Is the Relationship between Acute and Chronic Workload a Valid Predictive Injury Tool? A Bayesian Analysis
Abstract
1. Introduction
2. Materials and Methods
Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hägglund, M.; Waldén, M.; Magnusson, H.; Kristenson, K.; Bengtsson, H.; Ekstrand, J. Injuries affect team performance negatively in professional football: An 11-year follow-up of the UEFA Champions League injury study. Br. J. Sports Med. 2013, 47, 738–742. [Google Scholar] [CrossRef] [PubMed]
- Ekstrand, J. Keeping your top players on the pitch: The key to football medicine at a professional level. Br. J. Sports Med. 2013, 47, 723–724. [Google Scholar] [CrossRef]
- Engebretsen, A.H.; Myklebust, G.; Holme, I.; Engebretsen, L.; Bahr, R. Prevention of injuries among male soccer players: A prospective, randomized intervention study targeting players with previous injuries or reduced function. Am. J. Sports Med. 2008, 36, 1052–1060. [Google Scholar] [CrossRef]
- McCall, A.; Dupont, G.; Ekstrand, J. Injury prevention strategies, coach compliance and player adherence of 33 of the UEFA Elite Club Injury Study teams: A survey of teams’ head medical officers. Br. J. Sports Med. 2016, 50, 725–730. [Google Scholar] [CrossRef] [PubMed]
- Bush, M.; Barnes, C.; Archer, D.T.; Hogg, B.; Bradley, P.S. Evolution of match performance parameters for various playing positions in the English Premier League. Hum. Mov. Sci. 2015, 39, 1–11. [Google Scholar] [CrossRef]
- Andrzejewski, M.; Chmura, P.; Konefał, M.; Kowalczuk, E.; Chmura, J. Match outcome and sprinting activities in match play by elite German soccer players. J. Sports Med. Phys. Fit. 2018, 58, 785–792. [Google Scholar] [CrossRef] [PubMed]
- Chmura, P.; Konefał, M.; Chmura, J.; Kowalczuk, E.; Zając, T.; Rokita, A.; Andrzejewski, M. Match outcome and running performance in different intensity ranges among elite soccer players. Biol. Sport 2018, 35, 197–203. [Google Scholar] [CrossRef] [PubMed]
- Suarez-Arrones, L.; Torreño, N.; Requena, B.; De Villarreal, E.S.; Casamichana, D.; Barbero-Alvarez, J.C.; Munguía-Izquierdo, D. Match-play activity profile in professional soccer players during official games and the relationship between external and internal load. J. Sports Med. Phys. Fit. 2015, 55, 1417–1422. [Google Scholar]
- Ekstrand, J.; Walden, M.; Hagglund, M. Hamstring injuries have increased by 4% annually in men’s professional football, since 2001: A 13-year longitudinal analysis of the UEFA Elite Club injury study. Br. J. Sports Med. 2016, 50, 731–737. [Google Scholar] [CrossRef]
- McLaren, S.J.; Macpherson, T.W.; Coutts, A.J.; Hurst, C.; Spears, I.R.; Weston, M. The Relationships Between Internal and External Measures of Training Load and Intensity in Team Sports: A Meta-Analysis. Sports Med. 2018, 48, 641–658. [Google Scholar] [CrossRef]
- Impellizzeri, F.M.; Rampinini, E.; Coutts, A.J.; Sassi, A.; Marcora, S.M. Use of RPE-Based Training Load in Soccer. Med. Sci. Sports Exerc. 2004, 36, 1042–1047. [Google Scholar] [CrossRef] [PubMed]
