Effects of a Chair Positioning Session on Awake Non-Intubated COVID-19 Pneumonia Patients: A Multicenter, Observational, and Pilot Study Using Lung Ultrasound
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Ethical Considerations
2.3. Population
2.4. Study Protocol
- -
- Level 2 operator: More than 25 supervised procedures and 200 non-supervised procedures.
- -
- Level 3 operator: LUS academic teacher with several publications in the field.
- -
- Oxygenation responders: Positive difference of SpO2:FiO2 ratios measured at LUS2 and LUS1.
- -
- Oxygenation non-responders: Negative difference of SpO2:FiO2 ratios measured at LUS2 and LUS1.
- -
- Lung aeration responders: A positive reaeration score between LUS2 and LUS1.
- -
- Lung aeration non-responders: A negative reaeration score between LUS2 and LUS1.
2.5. Outcomes
- -
- The mechanisms of change in oxygenation during a CP session are reflected by the correlation between oxygenation and lung aeration changes.
- -
- The performance of baseline LUS can be used to predict the effect of a CP session on oxygenation and lung aeration.
- -
- The effect of oxygenation and lung aeration responses on the outcomes (need for invasive mechanical ventilation, length of stay, ICU mortality, etc.).
2.6. Statistical Analysis
3. Results
3.1. Enrolled Patients’ Characteristics
3.2. Primary Outcome
3.3. Secondary Outcomes
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zieleskiewicz, L.; Markarian, T.; Lopez, A.; Taguet, C.; Mohammedi, N.; Boucekine, M.; Baumstarck, K.; Besch, G.; Mathon, G.; Duclos, G.; et al. Comparative study of lung ultrasound and chest computed tomography scan in the assessment of severity of confirmed COVID-19 pneumonia. Intensive Care Med. 2020, 46, 1707–1713. [Google Scholar] [CrossRef] [PubMed]
- Hussain, A.; Via, G.; Melniker, L.; Goffi, A.; Tavazzi, G.; Neri, L.; Villen, T.; Hoppmann, R.; Mojoli, F.; Noble, V.; et al. Multi-organ point-of-care ultrasound for COVID-19 (PoCUS4COVID): International expert consensus. Crit. Care 2020, 24, 702. [Google Scholar] [CrossRef] [PubMed]
- Aliaga, M.; Forel, J.-M.; De Bourmont, S.; Jung, B.; Thomas, G.; Mahul, M.; Bisbal, M.; Nougaret, S.; Hraiech, S.; Roch, A.; et al. Diagnostic yield and safety of CT scans in ICU. Intensive Care Med. 2015, 41, 436–443. [Google Scholar] [CrossRef] [PubMed]
- Buonsenso, D.; Pata, D.; Chiaretti, A. COVID-19 outbreak: Less stethoscope, more ultrasound. Lancet Respir. Med. 2020, 8, e27. [Google Scholar] [CrossRef] [Green Version]
- Jia, L.; Wang, H.; Gao, Y.; Liu, H.; Yu, K. High incidence of adverse events during intra-hospital transport of critically ill patients and new related risk factors: A prospective, multicenter study in China. Crit. Care 2016, 20, 12. [Google Scholar] [CrossRef] [Green Version]
