Ion Shift Index at the Immediate Post-Cardiac Arrest Period as an Early Prognostic Marker in Out-of-Hospital Cardiac Arrest Survivors
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Population
2.2. Management and Data Collection
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sandroni, C.; Cronberg, T.; Sekhon, M. Brain injury after cardiac arrest: Pathophysiology, treatment, and prognosis. Intensiv. Care Med. 2021, 47, 1393–1414. [Google Scholar] [CrossRef] [PubMed]
- Lemiale, V.; Dumas, F.; Mongardon, N.; Giovanetti, O.; Charpentier, J.; Chiche, J.D.; Carli, P.; Mira, J.P.; Nolan, J.; Cariou, A. Intensive care unit mortality after cardiac arrest: The relative contribution of shock and brain injury in a large cohort. Intensiv. Care Med. 2013, 39, 1972–1980. [Google Scholar] [CrossRef]
- Sandroni, C.; D’Arrigo, S.; Callaway, C.W.; Cariou, A.; Dragancea, I.; Taccone, F.S.; Antonelli, M. The rate of brain death and organ donation in patients resuscitated from cardiac arrest: A systematic review and meta-analysis. Intensiv. Care Med. 2016, 42, 1661–1671. [Google Scholar] [CrossRef] [Green Version]
- Elmer, J.; Torres, C.; Aufderheide, T.P.; Austin, M.A.; Callaway, C.W.; Golan, E.; Herren, H.; Jasti, J.; Kudenchuk, P.J.; Scales, D.C.; et al. Association of early withdrawal of life-sustaining therapy for perceived neurological prognosis with mortality after cardiac arrest. Resuscitation 2016, 102, 127–135. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Witten, L.; Gardner, R.; Holmberg, M.J.; Wiberg, S.; Moskowitz, A.; Mehta, S.; Grossestreuer, A.V.; Yankama, T.; Donnino, M.W.; Berg, K.M. Reasons for death in patients successfully resuscitated from out-of-hospital and in-hospital cardiac arrest. Resuscitation 2019, 136, 93–99. [Google Scholar] [CrossRef] [PubMed]
- Nolan, J.P.; Sandroni, C.; Böttiger, B.W.; Cariou, A.; Cronberg, T.; Friberg, H.; Genbrugge, C.; Haywood, K.; Lilja, G.; Moulaert, V.R.M.; et al. European Resuscitation Council and European Society of Intensive Care Medicine guidelines 2021: Post-resuscitation care. Intensiv. Care Med. 2021, 47, 369–421. [Google Scholar] [CrossRef]
- Sandroni, C.; D’Arrigo, S.; Cacciola, S.; Hoedemaekers, C.W.E.; Westhall, E.; Kamps, M.J.A.; Taccone, F.S.; Poole, D.; Meijer, F.J.A.; Antonelli, M.; et al. Prediction of good neurological outcome in comatose survivors of cardiac arrest: A systematic review. Intensiv. Care Med. 2022, 48, 389–413. [Google Scholar] [CrossRef]
- Adrie, C.; Cariou, A.; Mourvillier, B.; Laurent, I.; Dabbane, H.; Hantala, F.; Rhaoui, A.; Thuong, M.; Monchi, M. Predicting survival with good neurological recovery at hospital admission after successful resuscitation of out-of-hospital cardiac arrest: The OHCA score. Eur. Heart J. 2006, 27, 2840–2845. [Google Scholar] [CrossRef] [Green Version]
- Pareek, N.; Kordis, P.; Beckley-Hoelscher, N.; Pimenta, D.; Kocjancic, S.T.; Jazbec, A.; Nevett, J.; Fothergill, R.; Kalra, S.; Lockie, T.; et al. A practical risk score for early prediction of neurological outcome after out-of-hospital cardiac arrest: MIRACLE2. Eur. Heart J. 2020, 41, 4508–4517. [Google Scholar] [CrossRef]