- Akenhead, R.; Nassis, G.P. Training Load and Player Monitoring in High-Level Football: Current Practice and Perceptions. Int. J. Sports Physiol. Perform. 2016, 11, 587–593. [Google Scholar] [CrossRef] [PubMed]
- Eirale, C.; Tol, J.L.; Farooq, A.; Smiley, F.; Chalabi, H. Low injury rate strongly correlates with team success in Qatari professional football. Br. J. Sports Med. 2013, 47, 807–808. [Google Scholar] [CrossRef]
- Zech, A.; Wellmann, K. Perceptions of football players regarding injury risk factors and prevention strategies. PLoS ONE 2017, 12, e0176829. [Google Scholar] [CrossRef] [PubMed]
- Borg, G.; Dahlström, H. The Reliability and Validity of a Physical Work Test. Acta Physiol. Scand. 1962, 55, 353–361. [Google Scholar] [CrossRef]
- Robertson, R.J.; Goss, F.L.; Rutkowski, J.; Lenz, B.; Dixon, C.; Timmer, J.; Frazee, K.; Dube, J.; Andreacci, J. Concurrent Validation of the OMNI Perceived Exertion Scale for Resistance Exercise. Med. Sci. Sports Exerc. 2003, 35, 333–341. [Google Scholar] [CrossRef]
- Robertson, R.J.; Goss, F.L.; Dubé, J.; Rutkowski, J.; Dupain, M.; Brennan, C.; Andreacci, J. Validation of the Adult OMNI Scale of Perceived Exertion for Cycle Ergometer Exercise. Med. Sci. Sports Exerc. 2004, 36, 102–108. [Google Scholar] [CrossRef]
- Utter, A.C.; Robertson, R.J.; Green, J.M.; Suminski, R.R.; McAnulty, S.R.; Nieman, A.D.C. Validation of the Adult OMNI Scale of Perceived Exertion for Walking/Running Exercise. Med. Sci. Sports Exerc. 2004, 36, 1776–1780. [Google Scholar] [CrossRef]
- Zourdos, M.C.; Klemp, A.; Dolan, C.; Quiles, J.M.; Schau, K.A.; Jo, E.; Helms, E.; Esgro, B.; Duncan, S.; Garcia Merino, S.; et al. Novel Resistance Training–Specific Rating of Perceived Exertion Scale Measuring Repetitions in Reserve. J. Strength Cond. Res. 2016, 30, 267–275. [Google Scholar] [CrossRef]
- Foster, C.; A Florhaug, J.; Franklin, J.; Gottschall, L.; A Hrovatin, L.; Parker, S.; Doleshal, P.; Dodge, C. A new approach to monitoring exercise training. J. Strength Cond. Res. 2001, 15, 109–115. [Google Scholar]
- Foster, C. Monitoring training in athletes with reference to overtraining syndrome. Med. Sci. Sports Exerc. 1998, 30, 1164–1168. [Google Scholar] [CrossRef] [PubMed]
- Kibler, W.B.; Chandler, T.J.; Stracener, E.S. Musculoskeletal adaptations and injuries due to overtraining. Exerc. Sport Sci. Rev. 1992, 20, 99–126. [Google Scholar] [PubMed]
- Fanchini, M.; Rampinini, E.; Riggio, M.; Coutts, A.J.; Pecci, C.; McCall, A. Despite association, the acute: Chronic workload ratio does not predict non-contact injury in elite footballers. Sci. Med. Footb. 2018, 2, 108–114. [Google Scholar] [CrossRef]
- Hulin, B.T.; Gabbett, T.J.; Blanch, P.; Chapman, P.; Bailey, D.; Orchard, J.W. Spikes in acute workload are associated with increased injury risk in elite cricket fast bowlers. Br. J. Sports Med. 2014, 48, 708–712. [Google Scholar] [CrossRef]