- Munshi, L.; Del Sorbo, L.; Adhikari, N.K.J.; Hodgson, C.L.; Wunsch, H.; Meade, M.O.; Uleryk, E.; Mancebo, J.; Pesenti, A.; Ranieri, V.M.; et al. Prone Position for Acute Respiratory Distress Syndrome. A Systematic Review and Meta-Analysis. Ann. Am. Thorac. Soc. 2017, 14, S280–S288. [Google Scholar] [CrossRef] [Green Version]
- Ehrmann, S.; Li, J.; Ibarra-Estrada, M.; Perez, Y.; Pavlov, I.; McNicholas, B.; Roca, O.; Mirza, S.; Vines, D.; Garcia-Salcido, R.; et al. Awake prone positioning for COVID-19 acute hypoxaemic respiratory failure: A randomised, controlled, multinational, open-label meta-trial. Lancet Respir. Med. 2021, 9, 1387–1395. [Google Scholar] [CrossRef]
- Coppo, A.; Bellani, G.; Winterton, D.; Di Pierro, M.; Soria, A.; Faverio, P.; Cairo, M.; Mori, S.; Messinesi, G.; Contro, E.; et al. Feasibility and physiological effects of prone positioning in non-intubated patients with acute respiratory failure due to COVID-19 (PRON-COVID): A prospective cohort study. Lancet Respir. Med. 2020, 8, 765–774. [Google Scholar] [CrossRef]
- Koeckerling, D.; Barker, J.; Mudalige, N.L.; Oyefeso, O.; Pan, D.; Pareek, M.; Thompson, J.P.; Ng, G.A. Awake prone positioning in COVID-19. Thorax 2020, 75, 833–834. [Google Scholar] [CrossRef]
- Robak, O.; Schellongowski, P.; Bojic, A.; Laczika, K.; Locker, G.J.; Staudinger, T. Short-term effects of combining upright and prone positions in patients with ARDS: A prospective randomized study. Crit. Care 2011, 15, R230. [Google Scholar] [CrossRef]
- Griffiths, M.J.D.; McAuley, D.F.; Perkins, G.D.; Barrett, N.; Blackwood, B.; Boyle, A.; Chee, N.; Connolly, B.; Dark, P.; Finney, S.; et al. Guidelines on the management of acute respiratory distress syndrome. BMJ Open Resp. Res. 2019, 6, e000420. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coppo, A.; Winterton, D.; Benini, A.; Monzani, A.; Aletti, G.; Cadore, B.; Isgrò, S.; Pizzagalli, J.; Bellani, G.; Foti, G. Rodin’s Thinker: An Alternative Position in Awake Patients with COVID-19. Am. J. Respir. Crit. Care Med. 2021, 204, 728–730. [Google Scholar] [CrossRef] [PubMed]
- Haddam, M.; Zieleskiewicz, L.; Perbet, S.; Baldovini, A.; Guervilly, C.; Arbelot, C.; Noel, A.; Vigne, C.; Hammad, E.; Antonini, F.; et al. Lung ultrasonography for assessment of oxygenation response to prone position ventilation in ARDS. Intensive Care Med. 2016, 42, 1546–1556. [Google Scholar] [CrossRef] [PubMed]
- Rousset, D.; Sarton, B.; Riu, B.; Bataille, B.; Silva, S. Bedside ultrasound monitoring of prone position induced lung inflation. Intensive Care Med. 2021, 47, 626–628. [Google Scholar] [CrossRef]
- Avdeev, S.N.; Nekludova, G.V.; Trushenko, N.V.; Tsareva, N.A.; Yaroshetskiy, A.I.; Kosanovic, D. Lung ultrasound can predict response to the prone position in awake non-intubated patients with COVID-19 associated acute respiratory distress syndrome. Crit. Care 2021, 25, 35. [Google Scholar] [CrossRef]
