Differences in Multifocal Electroretinogram Study in Two Populations of Type 1 and Type 2 Diabetes Mellitus Patients without Diabetic Retinopathy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Ethical Adherence
2.3. Power of the Study
- Amplitude of the SOK P1 wave: This has been considered an error of 20 nanovolts per degree squared [nV/deg2] in its determination for every ring studied, due to possible technical mistakes.
- Errors in measuring the thickness of the retina with optical coherence tomography [OCT], with a sampling error of 5 mm, due to possible failure of the technique used.
- Patients with other types of DM;
- Patients with cataracts or other opacities;
- Patients with glaucoma or previous ocular surgery;
- Patients with myopia > 6 diopters;
- Patients with macular pathology;
- Patients with previous nephropathy, stroke or myocardial infarction.
2.4. Multifocal-Electroretinogram
2.5. Statistical Methods
3. Results
3.1. Demography of the Sample
3.2. Study of the mERG Variables in Each Group of Type 1 and Type 2 Diabetic Patients
3.2.1. Study of the mERG Result According to HbA1c Levels
3.2.2. Study of the mERG Result According to DM Duration
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- International Diabetes Federation. IDF Diabetes Atlas, 10th ed.; International Diabetes Federation: Brussels, Belgium, 2021; Available online: https://www.diabetesatlas.org (accessed on 23 August 2022).
- GBD 2019 Blindness and Vision Impairment Collaborators; Vision Loss Expert Group of the Global Burden of Disease Study. Causes of blindness and vision impairment in 2020 and trends over 30 years, and prevalence of avoidable blindness in relation to VISION 2020: The Right to Sight: An analysis for the Global Burden of Disease Study. Lancet Glob. Health 2021, 9, e144–e160. [Google Scholar] [CrossRef]
- Yau, J.W.; Rogers, S.L.; Kawasaki, R.; Lamoureux, E.L.; Kowalski, J.W.; Bek, T.; Chen, S.J.; Dekker, J.M.; Fletcher, A.; Grauslund, J.; et al. Meta-Analysis for Eye Disease (META-EYE) Study Group. Global prevalence and major risk factors of diabetic retinopathy. Diabetes Care 2012, 35, 556–564. [Google Scholar] [CrossRef] [PubMed]
- Simó, R.; Hernández, C. Novel approaches for treating diabetic retinopathy based on recent pathogenic evidence. Prog. Retin. Eye Res. 2015, 48, 160–180. [Google Scholar] [CrossRef] [PubMed]
- Stitt, A.W.; Curtis, T.M.; Chen, M.; Medina, R.J.; McKay, G.J.; Jenkins, A.; Gardiner, T.A.; Lyons, T.J.; Hammes, H.P.; Simó, R.; et al. The progress in understanding and treatment of diabetic retinopathy. Prog. Retin. Eye Res. 2016, 51, 156–186. [Google Scholar] [CrossRef] [PubMed]
- Solomon, S.D.; Chew, E.; Duh, E.J.; Sobrin, L.; Sun, J.K.; VanderBeek, B.L.; Wykoff, C.C.; Gardner, T.W. Diabetic Retinopathy: A Position Statement by the American Diabetes Association. Diabetes Care 2017, 40, 412–418. [Google Scholar] [CrossRef] [PubMed]
- Giurdanella, G.; Lupo, G.; Gennuso, F.; Conti, F.; Furno, D.L.; Mannino, G.; Anfuso, C.D.; Drago, F.; Salomone, S.; Bucolo, C. Activation of the VEGF-A/ERK/PLA2 Axis Mediates Early Retinal Endothelial Cell Damage Induced by High Glucose: New Insight from an In Vitro Model of Diabetic Retinopathy. Int. J. Mol. Sci. 2020, 21, 7528. [Google Scholar] [CrossRef]
