascending doses | 94 | [33] | ||||
Phase 2 | Patients undergoing total knee arthroplasty | Randomized, parallel-group | 1242 | [34] | ||||
Phase 2 | Patients with ischemic stroke | Randomized, double-Blind, placebo-controlled, dose-Ranging Study | 2366 | [35] | ||||
Fesomersen (IONIS-FXI-LRX) | IONIS and Bayer | FXIa | Antisense Oligonucleotide | Phase 1 | Healthy volunteers | Placebo-controlled, dose escalation study | 36 | [36] |
Phase 1 | End-Stage Renal Disease on Hemodialysis patients | Open-label single-dose and double-blind multiple doses | 49 | [37] | ||||
Phase 2 | Patients with end stage renal disease on chronic hemodialysis | Double-blind, randomized | 43 | [38] | ||||
Phase 2 | Patients undergoing total knee arthroplasty | open-label, parallel-group | 300 | [39] |
Parameter | Abelacimab 150 mg s.c. (n = 8) | Abelacimab 150 mg i.v. (n = 6) | Abelacimab 150 mg i.v. (n = 6) BMI > 35 |
---|---|---|---|
Cmax (µg/mL) | 11.6 (28.8) | 52.3 (17.7) | 36.7 (16.8) |
Tmax (h) | 7.00 (7.00–14.0) | 2.00 (1.50–3.03) | 1.75 (1.20–2.02) |
AUC (h × µg/mL) | 9696 (15.4) | 21,782 (18.3) | 12,543 (26.6) |
T1/2 (h) | 580.8 (16.2) | 595 (29.7) | 621 (17.1) |
Vd (L) | 13.3 (24.2) | 5.00 (24.1) | 8.29 (20.8) |
CL (L/h) | 0.0158 (16.7) | 0.00653 (17.6) | 0.0120 (26.6) |
Parameter | Osocimab 0.3 mg/Kg i.v. (n = 6) | Osocimab 0.6 mg/Kg i.v. (n = 8) | Osocimab 1.25 mg/Kg i.v. (n = 8) | Osocimab 2.5 mg/Kg i.v. (n = 8) |
---|---|---|---|---|
Cmax (mg/L) | 8.01 (11.6) | 22.3 (14.2) | 42.6 (12.5) | 78.5 (13) |
Tmax (h) | 1.52 (1.02–2.03) | 2.02 (1.07–12.1) | 4 (1.02–8) | 3 (1–8) |
AUC (h × µg/mL) | 3610 (17.9) | 7200 (12.7) | 14,200 (15.8) | 23,700 (16) |
T1/2 (h) | 748 (14.3) | 729 (12.7) | 809 (11.8) | 1050 (16.5) |
Vd (L) | 5.6 (9.25) | 5.43 (12.1) | 6.58 (17.2) | 8.69 (14.7) |
CL (L/h) | 0.00535 (9.2) | 0.00565 (12.8) | 0.00663 (19.3) | 0.00787 (18.1) |
Parameter | BAY 1831865 150 mg i.v. | BAY 1831865 150 mg s.c |
---|---|---|
Cmax (mg/L) | 48.3 (9.47) | 10.9 (67.4) |
Tmax (h) | 1.94 (1.00–3.95) | 96.0 (48–239) |
AUC (h × µg/mL) | 10.900 (16.7) | 5160 (61.1) |
AUC/D (h /L) | 72.9 (16.7) | 34.4 (61.1) |
T1/2 (h) | 208 (19.8) | 217 (36.5) |
Vd (L) | 0.0137 (16.7) | 0.0291 (61.1) |
CL (L/h) | 0.0137 (16.7) | 0.0291 (61.1) |
Parameter | AB023 0.1 mg/Kg i.v. | AB023 0.5 mg/Kg i.v. | AB023 2.0 mg/Kg i.v. | AB023 5.0 mg/Kg i.v. |
---|---|---|---|---|
Cmax (µg/mL) | 122.7 (23.3) | 11210 (9.1) | 42,510 (12.3) | 127,200 (2.6) |
Tmax (h) | 0.084 (0.08–0.09) | 0.649 (0.26–3.02) | 0.088 (0.08–0.25) | 0.387 (0.26–3.00) |
AUC (h·ng/mL) | 57.0 (46.5) | 361,800 (21.9) | 5,540,000 (23.9) | 28,120,000 (11.8) |
T1/2 (h) | 1.33 | 16.64 (9.4) | 60.63 (7.3) | 121.49 (33.4) |
Vd (L) | 69.11 | 2.52 (23.4) | 3.72 (11.3) | 4.31 (17.4) |
Cl (L/h) | 37.46 | 0.094 (19.1) | 0.026 (11.5) | 0.014 (21.4) |
Parameter | Asundexian Oral Solution | Asundexian Tablets | ||||
---|---|---|---|---|---|---|
5 mg | 12.5 mg | 25 mg | 25 mg | 50 mg | 100 mg | |
Cmax (μg/L) | 91.4 (15.9) | 205 (19.1) | 372 (13.5) | 320 (18.3) | 617 (15.6) | 1230 (25.9) |
AUC (h·ng/mL) | 1570 (18.8) | 3770 (24.9) | 6630 (25.4) | 5940 (19.9) 13 | 200 (16.1) | 27 600 (23.5) |
