Clinical Applications of Photofunctionalization on Dental Implant Surfaces: A Narrative Review
Abstract
:1. Introduction
2. In Vitro Studies
3. Preclinical Animal Studies
4. Clinical Studies
5. Discussion
6. Conclusions
Funding
Informed Consent Statement
Conflicts of Interest
References
- Sawase, T.; Jimbo, R.; Baba, K.; Shibata, Y.; Ikeda, T.; Atsuta, M. Photo-induced hydrophilicity enhances initial cell behavior and early bone apposition. Clin. Oral. Implant. Res. 2008, 19, 491–496. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.H.; Fujishima, K.A. Light-induced amphiphilic surfaces. Nature 1997, 388, 431. [Google Scholar] [CrossRef]
- Att, W.; Ogawa, T. Biological aging of implant surfaces and their restoration with ultraviolet light treatment: A novel understanding of osseointegration. Int. J. Oral. Maxillofac. Implant. 2012, 27, 753–761. [Google Scholar]
- Ogawa, T. Ultraviolet photofunctionalization of titanium implants. Int. J. Oral. Maxillofac. Implant. 2014, 29, e95–e102. [Google Scholar] [CrossRef]
- Aita, H.; Hori, N.; Takeuchi, M.; Suzuki, T.; Yamada, M.; Anpo, M.; Ogawa, T. The effect of ultraviolet functionalization of titanium on integration with bone. Biomaterials 2009, 30, 1015–1025. [Google Scholar] [CrossRef]
- Iwasa, F.; Tsukimura, N.; Sugita, Y.; Kanuru, R.K.; Kubo, K.; Hasnain, H.; Att, W.; Ogawa, T. TiO2 micro-nano-hybrid surface to alleviate biological aging of UV-photofunctionalized titanium. Int. J. Nanomed. 2011, 6, 1327–1341. [Google Scholar] [CrossRef]
- Tuna, T.; Wein, M.; Swain, M.; Fischer, J.; Att, W. Influence of ultraviolet photofunctionalization on the surface characteristics of zirconia-based dental implant materials. Dent. Mater. 2015, 31, e14–e24. [Google Scholar] [CrossRef]
- Minamikawa, H.; Ikeda, T.; Att, W.; Hagiwara, Y.; Hirota, M.; Tabuchi, M.; Aita, H.; Park, W.; Ogawa, T. Photofunctionalization increases the bioactivity and osteoconductivity of the titanium alloy Ti6Al4V. J. Biomed. Mater. Res. A 2014, 102, 3618–3630. [Google Scholar] [CrossRef]
- Yamada, Y.; Yamada, M.; Ueda, T.; Sakurai, K. Reduction of biofilm formation on titanium surface with ultraviolet-C pre-irradiation. J. BioMater. Appl. 2014, 29, 161–171. [Google Scholar] [CrossRef]
- de Avila, E.D.; Lima, B.P.; Sekiya, T.; Torii, Y.; Ogawa, T.; Shi, W.; Lux, R. Effect of UV-photofunctionalization on oral bacterial attachment and biofilm formation to titanium implant material. Biomaterials 2015, 67, 84–92. [Google Scholar] [CrossRef]
- Jain, S.; Williamson, R.S.; Marquart, M.; Janorkar, A.V.; Griggs, J.A.; Roach, M.D. Photofunctionalization of anodized titanium surfaces using UVA or UVC light and its effects against Streptococcus sanguinis. J. Biomed. Mater. Res. B Appl. BioMater. 2018, 106, 2284–2294. [Google Scholar] [CrossRef] [PubMed]
- Funato, A.; Ogawa, T. Photofunctionalized dental implants: A case series in compromised bone. Int. J. Oral. Maxillofac. Implant. 2013, 28, 1589–1601. [Google Scholar] [CrossRef] [PubMed]
- Funato, A.; Yamada, M.; Ogawa, T. Success rate, healing time, and implant stability of photofunctionalized dental implants. Int. J. Oral. Maxillofac. Implant. 2013, 28, 1261–1271. [Google Scholar] [CrossRef]
- Suzuki, S.; Kobayashi, H.; Ogawa, T. Implant stability change and osseointegration speed of immediately loaded photofunctionalized implants. Implant Dent. 2013, 22, 481–490. [Google Scholar] [CrossRef]
- Kitajima, H.; Ogawa, T. The Use of Photofunctionalized Implants for Low or Extremely Low Primary Stability Cases. Int. J. Oral. Maxillofac. Implant. 2016, 31, 439–447. [Google Scholar] [CrossRef]
- Hirota, M.; Ozawa, T.; Iwai, T.; Ogawa, T.; Tohnai, I. Implant Stability Development of Photofunctionalized Implants Placed in Regular and Complex Cases: A Case-Control Study. Int. J. Oral. Maxillofac. Implant. 2016, 31, 676–686. [Google Scholar] [CrossRef] [PubMed]
- Hirota, M.; Ozawa, T.; Iwai, T.; Ogawa, T.; Tohnai, I. Effect of Photofunctionalization on Early Implant Failure. Int. J. Oral. Maxillofac. Implant. 2018, 33, 1098–1102. [Google Scholar] [CrossRef] [PubMed]
- Hirota, M.; Ozawa, T.; Iwai, T.; Mitsudo, K.; Ogawa, T. UV-Mediated Photofunctionalization of Dental Implant: A Seven-Year Results of a Prospective Study. J. Clin. Med. 2020, 9, 2733. [Google Scholar] [CrossRef] [PubMed]
- Puisys, A.; Schlee, M.; Linkevicius, T.; Petrakakis, P.; Tjaden, A. Photo-activated implants: A triple-blinded, split-mouth, randomized controlled clinical trial on the resistance to removal torque at various healing intervals. Clin. Oral. Investig. 2020, 24, 1789–1799. [Google Scholar] [CrossRef]
