Myocardial Injury Portends a Higher Risk of Mortality and Long-Term Cardiovascular Sequelae after Hospital Discharge in COVID-19 Survivors
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Data Collection
2.3. Study Endpoints
2.4. Statistical Analysis
3. Results
3.1. Baseline Characteristics of Study Population
3.2. Clinical Outcomes, According to the Presence or Absence of Myocardial Injury
3.3. Predictors of All-Cause Mortality in the Overall Population
3.4. Predictors of MACCE in the Overall Population
4. Discussion
Study Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix A.1. Data Collection
Appendix A.2. Clinical Outcomes and Follow-Up
References
- Clerkin, K.J.; Fried, J.A.; Raikhelkar, J.; Sayer, G.; Griffin, J.M.; Masoumi, A. COVID-19 and Cardiovascular Disease. Circulation 2020, 141, 1648–1655. [Google Scholar] [CrossRef] [Green Version]
- Thygesen, K.; Alpert, J.S.; Jaffe, A.S.; Chaitman, B.R.; Bax, J.J.; Morrow, D.A.; White, H.D. Fourth Universal Definition of Myocardial Infarction (2018). J. Am. Coll. Cardiol. 2018, 72, 2231–2264. [Google Scholar] [CrossRef]
- Lippi, G.; Lavie, C.J.; Sanchis-Gomar, F. Cardiac troponin I in patients with coronavirus disease 2019 (COVID-19): Evidence from a meta-analysis. Prog. Cardiovasc. Dis. 2020, 63, 390–391. [Google Scholar] [CrossRef] [PubMed]
- Li, J.W.; Han, T.W.; Woodward, M.; Anderson, C.S.; Zhou, H.; Chen, Y.D.; Neal, B. The impact of 2019 novel coronavirus on heart injury: A Systematic review and Meta-analysis. Prog. Cardiovasc. Dis. 2020, 63, 518–524. [Google Scholar] [CrossRef]
- Montone, R.A.; Iannaccone, G.; Meucci, M.C.; Gurgoglione, F.; Niccoli, G. Myocardial and Microvascular Injury Due to Coronavirus Disease 2019. Eur. Cardiol. 2020, 15, e52. [Google Scholar] [CrossRef] [PubMed]
- Varga, Z.; Flammer, A.J.; Steiger, P.; Haberecker, M.; Andermatt, R.; Zinkernagel, A.S.; Mehra, M.R.; Schuepbach, R.A.; Ruschitzka, F.; Moch, H. Endothelial cell infection and endotheliitis in COVID-19. Lancet 2020, 395, 1417–1418. [Google Scholar] [CrossRef]
- Madjid, M.; Safavi-Naeini, P.; Solomon, S.D.; Vardeny, O. Potential Effects of Coronaviruses on the Cardiovascular System: A Review. JAMA Cardiol. 2020, 5, 831–840. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lala, A.; Johnson, K.W.; Januzzi, J.L.; Russak, A.J.; Paranjpe, I.; Richter, F.; Zhao, S.; Somani, S.; Van Vleck, T.; Vaid, A.; et al. Prevalence and Impact of Myocardial Injury in Patients Hospitalized With COVID-19 Infection. J. Am. Coll. Cardiol. 2020, 76, 533–546. [Google Scholar] [CrossRef] [PubMed]