Tmax (h) | 1.0 (0.75–1.50) | 1.0 (0.75–1.50) | 1.0 (0.75–1.50) | 2.5 (1.0–6.0) | 3.0 (1.0–4.0) | 3.0 (0.8–6.0) |
T1/2 (h) | 14.5 (15.7) | 16.0 (18.1) | 15.2 (21.6) | 14.2 (20.0) | 17.4 (12.4) | 16.3 (13.7) |
Parameter | Milvexian 20 mg Fasted | Milvexian 60 mg Fasted | Milvexian 200 mg Fasted | Milvexian 200 mg Fed | Milvexian 300 mg Fasted | Milvexian 500 mg Fasted | Milvexian 500 mg Fed |
---|---|---|---|---|---|---|---|
Cmax (ng/mL) | 126 (36.7) | 337 (23.6) | 1068 (98.6) | 1639 (20.9) | 1017 (34.1) | 1853 (32.0) | 3359 (39.6) |
AUC (ng·h/mL) | 1220 (20.3) | 3793 (13.7) | 12,471 (68.0) | 17,811 (19.4) | 14,588 (29.9) | 20,991 (26.8) | 44,330 (25.0) |
Tmax, (h) | 3.0 (1.0–4.0) | 3.0 (2.0–4.0) | 3.0 (2.0–4.0) | 4.0 (3.0–6.0) | 3.0 (2.0–4.0) | 3.0 (2.0–4.0) | 4.0 (4.0–6.0) |
T1/2 (h) | 8.3 (17.0) | 9.9 (13.7) | 10.5 (28.8) | 9.0 (16.1) | 13.8 (21.0) | 12.2 (14.4) | 10.7 (12.1) |
Parameter | 200 mg/Kg Fesomersen | 300 mg/Kg Fesomersen | ||
---|---|---|---|---|
(Day 1) | (Day 78) | (Day 1) | (Day 78) | |
Cmax (μg/mL) | 8.24 (42.0) | 10.3 (36.8) | 14.3 (46.5) | 12.3 (41.1) |
T1/2 (h) | NA | 16.9 (39.9) | NA | 13.1 (35.1) |
FXI Antigen Reduction | FXI Activity Reduction | aPTT Prolongation | |
---|---|---|---|
Placebo (pooled, n = 9) | 3 | 3 | 1 |
Fesomersen 50 mg (n = 9) | 31 (p = 0.0013) | 15 (p = 0.1) | 8 (p = 0.14) |
Fesomersen 100 mg (n = 9) | 54 (p < 0.0001) | 45 (p < 0.0001) | 18 (p = 0.0078) |
Fesomersen 200 mg (n = 9) | 78 (p < 0.0001) | 71 (p < 0.0001) | 67 (p < 0.0001) |
Compound Name | Inhibitory Class | Setting | Trial ID | Regimen | Comparator | Sample Size | Status |
---|---|---|---|---|---|---|---|
Abelacimab (MAA868) | Fully human mAb IgG1 | Cancer-associated thrombosis | NCT05171075 (Magnolia) | IV/SC | Dalteparin | 1020 | Recruiting |
Abelacimab (MAA868) | Fully human mAb IgG1 | Cancer-associated thrombosis | NCT05171049 (Aster) | IV/SC | Apixaban | 1655 | Recruiting |
Asundexian (BAY 2433334) | Small molecule | Atrial fibrillation at risk for stroke | OCEANIC-AF | Oral | Apixaban | ~2000 | Upcoming |
Asundexian (BAY 2433334) | Small molecule | Non-cardioembolic ischemic stroke or high-risk ischemic attack | OCEANIC-Stroke | Oral | placebo-controlled study on top of standard-of-care antiplatelet therapy | ~2000 | Upcoming |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Campello, E.; Simioni, P.; Prandoni, P.; Ferri, N. Clinical Pharmacology of Factor XI Inhibitors: New Therapeutic Approaches for Prevention of Venous and Arterial Thrombotic Disorders. J. Clin. Med. 2022, 11, 6314. https://doi.org/10.3390/jcm11216314
Campello E, Simioni P, Prandoni P, Ferri N. Clinical Pharmacology of Factor XI Inhibitors: New Therapeutic Approaches for Prevention of Venous and Arterial Thrombotic Disorders. Journal of Clinical Medicine. 2022; 11(21):6314. https://doi.org/10.3390/jcm11216314
Chicago/Turabian StyleCampello, Elena, Paolo Simioni, Paolo Prandoni, and Nicola Ferri. 2022. "Clinical Pharmacology of Factor XI Inhibitors: New Therapeutic Approaches for Prevention of Venous and Arterial Thrombotic Disorders" Journal of Clinical Medicine 11, no. 21: 6314. https://doi.org/10.3390/jcm11216314