- Maupain, C.; Bougouin, W.; Lamhaut, L.; Deye, N.; Diehl, J.L.; Geri, G.; Perier, M.C.; Beganton, F.; Marijon, E.; Jouven, X.; et al. The CAHP (Cardiac Arrest Hospital Prognosis) score: A tool for risk stratification after out-of-hospital cardiac arrest. Eur. Heart J. 2016, 37, 3222–3228. [Google Scholar] [CrossRef]
- Yoon, J.C.; Kim, Y.J.; Ahn, S.; Jin, Y.H.; Lee, S.W.; Song, K.J.; Shin, S.D.; Hwang, S.O.; Kim, W.Y. Factors for modifying the termination of resuscitation rule in out-of-hospital cardiac arrest. Am. Heart J. 2019, 213, 73–80. [Google Scholar] [CrossRef] [PubMed]
- Lascarrou, J.B.; Miailhe, A.F.; le Gouge, A.; Cariou, A.; Dequin, P.F.; Reignier, J.; Coupez, E.; Quenot, J.P.; Legriel, S.; Pichon, N.; et al. NSE as a predictor of death or poor neurological outcome after non-shockable cardiac arrest due to any cause: Ancillary study of HYPERION trial data. Resuscitation 2021, 158, 193–200. [Google Scholar] [CrossRef]
- Ryoo, S.M.; Kim, Y.J.; Sohn, C.H.; Ahn, S.; Seo, D.W.; Kim, W.Y. Prognostic Abilities of Serial Neuron-Specific Enolase and Lactate and their Combination in Cardiac Arrest Survivors During Targeted Temperature Management. J. Clin. Med. 2020, 9, 159. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, H.Y.; Jung, Y.H.; Jeung, K.W.; Lee, B.K.; Youn, C.S.; Mamadjonov, N.; Kim, J.W.; Heo, T.; Min, Y.I. Ion shift index as a promising prognostic indicator in adult patients resuscitated from cardiac arrest. Resuscitation 2019, 137, 116–123. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.Y.; Lee, S.M.; Jeung, K.W.; Lee, B.K.; Han, J.H.; Heo, T.; Min, Y.I. Association between ion shift index and prognosis in severe trauma patients without isolated head injury. Injury 2021, 52, 1151–1157. [Google Scholar] [CrossRef]
- Kim, Y.J.; Kim, M.J.; Koo, Y.S.; Kim, W.Y. Background Frequency Patterns in Standard Electroencephalography as an Early Prognostic Tool in Out-of-Hospital Cardiac Arrest Survivors Treated with Targeted Temperature Management. J. Clin. Med. 2020, 9, 1113. [Google Scholar] [CrossRef] [Green Version]
- Callaway, C.W.; Donnino, M.W.; Fink, E.L.; Geocadin, R.G.; Golan, E.; Kern, K.B.; Leary, M.; Meurer, W.J.; Peberdy, M.A.; Thompson, T.M.; et al. Part 8: Post-Cardiac Arrest Care: 2015 American Heart Association Guidelines Update for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care. Circulation 2015, 132, S465–S482. [Google Scholar] [CrossRef] [Green Version]
- Nolan, J.P.; Soar, J.; Cariou, A.; Cronberg, T.; Moulaert, V.R.; Deakin, C.D.; Bottiger, B.W.; Friberg, H.; Sunde, K.; Sandroni, C. European Resuscitation Council and European Society of Intensive Care Medicine Guidelines for Post-resuscitation Care 2015: Section 5 of the European Resuscitation Council Guidelines for Resuscitation 2015. Resuscitation 2015, 95, 202–222. [Google Scholar] [CrossRef]
- Merchant, R.M.; Topjian, A.A.; Panchal, A.R.; Cheng, A.; Aziz, K.; Berg, K.M.; Lavonas, E.J.; Magid, D.J. Part 1: Executive Summary: 2020 American Heart Association Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care. Circulation 2020, 142, S337–S357. [Google Scholar] [CrossRef]
- Kim, Y.-M.; Jeung, K.W.; Kim, W.Y.; Park, Y.S.; Oh, J.S.; You, Y.H.; Lee, D.H.; Chae, M.K.; Jeong, Y.J.; Kim, M.C.; et al. 2020 Korean Guidelines for Cardiopulmonary Resuscitation. Part 5. Post-cardiac arrest care. Clin. Exp. Emerg. Med. 2021, 8, S41–S64. [Google Scholar] [CrossRef]