- Shi, S.; Qin, M.; Shen, B.; Cai, Y.; Liu, T.; Yang, F.; Gong, W.; Liu, X.; Liang, J.; Zhao, Q.; et al. Association of Cardiac Injury with Mortality in Hospitalized Patients With COVID-19 in Wuhan, China. JAMA Cardiol. 2020, 5, 802–810. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, T.; Fan, Y.; Chen, M.; Wu, X.; Zhang, L.; He, T.; Wang, H.; Wan, J.; Wang, X.; Lu, Z. Cardiovascular Implications of Fatal Outcomes of Patients with Coronavirus Disease 2019 (COVID-19). JAMA Cardiol. 2020, 5, 811–818. [Google Scholar] [CrossRef] [PubMed]
- Giustino, G.; Croft, L.B.; Stefanini, G.G.; Bragato, R.; Silbiger, J.J.; Vicenzi, M.; Danilov, T.; Kukar, N.; Shaban, N.; Kini, A.; et al. Characterization of Myocardial Injury in Patients With COVID-19. J. Am. Coll. Cardiol. 2020, 76, 2043–2055. [Google Scholar] [CrossRef]
- Shi, S.; Qin, M.; Cai, Y.; Liu, T.; Shen, B.; Yang, F.; Cao, S.; Liu, X.; Xiang, Y.; Zhao, Q.; et al. Characteristics and clinical significance of myocardial injury in patients with severe coronavirus disease 2019. Eur. Heart J. 2020, 41, 2070–2079. [Google Scholar] [CrossRef] [PubMed]
- Al-Aly, Z.; Xie, Y.; Bowe, B. High-dimensional characterization of post-acute sequelae of COVID-19. Nature 2021, 594, 259–264. [Google Scholar] [CrossRef] [PubMed]
- Daugherty, S.E.; Guo, Y.; Heath, K.; Dasmariñas, M.C.; Jubilo, K.G.; Samranvedhya, J.; Lipsitch, M.; Cohen, K. Risk of clinical sequelae after the acute phase of SARS-CoV-2 infection: Retrospective cohort study. BMJ 2021, 373, n1098. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.; Huang, L.; Wang, Y.; Li, X.; Ren, L.; Gu, X.; Kang, L.; Guo, L.; Liu, M.; Zhou, X.; et al. 6-month consequences of COVID-19 in patients discharged from hospital: A cohort study. Lancet 2021, 397, 220–232. [Google Scholar] [CrossRef]
- Carfì, A.; Bernabei, R.; Landi, F. Persistent Symptoms in Patients After Acute COVID-19. JAMA 2020, 324, 603–605. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.; Xu, E.; Bowe, B.; Al-Aly, Z. Long-term cardiovascular outcomes of COVID-19. Nat. Med. 2022, 28, 583–590. [Google Scholar] [CrossRef] [PubMed]
- Sanz, F.; Puchades, F.; Melero, J.; Fernández-Fabrellas, E.; Tamarit, J.J.; Deltoro, M.G. Acute Myocardial Injury During SARS-CoV-2 Pneumonia and Long-term Prognosis. J. Gen. Intern. Med. 2022, 37, 1014–1016. [Google Scholar] [CrossRef] [PubMed]
- Weber, B.; Siddiqi, H.; Zhou, G.; Vieira, J.; Kim, A.; Rutherford, H.; Mitre, X.; Feeley, M.; Oganezova, K.; Varshney, A.S.; et al. Relationship Between Myocardial Injury During Index Hospitalization for SARS-CoV-2 Infection and Longer-Term Outcomes. J. Am. Heart Assoc. 2022, 11, e022010. [Google Scholar] [CrossRef]