- Choudhuri, S.; Chowdhury, I.H.; Das, S.; Dutta, D.; Saha, A.; Sarkar, R.; Mandal, L.K.; Mukherjee, S.; Bhattacharya, B. Role of NF-κB activation and VEGF gene polymorphisms in VEGF up regulation in non-proliferative and proliferative diabetic retinopathy. Mol. Cell Biochem. 2015, 405, 265–279. [Google Scholar] [CrossRef]
- Santos, A.R.; Ribeiro, L.; Bandello, F.; Lattanzio, R.; Egan, C.; Frydkjaer-Olsen, U.; García-Arumí, J.; Gibson, J.; Grauslund, J.; Harding, S.P.; et al. European Consortium for the Early Treatment of Diabetic Retinopathy (EUROCONDOR). Functional and Structural Findings of Neurodegeneration in Early Stages of Diabetic Retinopathy: Cross-sectional Analyses of Baseline Data of the EUROCONDOR Project. Diabetes 2017, 66, 2503–2510. [Google Scholar] [CrossRef]
- Bian, H.X.; Bian, M.T.; Liu, W.H.; Liu, R.Y.; Guo, M. Efficiency analysis by mfERG and OCT of intravitreal injection with ranibizumab on diabetic macular edema. Int. J. Ophthalmol. 2020, 13, 1092–1096. [Google Scholar] [CrossRef]
- Romero-Aroca, P.; Navarro-Gil, R.; Valls-Mateu, A.; Sagarra-Alamo, R.; Moreno-Ribas, A.; Soler, N. Differences in incidence of diabetic retinopathy between type 1 and 2 diabetes mellitus: A nine-year follow-up study. Br. J. Ophthalmol. 2017, 101, 1346–1351. [Google Scholar] [CrossRef] [Green Version]
- Hood, D.C.; Bach, M.; Brigell, M.; Keating, D.; Kondo, M.; Lyons, J.S.; Marmor, M.F.; McCulloch, D.L.; Palmowski-Wolfe, A.M. International Society For Clinical Electrophysiology of Vision. ISCEV standard for clinical multifocal electroretinography (mERG) (2011 edition). Doc. Ophthalmol. 2012, 124, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Kurtenbach, A.; Langrova, H.; Zrenner, E. Multifocal oscillatory potentials in type 1 diabetes without retinopathy. Investig. Ophthalmol. Vis. Sci. 2000, 41, 3234–3241. [Google Scholar]
- Bearse, M.A., Jr.; Han, Y.; Schneck, M.E.; Adams, A.J. Retinal function in normal and diabetic eyes mapped with the slow flash multifocal electroretinogram. Investig. Ophthalmol. Vis. Sci. 2004, 45, 296–304. [Google Scholar] [CrossRef] [PubMed]
- Bronson-Castain, K.W.; Bearse, M.A., Jr.; Han, Y.; Schneck, M.E.; Barez, S.; Adams, A.J. Association between multifocal ERG implicit time delays and adaptation in patients with diabetes. Investig. Ophthalmol. Vis. Sci. 2007, 48, 5250–5256. [Google Scholar] [CrossRef]
- Harrison, W.W.; Bearse, M.A., Jr.; Ng, J.S.; Jewell, N.P.; Barez, S.; Burger, D.; Schneck, M.E.; Adams, A.J. Multifocal electroretinograms predict onset of diabetic retinopathy in adult patients with diabetes. Investig. Ophthalmol. Vis. Sci. 2011, 52, 772–777. [Google Scholar] [CrossRef]
- Huang, J.; Li, Y.; Chen, Y.; You, Y.; Niu, T.; Zou, W.; Luo, W. Multifocal Electroretinogram Can Detect the Abnormal Retinal Change in Early Stage of type2 DM Patients without Apparent Diabetic Retinopathy. J. Diabetes Res. 2021, 2021, 6644691. [Google Scholar] [CrossRef]
- Lövestam-Adrian, M.; Holm, K. Multifocal electroretinography amplitudes increase after photocoagulation in areas with increased retinal thickness and hard exudates. Acta Ophthalmol. 2010, 88, 188–192. [Google Scholar] [CrossRef]