- DeLong, E.R.; DeLong, D.M.; Clarke-Pearson, D.L. Comparing the areas under two or more correlated receiver operating characteristic curves: A nonparametric approach. Biometrics 1988, 44, 837–845. [Google Scholar] [CrossRef] [PubMed]
- Thandroyen, F.T.; Bellotto, D.; Katayama, A.; Hagler, H.K.; Willerson, J.T.; Buja, L.M. Subcellular electrolyte alterations during progressive hypoxia and following reoxygenation in isolated neonatal rat ventricular myocytes. Circ. Res. 1992, 71, 106–119. [Google Scholar] [CrossRef] [Green Version]
- Miller, M.; Zachary, J. Mechanisms and Morphology of Cellular Injury, Adaptation, and Death. Pathol. Basis of Vet. Dis. 2017, 17. [Google Scholar]
- Skrifvars, M.B.; Pettilä, V.; Rosenberg, P.H.; Castrén, M. A multiple logistic regression analysis of in-hospital factors related to survival at six months in patients resuscitated from out-of-hospital ventricular fibrillation. Resuscitation 2003, 59, 319–328. [Google Scholar] [CrossRef]
- Jung, Y.H.; Lee, B.K.; Jeung, K.W.; Youn, C.S.; Lee, D.H.; Lee, S.M.; Heo, T.; Min, Y.I. Prognostic value of serum phosphate level in adult patients resuscitated from cardiac arrest. Resuscitation 2018, 128, 56–62. [Google Scholar] [CrossRef] [PubMed]
- Sauneuf, B.; Dupeyrat, J.; Souloy, X.; Leclerc, M.; Courteille, B.; Canoville, B.; Ramakers, M.; Goddé, F.; Beygui, F.; du Cheyron, D.; et al. The CAHP (cardiac arrest hospital prognosis) score: A tool for risk stratification after out-of-hospital cardiac arrest in elderly patients. Resuscitation 2020, 148, 200–206. [Google Scholar] [CrossRef]
- Pun, P.H.; Goldstein, B.A.; Gallis, J.A.; Middleton, J.P.; Svetkey, L.P. Serum Potassium Levels and Risk of Sudden Cardiac Death Among Patients with Chronic Kidney Disease and Significant Coronary Artery Disease. Kidney Int. Rep. 2017, 2, 1122–1131. [Google Scholar] [CrossRef] [Green Version]
- Shamseddin, M.K.; Parfrey, P.S. Sudden cardiac death in chronic kidney disease: Epidemiology and prevention. Nat. Rev. Nephrol. 2011, 7, 145–154. [Google Scholar] [CrossRef]
Characteristics | Total (n = 250) | Patients with Good Neurological Outcomes at 6 Months (n = 86) | Patients with Poor Neurological Outcomes at 6 Months (n = 164) | p Value |
---|---|---|---|---|
Age, years | 62.0 (50.0–70.3) | 56.5 (47.8–66.0) | 64.0 (50.3–73.8) | 0.001 |
Number of males | 180 (72.0%) | 67 (77.9%) | 113 (68.9%) | 0.132 |
Comorbid disease | ||||
Hypertension | 89 (35.6%) | 30 (34.9%) | 59 (36.0%) | 0.864 |
Diabetes Mellitus | 47 (18.8%) | 11 (12.8%) | 36 (22.0%) | 0.078 |
Witnessed cardiac arrest | 193 (77.2%) | 76 (88.4%) | 117 (71.3%) | 0.002 |
Bystander CPR | 179 (71.6%) | 66 (76.7%) | 113 (68.9%) | 0.191 |
Initial shockable rhythm | 100 (40.0%) | 61 (70.9%) | 39 (23.8%) | <0.001 |
Arrest cause | <0.001 | |||
Presumed cardiac | 148 (59.2%) | 74 (86.0%) | 74 (45.1%) | |
Other medical | 63 (25.2%) | 6 (7.0%) | 57 (34.8%) | |
External * | 39 (15.6%) | 6 (7.0%) | 33 (20.1%) | |
Total collapse time, min | 25.0 (12.0–41.0) | 14.5 (8.0–27.0) | 33.5 (16.3–46.0) | <0.001 |
No flow time, min | 0.0 (0.0–4.0) | 0.0 (0.0–3.0) | 0.0 (0.0–5.0) | 0.278 |
Resuscitation duration, min | 23.0 (11.0–37.0) | 13.0 (7.0–23.8) | 30.0 (16.0–44.0) | <0.001 |
Laboratory results | ||||
Potassium, mmol/L | 4.2 (3.6–5.2) | 3.9 (3.4–4.2) | 4.6 (3.8–5.8) | <0.001 |