- Kini, A.; Cao, D.; Nardin, M.; Sartori, S.; Zhang, Z.; Pivato, C.A.; Chiarito, M.; Nicolas, J.; Vengrenyuk, Y.; Krishnamoorthy, P.; et al. Types of myocardial injury and mid-term outcomes in patients with COVID-19. Eur. Heart J. Qual. Care Clin. Outcomes 2021, 7, 438–446. [Google Scholar] [CrossRef]
- Murri, R.; Masciocchi, C.; Lenkowicz, J.; Fantoni, M.; Damiani, A.; Marchetti, A.; Sergi, P.D.; Arcuri, G.; Cesario, A.; Patarnello, S.; et al. A real-time integrated framework to support clinical decision making for covid-19 patients. Comput. Methods Programs Biomed. 2022, 217, 106655. [Google Scholar] [CrossRef] [PubMed]
- Damiani, A.; Masciocchi, C.; Lenkowicz, J.; Capocchiano, N.D.; Boldrini, L.; Tagliaferri, L.; Cesario, A.; Sergi, P.; Marchetti, A.; Luraschi, A.; et al. Building an Artificial Intelligence Laboratory Based on Real World Data: The Experience of Gemelli Generator. Front. Comput. Sci. 2021, 3, 116. [Google Scholar] [CrossRef]
- DeFilippi, C.R.; De Lemos, J.A.; Christenson, R.H.; Gottdiener, J.S.; Kop, W.J.; Zhan, M.; Seliger, S.L. Association of serial measures of cardiac troponin T using a sensitive assay with incident heart failure and cardiovascular mortality in older adults. JAMA 2010, 304, 2494–2502. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McEvoy, J.W.; Chen, Y.; Ndumele, C.E.; Solomon, S.D.; Nambi, V.; Ballantyne, C.M.; Blumenthal, R.S.; Coresh, J.; Selvin, E. Six-Year Change in High-Sensitivity Cardiac Troponin T and Risk of Subsequent Coronary Heart Disease, Heart Failure, and Death. JAMA Cardiol. 2016, 1, 519–528. [Google Scholar] [CrossRef] [Green Version]
- Jia, X.; Sun, W.; Hoogeveen, R.C.; Nambi, V.; Matsushita, K.; Folsom, A.R.; Heiss, G.; Couper, D.J.; Solomon, S.D.; Boerwinkle, E.; et al. High-Sensitivity Troponin I and Incident Coronary Events, Stroke, Heart Failure Hospitalization, and Mortality in the ARIC Study. Circulation 2019, 139, 2642–2653. [Google Scholar] [CrossRef]
- Nalbandian, A.; Sehgal, K.; Gupta, A.; Madhavan, M.V.; McGroder, C.; Stevens, J.S.; Cook, J.R.; Nordvig, A.S.; Shalev, D.; Sehrawat, T.S.; et al. Post-acute COVID-19 syndrome. Nat. Med. 2021, 27, 601–615. [Google Scholar] [CrossRef]
- Chung, M.K.; Zidar, D.A.; Bristow, M.R.; Cameron, S.J.; Chan, T.; Harding, C.V.; Kwon, D.H.; Singh, T.; Tilton, J.C.; Tsai, E.J.; et al. COVID-19 and Cardiovascular Disease: From Bench to Bedside. Circ. Res. 2021, 128, 1214–1236. [Google Scholar] [CrossRef]
- Fajgenbaum, D.C.; June, C.H. Cytokine Storm. N. Engl. J. Med. 2020, 383, 2255–2273. [Google Scholar] [CrossRef]