- Toulouse, E.; Lafont, B.; Granier, S.; Mcgurk, G.; Bazin, J.-E. French legal approach to patient consent in clinical research. Anaesth. Crit. Care Pain Med. 2020, 39, 883–885. [Google Scholar] [CrossRef]
- Le Gall, J.R.; Lemeshow, S.; Saulnier, F. A new Simplified Acute Physiology Score (SAPS II) based on a European/North American multicenter study. JAMA 1993, 270, 2957–2963. [Google Scholar] [CrossRef]
- Vincent, J.L.; Moreno, R.; Takala, J.; Willatts, S.; De Mendonça, A.; Bruining, H.; Reinhart, C.K.; Suter, P.M.; Thijs, L.G. The SOFA (Sepsis-related Organ Failure Assessment) score to describe organ dysfunction/failure. On behalf of the Working Group on Sepsis-Related Problems of the European Society of Intensive Care Medicine. Intensive Care Med. 1996, 22, 707–710. [Google Scholar] [CrossRef]
- Frat, J.-P.; Thille, A.W.; Mercat, A.; Girault, C.; Ragot, S.; Perbet, S.; Prat, G.; Boulain, T.; Morawiec, E.; Cottereau, A.; et al. High-flow oxygen through nasal cannula in acute hypoxemic respiratory failure. N. Engl. J. Med. 2015, 372, 2185–2196. [Google Scholar] [CrossRef] [Green Version]
- Pandharipande, P.P.; Shintani, A.K.; Hagerman, H.E.; St Jacques, P.J.; Rice, T.W.; Sanders, N.W.; Ware, L.B.; Bernard, G.R.; Ely, E.W. Derivation and validation of SpO2/FiO2 ratio to impute for PaO2/FiO2 ratio in the respiratory component of the Sequential Organ Failure Assessment (SOFA) Score. Crit. Care Med. 2009, 37, 1317–1321. [Google Scholar] [CrossRef]
- Mojoli, F.; Bouhemad, B.; Mongodi, S.; Lichtenstein, D. Lung Ultrasound for Critically Ill Patients. Am. J. Respir. Crit. Care Med. 2018, 199, 701–714. [Google Scholar] [CrossRef] [PubMed]
- Bouhemad, B.; Zhang, M.; Lu, Q.; Rouby, J.-J. Clinical review: Bedside lung ultrasound in critical care practice. Crit. Care 2007, 11, 205. [Google Scholar] [CrossRef] [PubMed]
- Bouhemad, B.; Liu, Z.-H.; Arbelot, C.; Zhang, M.; Ferarri, F.; Le-Guen, M.; Girard, M.; Lu, Q.; Rouby, J.-J. Ultrasound assessment of antibiotic-induced pulmonary reaeration in ventilator-associated pneumonia. Crit. Care Med. 2010, 38, 84–92. [Google Scholar] [CrossRef] [PubMed]
- Arbelot, C.; Neto, F.L.D.; Gao, Y.; Brisson, H.; Chunyao, W.; Lv, J.; Barbas, C.S.V.; Perbet, S.; Caltabellotta, F.P.; Gay, F.; et al. Lung Ultrasound in Emergency and Critically Ill PatientsNumber of Supervised Exams to Reach Basic Competence. Anesthesiology 2020, 132, 899–907. [Google Scholar] [CrossRef] [PubMed]
- Volpicelli, G.; Elbarbary, M.; Blaivas, M.; Lichtenstein, D.A.; Mathis, G.; Kirkpatrick, A.W.; Melniker, L.; Gargani, L.; Noble, V.E.; Via, G.; et al. International evidence-based recommendations for point-of-care lung ultrasound. Intensive Care Med. 2012, 38, 577–591. [Google Scholar] [CrossRef] [Green Version]