- Impellizzeri, F.M.; Menaspà, P.; Coutts, A.J.; Kalkhoven, J.; Menaspà, M.J. Training Load and Its Role in Injury Prevention, Part I: Back to the Future. J. Athl. Train. 2020, 55, 885–892. [Google Scholar] [CrossRef]
- Wang, C.; Vargas, J.T.; Stokes, T.; Steele, R.; Shrier, I. Analyzing Activity and Injury: Lessons Learned from the Acute:Chronic Workload Ratio. Sports Med. 2020, 50, 1243–1254. [Google Scholar] [CrossRef]
- Bowen, L.; Gross, A.S.; Gimpel, M.; Bruce-Low, S.; Li, F.-X. Spikes in acute:chronic workload ratio (ACWR) associated with a 5–7 times greater injury rate in English Premier League football players: A comprehensive 3-year study. Br. J. Sports Med. 2020, 54, 731–738. [Google Scholar] [CrossRef]
- Bowen, L.; Gross, A.S.; Gimpel, M.; Li, F.-X. Accumulated workloads and the acute:chronic workload ratio relate to injury risk in elite youth football players. Br. J. Sports Med. 2016, 51, 452–459. [Google Scholar] [CrossRef]
- Gabbett, T.J. The training-injury prevention paradox: Should athletes be training smarter and harder? Br. J. Sports Med. 2016, 50, 273–280. [Google Scholar] [CrossRef]
- Hulin, B.T.; Gabbett, T.J.; Lawson, D.W.; Caputi, P.; Sampson, J.A. The acute: Chronic workload ratio predicts injury: High chronic workload may decrease injury risk in elite rugby league players. Br. J. Sports Med. 2016, 50, 231–236. [Google Scholar] [CrossRef]
- Malone, J.J.; Di Michele, R.; Morgans, R.; Burgess, D.; Morton, J.P.; Drust, B. Seasonal Training-Load Quantification in Elite English Premier League Soccer Players. Int. J. Sports Physiol. Perform. 2015, 10, 489–497. [Google Scholar] [CrossRef] [PubMed]
- Bahr, R.; Clarsen, B.; Derman, W.; Dvorak, J.; Emery, C.A.; Finch, C.F.; Hägglund, M.; Junge, A.; Kemp, S.; Khan, K.M.; et al. International Olympic Committee consensus statement: Methods for recording and reporting of epidemiological data on injury and illness in sport 2020 (including STROBE Extension for Sport Injury and Illness Surveillance (STROBE-SIIS)). Br. J. Sports Med. 2020, 54, 372–389. [Google Scholar] [CrossRef] [PubMed]
- Fox, J.L.; O’Grady, C.J.; Scanlan, A.T. The Concurrent Validity of Session-Rating of Perceived Exertion Workload Obtained Face-to-Face Versus Via an Online Application: A Team Case Study. Int. J. Sports Physiol. Perform. 2020, 15, 1476–1479. [Google Scholar] [CrossRef] [PubMed]
- Hackenberger, B.K. Bayes or not Bayes, is this the question? Croat. Med. J. 2019, 60, 50–52. [Google Scholar] [CrossRef] [PubMed]
- Ashby, D. Bayesian statistics in medicine: A 25 years review. Stat. Med. 2006, 25, 3589–3631. [Google Scholar] [CrossRef] [PubMed]
- Martin, O.A. Bayesian Modeling and Computation in Python, 1st ed.; CRC Press: Boca Raton, FL, USA, 2022. [Google Scholar]
- Gelman, A.; Hill, J. Data Analysis Using Regression and Multilevel/Hierarchical Models; Cambridge University Press: Cambridge, UK, 2006. [Google Scholar]
- McElreath, R. Statistical Rethinking: A Bayesian Course with Examples in R and Stan, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2020. [Google Scholar]