- Crea, F.; Montone, R.A.; Rinaldi, R. Pathophysiology of Coronary Microvascular Dysfunction. Circ. J. 2022, 86, 1319–1328. [Google Scholar] [CrossRef]
- Del Buono, M.G.; Montone, R.A.; Camilli, M.; Carbone, S.; Narula, J.; Lavie, C.J.; Niccoli, G.; Crea, F. Coronary Microvascular Dysfunction Across the Spectrum of Cardiovascular Diseases: JACC State-of-the-Art Review. J. Am. Coll. Cardiol. 2021, 78, 1352–1371. [Google Scholar] [CrossRef]
- Siripanthong, B.; Asatryan, B.; Hanff, T.C.; Chatha, S.R.; Khanji, M.Y.; Ricci, F.; Muser, D.; Ferrari, V.A.; Nazarian, S.; Santangeli, P.; et al. The Pathogenesis and Long-Term Consequences of COVID-19 Cardiac Injury. JACC Basic Transl. Sci. 2022, 7, 294–308. [Google Scholar] [CrossRef] [PubMed]
- Delorey, T.M.; Ziegler, C.G.K.; Heimberg, G.; Normand, R.; Yang, Y.; Segerstolpe, Å.; Abbondanza, D.; Fleming, S.J.; Subramanian, A.; Montoro, D.T.; et al. COVID-19 tissue atlases reveal SARS-CoV-2 pathology and cellular targets. Nature 2021, 595, 107–113. [Google Scholar] [CrossRef]
- Scallan, J.P.; Zawieja, S.D.; Castorena-Gonzalez, J.A.; Davis, M.J. Lymphatic pumping: Mechanics, mechanisms and malfunction. J. Physiol. 2016, 594, 5749–5768. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muthuchamy, M.; Gashev, A.; Boswell, N.; Dawson, N.; Zawieja, D. Molecular and functional analyses of the contractile apparatus in lymphatic muscle. FASEB J. 2003, 17, 920–922. [Google Scholar] [CrossRef] [PubMed]
- Lindner, D.; Fitzek, A.; Bräuninger, H.; Aleshcheva, G.; Edler, C.; Meissner, K.; Scherschel, K.; Kirchhof, P.; Escher, F.; Schultheiss, H.P.; et al. Association of Cardiac Infection With SARS-CoV-2 in Confirmed COVID-19 Autopsy Cases. JAMA Cardiol. 2020, 5, 1281–1285. [Google Scholar] [CrossRef] [PubMed]
- Puntmann, V.O.; Carerj, M.L.; Wieters, I.; Fahim, M.; Arendt, C.; Hoffmann, J.; Shchendrygina, A.; Escher, F.; Vasa-Nicotera, M.; Zeiher, A.M.; et al. Outcomes of Cardiovascular Magnetic Resonance Imaging in Patients Recently Recovered from Coronavirus Disease 2019 (COVID-19). JAMA Cardiol. 2020, 5, 1265–1273. [Google Scholar] [CrossRef] [PubMed]
- Kotecha, T.; Knight, D.S.; Razvi, Y.; Kumar, K.; Vimalesvaran, K.; Thornton, G.; Patel, R.; Chacko, L.; Brown, J.T.; Coyle, C.; et al. Patterns of myocardial injury in recovered troponin-positive COVID-19 patients assessed by cardiovascular magnetic resonance. Eur. Heart J. 2021, 42, 1866–1878. [Google Scholar] [CrossRef]
Characteristics | Overall Population (n = 701) | Patients with Myocardial Injury (n = 75) | Patients without Myocardial Injury (n = 626) | p Value |