- von Elm, E.; Altman, D.G.; Egger, M.; Pocock, S.J.; Gøtzsche, P.C.; Vandenbroucke, J.P.; STROBE Initiative. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: Guidelines for reporting observational studies. J. Clin. Epidemiol. 2008, 61, 344–349. [Google Scholar] [CrossRef] [Green Version]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2021. [Google Scholar]
- Richard, J.-C.M.; Maggiore, S.M.; Mancebo, J.; Lemaire, F.; Jonson, B.; Brochard, L. Effects of vertical positioning on gas exchange and lung volumes in acute respiratory distress syndrome. Intensive Care Med. 2006, 32, 1623–1626. [Google Scholar] [CrossRef]
- Giosa, L.; Payen, D.; Busana, M.; Mattei, A.; Brazzi, L.; Caironi, P. Orthodeoxia and its implications on awake-proning in COVID-19 pneumonia. Crit. Care 2021, 25, 429. [Google Scholar] [CrossRef]
- Zarantonello, F.; Andreatta, G.; Sella, N.; Navalesi, P. Prone Position and Lung Ventilation and Perfusion Matching in Acute Respiratory Failure due to COVID-19. Am. J. Respir. Crit. Care Med. 2020, 202, 278–279. [Google Scholar] [CrossRef]
- Fossali, T.; Pavlovsky, B.; Ottolina, D.; Colombo, R.; Basile, M.C.; Castelli, A.; Rech, R.; Borghi, B.; Ianniello, A.; Flor, N.; et al. Effects of Prone Position on Lung Recruitment and Ventilation-Perfusion Matching in Patients with COVID-19 Acute Respiratory Distress Syndrome: A Combined CT Scan/Electrical Impedance Tomography Study. Crit. Care Med. 2022, 50, 723–732. [Google Scholar] [CrossRef]
- Dos Santos Rocha, A.; Diaper, J.; Balogh, A.L.; Marti, C.; Grosgurin, O.; Habre, W.; Peták, F.; Südy, R. Effect of body position on the redistribution of regional lung aeration during invasive and non-invasive ventilation of COVID-19 patients. Sci. Rep. 2022, 12, 11085. [Google Scholar] [CrossRef] [PubMed]
- Guerin, C.; Gattinoni, L. Assessment of oxygenation response to prone position ventilation in ARDS by lung ultrasonography. Intensive Care Med. 2016, 42, 1601–1603. [Google Scholar] [CrossRef] [PubMed]
- Rossi, S.; Palumbo, M.M.; Sverzellati, N.; Busana, M.; Malchiodi, L.; Bresciani, P.; Ceccarelli, P.; Sani, E.; Romitti, F.; Bonifazi, M.; et al. Mechanisms of oxygenation responses to proning and recruitment in COVID-19 pneumonia. Intensive Care Med. 2022, 48, 56–66. [Google Scholar] [CrossRef]
- Langer, T.; Brioni, M.; Guzzardella, A.; Carlesso, E.; Cabrini, L.; Castelli, G.; Dalla Corte, F.; De Robertis, E.; Favarato, M.; Forastieri, A.; et al. Prone position in intubated, mechanically ventilated patients with COVID-19: A multi-centric study of more than 1000 patients. Crit. Care 2021, 25, 128. [Google Scholar] [CrossRef] [PubMed]
- Prat, G.; Guinard, S.; Bizien, N.; Nowak, E.; Tonnelier, J.-M.; Alavi, Z.; Renault, A.; Boles, J.-M.; L’Her, E. Can lung ultrasonography predict prone positioning response in acute respiratory distress syndrome patients? J. Crit. Care 2016, 32, 36–41. [Google Scholar] [CrossRef] [PubMed]