- Albert, J.H.; Chib, S. Bayesian analysis of binary and polychotomous response data. J. Am. Stat. Assoc. 1993, 88, 669–679. [Google Scholar] [CrossRef]
- Kruschke, J.K.; Liddell, T.M. Bayesian data analysis for newcomers. Psychon. Bull. Rev. 2018, 25, 155–177. [Google Scholar] [CrossRef]
- Brooks, S.P.; Gelman, A. General methods for monitoring convergence of iterative simulations. J. Comput. Graph. Stat. 1998, 7, 434–455. [Google Scholar]
- Impellizzeri, F.; Woodcock, S.; Coutts, A.J.; Fanchini, M.; McCall, A.; Vigotsky, A. Acute to random chronic workload ratio is ‘as’ associated with injury as acute to actual chronic workload ratio: Time to dismiss ACWR and its components. SportRXiv 2020, 243015567. [Google Scholar] [CrossRef]
- Delecroix, B.; McCall, A.; Dawson, B.; Berthoin, S.; Dupont, G. Workload and non-contact injury incidence in elite football players competing in European leagues. Eur. J. Sport Sci. 2018, 18, 1280–1287. [Google Scholar] [CrossRef]
- Menaspa, P. Are rolling averages a good way to assess training load for injury prevention? Br. J. Sports Med. 2017, 51, 618–619. [Google Scholar] [CrossRef] [PubMed]
- Bittencourt, N.F.N.; Meeuwisse, W.H.; Mendonça, L.D.; Nettel-Aguirre, A.; Ocarino, J.M.; Fonseca, S.T. Complex systems approach for sports injuries: Moving from risk factor identification to injury pattern recognition—narrative review and new concept. Br. J. Sports Med. 2016, 50, 1309–1314. [Google Scholar] [CrossRef] [PubMed]
- Hulme, A.; McLean, S.; Salmon, P.M.; Thompson, J.; Lane, B.; Nielsen, R.O. Computational methods to model complex systems in sports injury research: Agent-based modelling (ABM) and systems dynamics (SD) modelling. Br. J. Sports Med. 2018, 53, 1507–1510. [Google Scholar] [CrossRef] [PubMed]
- Kalkhoven, J.T.; Watsford, M.L.; Coutts, A.J.; Edwards, W.B.; Impellizzeri, F.M. Training Load and Injury: Causal Pathways and Future Directions. Sports Med. 2021, 51, 1137–1150. [Google Scholar] [CrossRef] [PubMed]
- Impellizzeri, F.M.; Tenan, M.S.; Kempton, T.; Novak, A.; Coutts, A.J. Acute: Chronic Workload Ratio: Conceptual Issues and Fundamental Pitfalls. Int. J. Sports Physiol. Perform. 2020, 5, 1–7. [Google Scholar] [CrossRef] [PubMed]
Overall, N = 815 | Injured, N = 30 | Not Injured, N = 785 | |
---|---|---|---|
ACWR | 1 (0.76, 1.16) | 1.2 (0.93, 1.35) | 0.99 (0.76, 1.35) |
ACWRr | 0.98 (0.67, 1.46) | 1.29 (1.02, 2.01) | 0.97 (0.67, 2.01) |
Acute Load | 1800 (1400, 2308) | 2138 (1820, 2880) | 1780 (1400, 2880) |
Cumulative Load (2 weeks) | 3640 (3000, 4362) | 3891 (3325, 4745) | 3625 (2990, 4745) |
Cumulative Load (3 weeks) | 5331 (4513, 6271) | 5458 (4582, 5899) | 5327 (4511, 5899) |
Cumulative Load (4 weeks) | 7174 (5826, 8347) | 7065 (5951, 8621) | 7185 (5825, 8621) |
Chronic Load (4 weeks) | 1900 (1620, 2244) | 1870 (1598, 2141) | 1900 (1620, 2254) |
Variables | Overall, N = 815 | Injured, N = 30 | Not Injured, N = 785 |
---|---|---|---|
Acute Load Quantiles | |||
First | 205 (25%) | 3 (10%) | 202 (26%) |