---|---|---|---|---|
Clinical characteristics | ||||
Age [mean ± SD] | 66.4 ± 14.4 | 73.5 ± 14.6 | 65.5 ± 14.2 | <0.001 |
Female sex [n, (%)] | 282 (40.2) | 28 (37.3) | 252 (40.6) | 0.588 |
CKD (eGFR < 60 mL/min per 1.73 m2) [n, (%)] | 54 (7.7) | 14 (18.7) | 40 (6.4) | <0.001 |
History of cancer [n, (%)] | 106 (15.1) | 13 (17.3) | 93 (14.9) | 0.571 |
T2DM [n, (%)] | 122 (17.4) | 20 (26.7) | 102 (16.3) | 0.025 |
Hypertension [n, (%)] | 339 (48.4) | 50 (66.7) | 289 (46.2) | 0.001 |
History of HF [n, (%)] | 43 (6.1) | 13 (17.3) | 30 (4.8) | <0.001 |
COPD [n, (%)] | 87 (12.4) | 14 (18.7) | 73 (11.7) | 0.082 |
Asthma [n, (%)] | 29 (4.1) | 4 (5.3) | 25 (4.0) | 0.539 |
Paroxysmal/persistent AF [n, (%)] | 63 (9.0) | 14 (18.7) | 49 (7.8) | 0.002 |
History of CAD [n, (%)] | 91 (13.0) | 15 (20.0) | 76 (12.1) | 0.056 |
DBP at admission (mmHg) [mean ± SD] | 79.3 ± 12.0 | 77.0 ± 13.9 | 79.5 ± 11.8 | 0.134 |
SBP at admission (mmHg) [mean ± SD] | 133.0 ± 20.9 | 131.6 ± 23.4 | 133.2 ± 20.6 | 0.626 |
Length of index hospitalization (days) [mean ± SD] | 16.2 ± 14.0 | 23.8 ± 22.0 | 15.3 ± 12.4 | <0.001 |
Need for mechanic ventilation [n, (%)] | 60 (8.6) | 15 (20.0) | 45 (7.2) | <0.001 |
Need for ICU admission [n, (%)] | 125 (17.8) | 32 (42.7) | 93 (14.9) | <0.001 |
Vaccinated (≥2 doses *) against COVID-19 [n, (%)] | 241 (34.4) | 32 (42.7) | 209 (33.4) | 0.110 |
Total COVID-19 vaccine doses administered [n, (%)] | 0.070 | |||
Not vaccinated [n, (%)] | 413 (58.9) | 35 (46.7) | 378 (60.4) | |
1 dose [n, (%)] | 47 (6.7) | 8 (10.7) | 39 (6.2) | |
2 doses* [n, (%)] | 190 (27.1) | 23 (30.7) | 167 (26.7) | |
3 doses [n, (%)] | 51 (7.3) | 9 (12.0) | 42 (6.7) | |
Type of COVID-19 vaccine [n, (%)] | 0.116 | |||
Pfizer/BioNTech Comirnaty [n, (%)] | 165 (23.5) | 6 (8.0) | 28 (4.5) | |
Vaxzevria/AstraZeneca [n, (%)] | 26 (3.7) | 1 (1.3) | 25 (4.0) | |
Spikevax/Moderna [n, (%)] | 11 (1.6) | 3 (4.0) | 8 (1.3) | |
Jcovden/Janssen [n, (%)] | 5 (0.7) | 0 (0.0) | 5 (0.8) | |
Missing data [n, (%)] | 34 (4.9) | 6 (8.0) | 28 (4.5) | |
Time from last dose of vaccine to troponin assessment (days) [mean ± SD] | 127.0 ± 84.0 | 122.8 ± 76.1 | 127.6 ± 85.1 | 0.772 |
Time from last dose of vaccine to positive PCR test for SARS-CoV-2 (days) [mean ± SD] | 125.3 ± 83.9 | 121.2 ± 76.2 | 125.8 ± 85.0 | 0.782 |
Laboratory data | ||||
Hb (g/dL) [mean ± SD] | 13.5 ± 2.0 | 12.4 ± 2.2 | 13.7 ± 1.9 | <0.001 |
WBC (×109/L) [mean ± SD] | 8.0 ± 6.4 | 9.9 ± 5.7 | 7.8 ± 6.4 | 0.006 |
Serum creatinine on admission (mg/dL) [mean ± SD] | 1.1 ± 1.2 | 1.4 ± 1.1 | 1.1 ± 1.2 | 0.068 |