- Baget-Bernaldiz, M.; Romero-Aroca, P.; Bautista-Perez, A.; Mercado, J. Multifocal electroretinography changes at the 1-year follow-up in a cohort of diabetic macular edema patients treated with ranibizumab. Doc. Ophthalmol. 2017, 135, 85–96. [Google Scholar] [CrossRef]
- Bronson-Castain, K.W.; Bearse, M.A., Jr.; Neuville, J.; Jonasdottir, S.; King-Hooper, B.; Barez, S.; Schneck, M.E.; Adams, A.J. Early neural and vascular changes in the adolescent type 1 and type 2 diabetic retina. Retina 2012, 32, 92–102. [Google Scholar] [CrossRef]
- Romero-Aroca, P.; Fernández-Balart, J.; Baget-Bernaldiz, M.; Martinez-Salcedo, I.; Méndez-Marín, I.; Salvat-Serra, M.; Buil-Calvo, J.A. Changes in the diabetic retinopathy epidemiology after 14 years in a population of Type 1 and 2 diabetic patients after the new diabetes mellitus diagnosis criteria and a more strict control of the patients. J. Diabetes Complicat. 2009, 23, 229–238. [Google Scholar] [CrossRef]
- Tzekov, R.T.; Gerth, C.; Werner, J.S. Senescence of human multifocal electroretinogram components: A localized approach. Graefe’s Arch. Clin. Exp. Ophthalmol. 2004, 242, 549–560. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- American Diabetes Association Professional Practice Committee. Retinopathy, neuropathy, and foot Care: Standards of Medical Care in Diabetes—2022. Diabetes Care 2022, 45 (Suppl. 1), S185–S194. [Google Scholar] [CrossRef] [PubMed]
- Scanlon, P.H. Improving the screening of risk factors in diabetic retinopathy. Expert Rev. Endocrinol. Metab. 2022, 17, 235–243. [Google Scholar] [CrossRef]
- Srinivasan, S.; Sivaprasad, S.; Rajalakshmi, R.; Anjana, R.M.; Malik, R.A.; Kulothungan, V.; Natarajan, V.; Raman, R.; Bhende, M. Early retinal functional alteration in relation to diabetes duration in patients with type 2 diabetes without diabetic retinopathy. Sci. Rep. 2022, 12, 11422. [Google Scholar] [CrossRef] [PubMed]
- Klemp, K.; Larsen, M.; Sander, B.; Vaag, A.; Brockhoff, P.B.; Lund-Andersen, H. Effect of short-term hyperglycemia on multifocal electroretinogram in diabetic patients without retinopathy. Investig. Ophthalmol. Vis. Sci. 2004, 45, 3812–3819. [Google Scholar] [CrossRef] [PubMed]
- Tyrberg, M.; Ponjavic, V.; Lövestam-Adrian, M. Multifocal electroretinography (mERG) in insulin dependent diabetics with and without clinically apparent retinopathy. Doc. Ophthalmol. 2005, 110, 137–143. [Google Scholar] [CrossRef]
- Sasso, F.C.; Pafundi, P.C.; Gelso, A.; Bono, V.; Costagliola, C.; Marfella, R.; Sardu, C.; Rinaldi, L.; Galiero, R.; Acierno, C.; et al. Telemedicine for screening diabetic retinopathy: The NO BLIND Italian multicenter study. Diabetes Metab. Res. Rev. 2019, 35, e3113. [Google Scholar] [CrossRef]
- Galiero, R.; Pafundi, P.C.; Nevola, R.; Rinaldi, L.; Acierno, C.; Caturano, A.; Salvatore, T.; Adinolfi, L.E.; Costagliola, C.; Sasso, F.C. The Importance of Telemedicine during COVID-19 Pandemic: A Focus on Diabetic Retinopathy. J. Diabetes Res. 2020, 2020, 9036847. [Google Scholar] [CrossRef]
Variable | Type 1 DM | Type 2 DM | Significance (p) |
---|---|---|---|
Age (mean) | 39.75 ± 10.31 | 64.07 ± 6.06 | <0.001 * |
Sex (male) | 20 patients (55.6%) | 21 patients (58.3%) | 0.174 ** |
Arterial hypertension | 4 patients (11.3%) | 30 patients (84.7%) | <0.001 ** |
DM duration mean | 18.13 ± 8.96 | 19.81 ± 10.32 | 0.06 * |
HbA1c mean | 7.94 ± 1.68 | 7.94 ± 1.08 | 0.98 * |