Second | 206 (25%) | 5 (17%) | 201 (26%) |
Third | 200 (25%) | 8 (27%) | 192 (24%) |
Fourth | 204 (25%) | 14 (47%) | 190 (24%) |
ACWR Quantiles | |||
First | 205 (25%) | 3 (25%) | 202 (26%) |
Second | 219 (27%) | 6 (20%) | 213 (27%) |
Third | 187 (23%) | 5 (17%) | 182 (23%) |
Fourth | 204 (25%) | 16 (53%) | 188 (24%) |
ACWRr Quantiles | |||
First | 204 (25%) | 205 (25%) | 201 (26%) |
Second | 204 (25%) | 206 (25%) | 200 (25%) |
Third | 203 (25%) | 200 (25%) | 194 (25%) |
Fourth | 204 (25%) | 204 (25%) | 190 (24%) |
Mean | HDI 2.5% | HDI 97.5% | ESS | |
---|---|---|---|---|
Injured | ||||
Mu | 2296.28 | 2000.21 | 2592.58 | 8196.6 |
Sigma | 756.34 | 560.5 | 1023.57 | 3394.13 |
Not Injured | ||||
Mu | 1847.62 | 1792.49 | 1903.53 | 22,465.81 |
Sigma | 654.33 | 590.28 | 720.85 | 14,753.83 |
Group Diff. | ||||
Nu | 12.46 | 5.23 | 38.46 | 4233.86 |
Effect Size | 0.64 | 0.20 | 1.09 | |
Mean Diff | 448.66 | 146.36 | 748.07 |
Mean | HDI 2.5% | HDI 97.5% | ESS | |
---|---|---|---|---|
Injured | ||||
Mu | 1.18 | 1.03 | 1.32 | 19,033 |
Sigma | 0.38 | 0.28 | 0.51 | 6421 |
Not Injured | ||||
Mu | 0.96 | 0.94 | 0.98 | 17,854 |
Sigma | 0.28 | 0.26 | 0.30 | 12,787 |
Group Diff. | ||||
Nu | 23.26 | 8.64 | 64.66 | 6155.5 |
Effect Size | 0.64 | 0.2 | 1.08 | |
Mean Diff | 0.21 | 0.07 | 0.36 |
Mean | HDI 2.5% | HDI 97.5% | ESS | |
---|---|---|---|---|
ACWR | ||||
β0 | −3.45 | −3.92 | −3.04 | 11,557 |
β1 | −0.62 | −1.55 | 0.11 | 9272 |
β2 | −0.13 | −0.81 | 0.51 | 15,042 |
β3 | −0.15 | −0.87 | 0.53 | 15,573 |
β4 | 0.90 | 0.28 | 1.51 | 6059 |
P(Inj | ACWR > 1.15) | 0.07 | 0.04 | 0.11 | |
Random ACWR | ||||
β0 | −3.43 | −3.90 | −3.03 | 10,439 |
β1 | −0.62 | −1.56 | 0.09 | 8005 |
β2 | −0.41 | −1.22 | 0.28 | 11,619 |
β3 | 0.30 | −0.30 | 0.92 | 10,790 |
β4 | 0.73 | 0.12 | 1.34 | 5809 |
P(Inj | ACWRr > 1.45) | 0.06 | 0.04 | 0.10 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carbone, L.; Sampietro, M.; Cicognini, A.; García-Sillero, M.; Vargas-Molina, S. Is the Relationship between Acute and Chronic Workload a Valid Predictive Injury Tool? A Bayesian Analysis. J. Clin. Med. 2022, 11, 5945. https://doi.org/10.3390/jcm11195945
Carbone L, Sampietro M, Cicognini A, García-Sillero M, Vargas-Molina S. Is the Relationship between Acute and Chronic Workload a Valid Predictive Injury Tool? A Bayesian Analysis. Journal of Clinical Medicine. 2022; 11(19):5945. https://doi.org/10.3390/jcm11195945
Chicago/Turabian StyleCarbone, Leandro, Matias Sampietro, Agustin Cicognini, Manuel García-Sillero, and Salvador Vargas-Molina. 2022. "Is the Relationship between Acute and Chronic Workload a Valid Predictive Injury Tool? A Bayesian Analysis" Journal of Clinical Medicine 11, no. 19: 5945. https://doi.org/10.3390/jcm11195945
APA StyleCarbone, L., Sampietro, M., Cicognini, A., García-Sillero, M., & Vargas-Molina, S. (2022). Is the Relationship between Acute and Chronic Workload a Valid Predictive Injury Tool? A Bayesian Analysis. Journal of Clinical Medicine, 11(19), 5945. https://doi.org/10.3390/jcm11195945