- Papazian, L.; Paladini, M.-H.; Bregeon, F.; Thirion, X.; Durieux, O.; Gainnier, M.; Huiart, L.; Agostini, S.; Auffray, J.-P. Can the tomographic aspect characteristics of patients presenting with acute respiratory distress syndrome predict improvement in oxygenation-related response to the prone position? Anesthesiology 2002, 97, 599–607. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.-T.; Ding, X.; Zhang, H.-M.; Chen, H.; Su, L.-X.; Liu, D.-W. Chinese Critical Ultrasound Study Group (CCUSG) Lung ultrasound can be used to predict the potential of prone positioning and assess prognosis in patients with acute respiratory distress syndrome. Crit. Care 2016, 20, 385. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tobin, M.J.; Jubran, A.; Laghi, F. PaO2/FIO2 ratio: The mismeasure of oxygenation in COVID-19. Eur. Respir. J. 2021, 57, 2100274. [Google Scholar] [CrossRef]
- de Carvalho, E.B.; Leite, T.R.S.; de Sacramento, R.F.M.; do Nascimento, P.R.L.; Samary, C.D.S.; Rocco, P.R.M.; Silva, P.L. Rationale and limitations of the SpO2/FiO2 as a possible substitute for PaO2/FiO2 in different preclinical and clinical scenarios. Rev. Bras. Ter. Intensiv. 2022, 34, 185–196. [Google Scholar] [CrossRef]
In Terms of Oxygenation | In Terms of Lung Aeration | ||||||
---|---|---|---|---|---|---|---|
Whole Cohort (n = 33) | Non-Responders Group (n = 14) | Responders Group (n = 18) | p-Value | Non-Responders Group (n = 13) | Responders Group (n = 19) | p-Value | |
Demographic Data | |||||||
Sex, n (%) | |||||||
Male | 19 (58) | 6 (43) | 12 (67) | 0.3 | 8 (62) | 11 (58) | 1 |
Female | 14 (42) | 8 (57) | 6 (33) | 5 (38) | 8 (42) | ||
Age, median (IQR) | 67 (53–74) | 67 (60–71) | 66 (60–71) | 0.7 | 73 (55–75) | 66 (50–69) | 0.8 |
BMI, median (IQR) | 30 (25–33) | 29 (24–31) | 32 (29–37) | 0.01 | 30 (28–33) | 28 (24–33) | 0.3 |
Comorbidities | |||||||
Cancer, n (%) | 3 (9) | 0 | 3 (17) | 0.6 | 1 (8) | 2 (11) | 1 |
COPD, n (%) | 2 (6) | 0 | 2 (11) | 0.6 | 1 (8) | 1 (5) | 1 |
Coronary disease, n (%) | 1 (3) | 0 | 1 (6) | 1 | 1 (8) | 0 (0) | 0.8 |
Diabetes, n (%) | 8 (24) | 2 (14) | 5 (28) | 0.6 | 6 (46) | 2 (11) | 0.06 |
Hypertension, n (%) | 14 (42) | 5 (36) | 8 (44) | 0.7 | 7 (54) | 7 (37) | 0.5 |
Immunodeficiency a, n (%) | 1 (3) | 1 (7) | 0 | 0.9 | 1 (8) | 0 (0) | 0.8 |
Chronic kidney disease, n (%) | 0 | 1 (7) | 0 | 0.4 | 1 (8) | 0 (0) | 0.2 |
History of stroke, n (%) | 2 (6) | 1 (7) | 1 (6) | 1 | 1 (8) | 1 (5) | 1 |
Tobacco consumption, n (%) | 8 (24) | 3 (21) | 5 (28) | 0.9 | 2 (15) | 6 (32) | 0.6 |
Clinical Data at Admission | |||||||
SAPS II b, median (IQR) | 29 (24–32) | 28 (24–31) | 30 (23–36) | 0.6 | 31 (24–41) | 28 (22–30) | 0.2 |