Total protein (g/L) [mean ± SD] | 66.1 ± 6.3 | 64.3 ± 7.0 | 66.4 ± 6.2 | 0.017 |
Antithrombin (%) [mean ± SD] | 100.9 ± 17.1 | 91.0 ± 14.7 | 102.0 ± 17.0 | <0.001 |
hs-cTnI at admission (ng/L) [mean ± SD] | 290.7 ± 4028.3 | 2606.1 ± 12,141.6 | 13.3 ± 12.1 | <0.001 |
LDH (UI/L) [mean ± SD] | 391.8 ± 302.6 | 441.3 ± 686.6 | 386.0 ± 216.9 | 0.137 |
D-dimer (ng/mL) [mean ± SD] | 2009.6 ± 4321.8 | 3869.7 ± 5686.6 | 1794.5 ± 4086.7 | <0.001 |
Fibrinogen (mg/dL) [mean ± SD] | 505.5 ± 156.9 | 494.2 ± 178.3 | 506.8 ± 154.2 | 0.560 |
NT-proBNP (pg/mL) [mean ± SD] | 1902.5 ± 5635.2 | 7612.3 ± 11,908.9 | 1212.6 ± 3775.8 | <0.001 |
CRP (mg/L) [mean ± SD] | 71.0 ± 62.8 | 86.3 ± 72.0 | 69.1 ± 61.4 | 0.025 |
PCT (ng/mL) [mean ± SD] | 0.7 ± 4.1 | 2.6 ± 10.1 | 0.4 ± 2.2 | <0.001 |
IL-6 (ng/L) [mean ± SD] | 51.7 ± 212.3 | 82.4 ± 194.1 | 48.5 ± 214.0 | 0.235 |
Characteristics | Overall Population (n = 701) | Presence of Myocardial Injury (n = 75) | Absence of Myocardial Injury (n = 626) | p Value |
---|---|---|---|---|
All-cause mortality [n, (%)] | 54 (7.7) | 16 (21.3) | 38 (6.1) | <0.001 |
MACCE [n, (%)] | 47 (6.7) | 19 (25.3) | 28 (4.5) | <0.001 |
CV death [n, (%)] | 19 (2.7) | 10 (13.3) | 9 (1.4) | <0.001 |
IHD [n, (%)] | 11 (1.6) | 5 (6.7) | 6 (1.0) | <0.001 |
Stroke/TIA [n, (%)] | 12 (1.7) | 1 (1.3) | 11 (1.8) | 0.926 |
Hospitalization for HF [n, (%)] | 18 (2.6) | 7 (9.3) | 11 (1.8) | <0.001 |
Arrhythmias [n, (%)] | 38 (5.4) | 7 (9.3) | 31 (5.0) | 0.034 |
New onset AF [n, (%)] | 33 (4.7) | 6 (8.0) | 27 (4.3) | 0.072 |
Ventricular arrhythmias [n, (%)] | 5 (0.7) | 1 (1.3) | 4 (0.6) | 0.174 |
Inflammatory heart disease [n, (%)] | 13 (1.9) | 6 (8.0) | 7 (1.1) | <0.001 |
Pericarditis [n, (%)] | 10 (1.4) | 4 (5.3) | 6 (1.0) | 0.001 |
Myocarditis [n, (%)] | 4 (0.6) | 2 (2.7) | 2 (0.3) | 0.004 |
Thrombotic disorders [n, (%)] | 15 (2.1) | 1 (1.3) | 14 (2.2) | 0.681 |
Pulmonary embolism [n, (%)] | 6 (0.9) | 0 (0.0) | 6 (1.0) | 0.415 |
Deep vein thrombosis [n, (%)] | 10 (1.4) | 1 (1.3) | 9 (1.4) | 0.997 |
Superficial vein thrombosis [n, (%)] | 1 (0.1) | 0 (0.0) | 1 (0.2) | 0.736 |
Follow-up time [days, median (IQR)] | 270 [165; 380] | 201 [130; 357] | 272 [168; 381.25] | 0.006 |
Univariate Analysis | Multivariable Analysis | |||
---|---|---|---|---|
HR (95% CI) | p | HR (95% CI) | p | |
Myocardial injury | 3.97 (2.21; 7.13) | <0.001 | 1.95 (1.05; 3.61) | 0.033 |
Older age | 1.10 (1.07; 1.13) | <0.001 | 1.09 (1.06; 1.12) | <0.001 |
CKD | 4.76 (2.54; 8.91) | <0.001 | 2.63 (1.33; 5.21) | 0.005 |
History of cancer | 2.20 (1.20; 4.05) | 0.011 | 1.58 (0.84; 2.96) | 0.153 |
T2DM | 2.40 (1.35; 4.27) | 0.003 | 1.30 (0.70; 2.41) | 0.400 |