Phosphorous, mmol/L | 2.39 (1.84–3.01) | 1.89 (1.53–2.30) | 2.68 (2.11–3.35) | <0.001 |
Magnesium, mmol/L | 1.05 (0.94–1.17) | 0.96 (0.89–1.04) | 1.10 (1.00–1.21) | <0.001 |
Calcium, mmol/L | 2.15 (2.00–2.27) | 2.20 (2.08–2.31) | 2.13 (1.98–2.25) | 0.011 |
pH | 7.02 (6.86–7.19) | 7.22 (7.09–7.30) | 6.92 (6.80–7.07) | <0.001 |
Lactate, mmol/L | 11.2 (7.4–14.3) | 7.8 (5.2–11.0) | 12.6 (9.4–15.0) | <0.001 |
Targeted temperature management | 205 (82.0%) | 67 (77.9%) | 138 (84.1%) | 0.223 |
Ion shift index | 4.21 (3.37–5.51) | 3.26 (2.69–3.74) | 4.95 (3.93–6.32) | <0.001 |
OHCA score | 34.39 (16.23) | 21.35 (14.00) | 41.24 (12.78) | <0.001 |
CAHP score | 187.47 (131.02–216.78) | 118.35 (96.37–148.89) | 203.62 (180.11–229.88) | <0.001 |
Characteristics | OR | 95% CI | p Value | Adjusted OR | 95% CI | p Value |
---|---|---|---|---|---|---|
Age, years | 1.026 | 1.009–1.044 | 0.003 | 1.044 | 1.014–1.076 | 0.004 |
Male | 0.628 | 0.392–1.153 | 0.134 | |||
Comorbid disease | ||||||
Hypertension | 1.049 | 0.607–1.811 | 0.864 | |||
Diabetes Mellitus | 1.918 | 0.921–3.991 | 0.082 | |||
Unwitnessed | 3.053 | 1.455–6.406 | 0.003 | 2.557 | 0.821–7.966 | 0.105 |
No bystander CPR | 1.489 | 0.818–2.713 | 0.193 | |||
Initial non-shockable rhythm | 7.821 | 4.343–14.081 | <0.001 | 2.895 | 0.993–8.444 | 0.052 |
Arrest cause | ||||||
Presumed cardiac | Reference | <0.001 | Reference | 0.110 | ||
Other medical | 9.500 | 3.859–23.385 | <0.001 | 3.941 | 1.053–14.747 | 0.042 |
External * | 5.500 | 2.175–13.907 | <0.001 | 2.709 | 0.574–12.774 | 0.208 |
No flow time, min | 1.048 | 0.984–1.115 | 0.147 | |||
Resuscitation duration, min | 1.054 | 1.033–1.075 | <0.001 | 1.029 | 1.003–1.057 | 0.030 |
pH | 0.001 | 0.000–0.006 | <0.001 | 0.021 | 0.002–0.237 | 0.002 |
Lactate, mmol/L | 1.298 | 1.198–1.406 | <0.001 | |||
Ion shift index | 3.753 | 2.579–5.463 | <0.001 | 2.107 | 1.350–3.288 | 0.001 |
Targeted temperature management | 1.505 | 0.778–2.911 | 0.224 |
Type | Cut-Off Value | Sensitivity | Specificity | Number of Patients | |||
---|---|---|---|---|---|---|---|
True Positive | True Negative | False Positive | False Negative | ||||
0% FNR | 2.07 | 100.0% | 5.8% | 164 | 5 | 81 | 0 |
Youden index | 4.25 | 70.1% | 90.7% | 115 | 78 | 8 | 49 |
<5% FPR | 4.71 | 56.1% | 95.3% | 92 | 82 | 4 | 72 |
0% FPR | 6.40 | 24.4% | 100.0% | 40 | 86 | 0 | 124 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, B.; Kwon, H.; Kim, S.-M.; Kim, J.-S.; Ryoo, S.M.; Kim, Y.-J.; Kim, W.Y. Ion Shift Index at the Immediate Post-Cardiac Arrest Period as an Early Prognostic Marker in Out-of-Hospital Cardiac Arrest Survivors. J. Clin. Med. 2022, 11, 6187. https://doi.org/10.3390/jcm11206187
Kim B, Kwon H, Kim S-M, Kim J-S, Ryoo SM, Kim Y-J, Kim WY. Ion Shift Index at the Immediate Post-Cardiac Arrest Period as an Early Prognostic Marker in Out-of-Hospital Cardiac Arrest Survivors. Journal of Clinical Medicine. 2022; 11(20):6187. https://doi.org/10.3390/jcm11206187
Chicago/Turabian StyleKim, Boram, Hyojeong Kwon, Sang-Min Kim, June-Sung Kim, Seung Mok Ryoo, Youn-Jung Kim, and Won Young Kim. 2022. "Ion Shift Index at the Immediate Post-Cardiac Arrest Period as an Early Prognostic Marker in Out-of-Hospital Cardiac Arrest Survivors" Journal of Clinical Medicine 11, no. 20: 6187. https://doi.org/10.3390/jcm11206187