SOFA, median (IQR) | 3 (3–3) | 3 (3–3) | 3 (3–4) | 0.1 | 3 (3–4) | 3 (3–4) | 0.6 |
SpO2, median (IQR), % | 93 (92–96) | 93 (93–96) | 93 (92–95) | 0.5 | 93 (91–93) | 94 (93–97) | 0.06 |
FiO2, median (IQR), % | 100 (50–100) | 100 (79–100) | 100 (50–100) | 0.6 | 100 (85–100) | 100 (55–100) | 0.5 |
Respiratory rate, median (IQR) | 28 (22–35) | 25 (22–28) | 30 (21–38) | 0.9 | 24 (22–30) | 30 (25–38) | 0.3 |
MAP, median (IQR), mmHg | 86 (81–92) | 90 (84–90) | 84 (81–95) | 0.6 | 79 (77–102) | 88 (84–91) | 0.8 |
Heart rate, median (IQR), bpm | 89 (73–99) | 80 (69–91) | 98 (77–105) | 0.3 | 84 (67–103) | 890 (77–97) | 0.9 |
Thrombosis, n (%) | 19 (58) | 1 (7) | 1 (6) | 1 | 1 (8) | 0 (0) | 0.9 |
Noradrenaline use, n (%) | 8 (24) | 5 (36) | 3 (17) | 0.9 | 5 (39) | 2 (11) | 0.2 |
Respiratory Support at Admission | |||||||
HFNC use, n (%) | 25 (76) | 12 (86) | 12 (67) | 1 | 9 (69) | 15 (79) | 0.2 |
HFNC flow, median (IQR), L/min | 50 (12–50) | 45 (18–50) | 35 (11–50.0) | 0.9 | 50 (20–50) | 40 (10–50) | 0.7 |
Clinical and Ultrasound Data at LUS1 | |||||||
Duration between admission and LUS1, median (IQR), days | 8 (6–10) | 8 (5–8) | 10 (6–11) | 0.3 | 7 (5–9) | 8 (6–13) | 0.09 |
SpO2, median (IQR), % | 94 (91–95) | 93 (91–94) | 94.0 (92–96) | 0.7 | 93 (91–95) | 94 (93–95) | 0.2 |
FiO2, median (IQR), % | 90 (55–100) | 95 (69–100) | 73 (50–100) | 0.3 | 100 (55–100) | 85 (53–100) | 0.9 |
SpO2/FiO2 ratio, median (IQR), % | 140 (111–195) | 131 (107–184) | 146 (115–209) | 0.8 | 135 (112–171) | 173 (113–205) | 0.3 |
Respiratory rate, median (IQR) | 22 (21–25) | 22 (22–24) | 22 (20–27) | 0.9 | 22 (19–24) | 22 (21–26) | 0.2 |
Heart rate, median (IQR), bpm | 83 (72–92) | 86 (72–98) | 82 (73–90) | 0.9 | 76 (68–90) | 85 (74–96) | 0.5 |
MAP, median (IQR), mmHg | 88 (79–90) | 88 (77–90) | 87 (80–92) | 0.5 | 84 (79–87) | 88 (78–90) | 0.8 |
HFNC flow, median (IQR), L/min | 50 (20–50) | 50.0 (20.0–50.0) | 50.0 (30.0–50) | 0.6 | 50 (30–50) | 50 (20–50) | 0.6 |
Total LUS score, median (IQR) | 21 (18–24) | 22 (20–23) | 20 (17–24) | 0.8 | 19 (18–23) | 22 (20–24) | 0.7 |
Right-sided consolidation, n (%) | 15 (46) | 5 (36) | 10 (56) | 0.4 | 7 (37) | 15 (46) | 0.3 |
Left-sided consolidation, n (%) | 16 (49) | 8 (57) | 8 (44) | 0.7 | 8 (62) | 8 (42) | 0.4 |
Right-sided pleural effusion, n (%) | 2 (6) | 2 (14) | 0 (0) | 0.4 | 1 (8) | 1 (5) | 1 |
Left-sided pleural effusion, n (%) | 2 (6) | 2 (14) | 0 (0) | 0.4 | 1 (8) | 1 (5) | 1 |
Clinical and Ultrasound Data at LUS2 | |||||||
s | 95 (93–96) | 93 (91–95) | 95 (93–96) | 0.09 | 95 (91–96) | 94 (93–96) | 0.7 |
FiO2, median (IQR), % | 88 (59–100) | 100 (80–100) | 70 (53–100) | 0.2 | 70 (60–100) | 95 (55–100) | 0.8 |
SpO2:FiO2 ratio, median (IQR), % | 159 (119–198) | 120 (95–182) | 163 (145–240) | 0.04 | 158 (129–167) | 182 (118–238) | 0.6 |
Respiratory rate, median (IQR), bpm | 24 (21–28) | 24 (23–26) | 23 (21–29) | 0.9 | 23 (22–25) | 24 (21–28) | 0.3 |