History of HF | 3.47 (1.69; 7.11) | 0.001 | 1.08 (0.48; 2.39) | 0.853 |
History of CAD | 2.77 (1.53; 5.03) | 0.001 | 1.06 (0.55; 2.05) | 0.850 |
Vaccination (≥2 doses *) against COVID-19 | 2.46 (1.42; 4.26) | 0.001 | 1.34 (0.76; 2.37) | 0.317 |
Univariate Analysis | Multivariable Analysis | |||
---|---|---|---|---|
HR (95% CI) | p | HR (95% CI) | p | |
Myocardial Injury | 6.75 (3.77; 12.11) | <0.001 | 3.92 (2.07; 7.42) | <0.001 |
Older age | 1.07 (1.04; 1.10) | <0.001 | 1.05 (1.02; 1.08) | 0.001 |
CKD | 3.49 (1.68; 7.324 | 0.001 | 1.09 (0.47; 2.53) | 0.842 |
T2DM | 4.04 (2.26; 7.20) | <0.001 | 2.35 (1.25; 4.43) | 0.008 |
History of HF | 5.57 (2.83; 10.97) | <0.001 | 1.34 (0.59; 3.04) | 0.487 |
Paroxysmal/persistent AF | 4.15 (2.19; 7.86) | <0.001 | 1.61 (0.77; 3.38) | 0.206 |
History of CAD | 3.85 (2.10; 7.04) | <0.001 | 1.66 (0.85; 3.23) | 0.138 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rinaldi, R.; Basile, M.; Salzillo, C.; Grieco, D.L.; Caffè, A.; Masciocchi, C.; Lilli, L.; Damiani, A.; La Vecchia, G.; Iannaccone, G.; et al. Myocardial Injury Portends a Higher Risk of Mortality and Long-Term Cardiovascular Sequelae after Hospital Discharge in COVID-19 Survivors. J. Clin. Med. 2022, 11, 5964. https://doi.org/10.3390/jcm11195964
Rinaldi R, Basile M, Salzillo C, Grieco DL, Caffè A, Masciocchi C, Lilli L, Damiani A, La Vecchia G, Iannaccone G, et al. Myocardial Injury Portends a Higher Risk of Mortality and Long-Term Cardiovascular Sequelae after Hospital Discharge in COVID-19 Survivors. Journal of Clinical Medicine. 2022; 11(19):5964. https://doi.org/10.3390/jcm11195964
Chicago/Turabian StyleRinaldi, Riccardo, Mattia Basile, Carmine Salzillo, Domenico Luca Grieco, Andrea Caffè, Carlotta Masciocchi, Livia Lilli, Andrea Damiani, Giulia La Vecchia, Giulia Iannaccone, and et al. 2022. "Myocardial Injury Portends a Higher Risk of Mortality and Long-Term Cardiovascular Sequelae after Hospital Discharge in COVID-19 Survivors" Journal of Clinical Medicine 11, no. 19: 5964. https://doi.org/10.3390/jcm11195964
APA StyleRinaldi, R., Basile, M., Salzillo, C., Grieco, D. L., Caffè, A., Masciocchi, C., Lilli, L., Damiani, A., La Vecchia, G., Iannaccone, G., Bonanni, A., De Pascale, G., Murri, R., Fantoni, M., Liuzzo, G., Sanna, T., Massetti, M., Gasbarrini, A., Valentini, V., ... on behalf of the Gemelli against COVID Group. (2022). Myocardial Injury Portends a Higher Risk of Mortality and Long-Term Cardiovascular Sequelae after Hospital Discharge in COVID-19 Survivors. Journal of Clinical Medicine, 11(19), 5964. https://doi.org/10.3390/jcm11195964