Diabetes duration over 15 years | 18 patients (51.4%) | 20 patients (55.6%) | 0.616 * |
HbA1c > 7% | 16 patients (44.4%) | 27 patients (60.4%) | <0.001 * |
Parameter | T1DM | T2DM | Significance p * |
---|---|---|---|
Amplitude 1st ring | 1.14 ± 0.64 | 1.87 ± 0.75 | <0.001 |
Amplitude 2nd ring | 0.89 ± 0.48 | 1.67 ± 0.66 | <0.001 |
Amplitude 3rd ring | 0.76 ± 0.49 | 1.56 ± 0.66 | <0.001 |
Implicit time 1st ring | 46.28 ± 6.01 | 47.25 ± 3.61 | 0.32 |
Implicit time 2nd ring | 47.48 ± 3.29 | 46.96 ± 2.99 | 0.33 |
Implicit time 3rd ring | 46.57 ± 3.91 | 46.12 ± 3.51 | 0.46 |
DM Type | Parameter | HbA1c < 7% | HbA1c ≥ 7% | Significance p * |
---|---|---|---|---|
T1DM | Amplitude 1st ring | 1.28 ± 0.69 | 0.97 ± 0.54 | 0.03 |
Amplitude 2nd ring | 0.99 ± 0.52 | 0.67 ± 0.66 | 0.23 | |
Amplitude 3rd ring | 0.87 ± 0.53 | 0.61 ± 0.41 | 0.32 | |
Implicit time 1st ring | 44.56 ± 6.02 | 47.88 ± 6.67 | 0.02 | |
Implicit time 2nd ring | 45.88 ± 3.16 | 49.47 ± 2.19 | 0.01 | |
Implicit time 3rd ring | 44.64 ± 3.95 | 49.51 ± 1.67 | 0.02 | |
T2DM | Amplitude 1st ring | 1.92 ± 0.82 | 1.85 ± 0.74 | 0.44 |
Amplitude 2nd ring | 1.69 ± 0.75 | 1.67 ± 0.64 | 0.22 | |
Amplitude 3rd ring | 1.61 ± 0.73 | 1.55 ± 0.64 | 0.27 | |
Implicit time 1st ring | 45.45 ± 4.61 | 47.81 ± 3.08 | 0.46 | |
Implicit time 2nd ring | 45.35 ± 2.62 | 47.46 ± 2.94 | 0.58 | |
Implicit time 3rd ring | 44.92 ± 2.82 | 46.49 ± 3.64 | 0.36 |
DM Type | Parameter | Duration < 15 Years | Duration ≥ 15 Years | Significance p * |
---|---|---|---|---|
T1DM | Amplitude 1st ring | 1.28 ± 0.67 | 1.01 ± 0.59 | 0.79 |
Amplitude 2nd ring | 1.01 ± 0.53 | 0.78 ± 0.41 | 0.06 | |
Amplitude 3rd ring | 0.91 ± 0.52 | 0.62 ± 0.43 | 0.18 | |
Implicit time 1st ring | 46.11 ± 4.93 | 47.05 ± 4.67 | 0.72 | |
Implicit time 2nd ring | 46.86 ± 3.13 | 48.06 ± 3.13 | 0.26 | |
Implicit time 3rd ring | 45.93 ± 4.66 | 47.62 ± 3.01 | 0.19 | |
T2DM | Amplitude 1st ring | 2.03 ± 0.68 | 1.73 ± 0.79 | 0.02 |
Amplitude 2nd ring | 1.82 ± 0.55 | 1.56 ± 0.73 | 0.04 | |
Amplitude 3rd ring | 1.71 ± 0.52 | 1.45 ± 0.73 | 0.01 | |
Implicit time 1st ring | 46.48 ± 3.93 | 47.86 ± 3.24 | 0.04 | |
Implicit time 2nd ring | 45.83 ± 3.18 | 47.88 ± 2.51 | 0.03 | |
Implicit time 3rd ring | 44.69 ± 3.01 | 47.26 ± 3.51 | 0.01 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Romero-Aroca, P.; Navarro-Gil, R.; Benejam, G.; Vizcarro, M.; Baget-Bernaldiz, M. Differences in Multifocal Electroretinogram Study in Two Populations of Type 1 and Type 2 Diabetes Mellitus Patients without Diabetic Retinopathy. J. Clin. Med. 2022, 11, 5824. https://doi.org/10.3390/jcm11195824
Romero-Aroca P, Navarro-Gil R, Benejam G, Vizcarro M, Baget-Bernaldiz M. Differences in Multifocal Electroretinogram Study in Two Populations of Type 1 and Type 2 Diabetes Mellitus Patients without Diabetic Retinopathy. Journal of Clinical Medicine. 2022; 11(19):5824. https://doi.org/10.3390/jcm11195824
Chicago/Turabian StyleRomero-Aroca, Pedro, Raul Navarro-Gil, Gibet Benejam, Montse Vizcarro, and Marc Baget-Bernaldiz. 2022. "Differences in Multifocal Electroretinogram Study in Two Populations of Type 1 and Type 2 Diabetes Mellitus Patients without Diabetic Retinopathy" Journal of Clinical Medicine 11, no. 19: 5824. https://doi.org/10.3390/jcm11195824