Heart rate, median (IQR), bpm | 77 (68–84) | 74 (65–81) | 77 (69–85) | 0.3 | 78 (74–82) | 75 (67–84) | 0.5 |
MAP, median (IQR), mmHg | 85 (74–90) | 74 (72–95) | 85 (83–90) | 0.6 | 86 (84–90) | 78 (72–94) | 0.2 |
HFNC flow, median (IQR), L/min | 50 (14–50) | 40 (20–50) | 50 (13–50) | 0.9 | 50 (20–50) | 50 (13–50) | 0.9 |
Total LUS score, median (IQR) | 19 (16–23) | 18 (17–22) | 19.0 (11.8–23) | 0.8 | 22 (19–23) | 17 (14–19) | 0.02 |
Right-sided consolidation, n (%) | 10 (30) | 3 (21.4%) | 7 (38.9%) | 0.6 | 6 (46) | 4 (21) | 0.2 |
Left-sided consolidation, n (%) | 13 (39) | 4 (28.6%) | 9 (50.0%) | 0.5 | 7 (54) | 6 (31) | 0.4 |
Right-sided pleural effusion, n (%) | 4 (12) | 2 (14.3%) | 2 (11.1%) | 0.3 | 2 (15) | 2 (11) | 1 |
Left-sided pleural effusion, n (%) | 2 (6) | 2 (14.3%) | 0 (0%) | 0.3 | 1 (8) | 1 (5) | 1 |
Global reaeration score, median (IQR) | 2 (−1; 6) | 4.00 (−1; 6) | 1 (−0.7; 4) | 0.6 | −1 (−5; −1) | 5 (3–7) | <0.001 |
∆SpO2:FiO2 ratio, median (IQR), % | 0.3 (−0.01; 0.2) | −0.02 (−0.1; −0.01) | 0.19 (0.06–0.3) | <0.001 | 0.04 (0–0.2) | 0.01 (−0.02; 0.1) | 0.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lopez, A.; Simeone, P.; Delamarre, L.; Duclos, G.; Arbelot, C.; Lakbar, I.; Pastene, B.; Bezulier, K.; Dahan, S.; Joffredo, E.; et al. Effects of a Chair Positioning Session on Awake Non-Intubated COVID-19 Pneumonia Patients: A Multicenter, Observational, and Pilot Study Using Lung Ultrasound. J. Clin. Med. 2022, 11, 5885. https://doi.org/10.3390/jcm11195885
Lopez A, Simeone P, Delamarre L, Duclos G, Arbelot C, Lakbar I, Pastene B, Bezulier K, Dahan S, Joffredo E, et al. Effects of a Chair Positioning Session on Awake Non-Intubated COVID-19 Pneumonia Patients: A Multicenter, Observational, and Pilot Study Using Lung Ultrasound. Journal of Clinical Medicine. 2022; 11(19):5885. https://doi.org/10.3390/jcm11195885
Chicago/Turabian StyleLopez, Alexandre, Pierre Simeone, Louis Delamarre, Gary Duclos, Charlotte Arbelot, Ines Lakbar, Bruno Pastene, Karine Bezulier, Samuel Dahan, Emilie Joffredo, and et al. 2022. "Effects of a Chair Positioning Session on Awake Non-Intubated COVID-19 Pneumonia Patients: A Multicenter, Observational, and Pilot Study Using Lung Ultrasound" Journal of Clinical Medicine 11, no. 19: 5885. https://doi.org/10.3390/jcm11195885
APA StyleLopez, A., Simeone, P., Delamarre, L., Duclos, G., Arbelot, C., Lakbar, I., Pastene, B., Bezulier, K., Dahan, S., Joffredo, E., Jay, L., Velly, L., Allaouchiche, B., Hraiech, S., Leone, M., & Zieleskiewicz, L. (2022). Effects of a Chair Positioning Session on Awake Non-Intubated COVID-19 Pneumonia Patients: A Multicenter, Observational, and Pilot Study Using Lung Ultrasound. Journal of Clinical Medicine, 11(19), 5885. https://doi.org/10.3390/jcm11195885