- Choi, B.; Lee, Y.C.; Oh, K.C.; Lee, J.H. Effects of photofunctionalization on early osseointegration of titanium dental implants in the maxillary posterior region: A randomized double-blinded clinical trial. Int. J. Implant Dent. 2021, 7, 37. [Google Scholar] [CrossRef]
- Shah, S.A.; Singh, B.P.; Rao, J.; Kumar, L.; Singh, M.; Singh, P.K. Biological and esthetic outcome of immediate dental implant with the adjunct pretreatment of immediate implants with platelet-rich plasma or photofunctionalization: A randomized controlled trial. J. Indian Prosthodont. Soc. 2021, 21, 348–355. [Google Scholar] [CrossRef] [PubMed]
- Tominaga, H.; Matsuyama, K.; Morimoto, Y.; Yamamoto, T.; Komiya, S.; Ishidou, Y. The effect of ultraviolet photofunctionalization of titanium instrumentation in lumbar fusion: A non-randomized controlled trial. BMC Musculoskelet. Disord. 2019, 20, 292. [Google Scholar] [CrossRef] [PubMed]
- Pesce, P.; Menini, M.; Santori, G.; Giovanni, E.; Bagnasco, F.; Canullo, L. Photo and Plasma Activation of Dental Implant Titanium Surfaces. A Systematic Review with Meta-Analysis of Pre-Clinical Studies. J. Clin. Med. 2020, 9, 2817. [Google Scholar] [CrossRef]
- Dini, C.; Nagay, B.E.; Magno, M.B.; Maia, L.C.; Barao, V.A.R. Photofunctionalization as a suitable approach to improve the osseointegration of implants in animal models—A systematic review and meta-analysis. Clin. Oral. Implant. Res. 2020, 31, 785–802. [Google Scholar] [CrossRef] [PubMed]
- Yeo, I.L. Modifications of Dental Implant Surfaces at the Micro- and Nano-Level for Enhanced Osseointegration. Materials 2019, 13, 89. [Google Scholar] [CrossRef]
- Roy, M.; Pompella, A.; Kubacki, J.; Szade, J.; Roy, R.A.; Hedzelek, W. Photofunctionalization of Titanium: An Alternative Explanation of Its Chemical-Physical Mechanism. PLoS ONE 2016, 11, e0157481. [Google Scholar] [CrossRef] [PubMed]
- Roy, M.; Pompella, A.; Kubacki, J.; Piosik, A.; Psiuk, B.; Klimontko, J.; Szade, J.; Roy, R.A.; Hedzelek, W. Photofunctionalization of dental zirconia oxide: Surface modification to improve bio-integration preserving crystal stability. Colloids Surf. B Biointerfaces 2017, 156, 194–202. [Google Scholar] [CrossRef]
- Arroyo-Lamas, N.; Ugalde, U.; Arteagoitia, I. Decontamination of Ti Oxide Surfaces by Using Ultraviolet Light: Hg-Vapor vs. LED-Based Irradiation. Antibiotics 2020, 9, 724. [Google Scholar] [CrossRef]
- Roy, M.; Kubacki, J.; Psiuk, B.; Mrozek-Wilczkiewicz, A.; Malarz, K.; Corti, A.; Pompella, A.; Szade, J. Photofunctionalization effect and biological ageing of PEEK, TiO2 and ZrO2 abutments material. Mater. Sci. Eng. C Mater. Biol. Appl. 2021, 121, 111823. [Google Scholar] [CrossRef]
- Jaikumar, R.A.; Karthigeyan, S.; Bhat, R.; Naidu, M.; Natarajan, S.; Angamuthu, V. Analysis of Surface Morphology and Elemental Composition on Zirconia Implants Before and After Photofunctionalization by Scanning Electron Microscopy and Energy Dispersive X ray Spectroscopy—An In vitro Study. J. Pharm. Bioallied. Sci. 2021, 13, S761–S765. [Google Scholar] [CrossRef]
- Ohyama, T.; Uchida, T.; Shibuya, N.; Nakabayashi, S.; Ishigami, T.; Ogawa, T. High bone-implant contact achieved by photofunctionalization to reduce periimplant stress: A three-dimensional finite element analysis. Implant Dent. 2013, 22, 102–108. [Google Scholar] [CrossRef] [PubMed]
- Ohyama, T.; Yasuda, H.; Shibuya, N.; Tadokoro, S.; Nakabayashi, S.; Namaki, S.; Hara, Y.; Ogawa, T.; Ishigami, T. Three-dimensional finite element analysis of the effects of implant diameter and photofunctionalization on peri-implant stress. J. Oral. Sci. 2017, 59, 273–278. [Google Scholar] [CrossRef] [PubMed]
- Shen, J.W.; Chen, Y.; Yang, G.L.; Wang, X.X.; He, F.M.; Wang, H.M. Effects of storage medium and UV photofunctionalization on time-related changes of titanium surface characteristics and biocompatibility. J. Biomed. Mater. Res. B Appl. BioMater. 2016, 104, 932–940. [Google Scholar] [CrossRef] [PubMed]
- Henningsen, A.; Smeets, R.; Hartjen, P.; Heinrich, O.; Heuberger, R.; Heiland, M.; Precht, C.; Cacaci, C. Photofunctionalization and non-thermal plasma activation of titanium surfaces. Clin. Oral. Investig. 2018, 22, 1045–1054. [Google Scholar] [CrossRef] [PubMed]
- Ikeda, T.; Okubo, T.; Saruta, J.; Hirota, M.; Kitajima, H.; Yanagisawa, N.; Ogawa, T. Osteoblast Attachment Compromised by High and Low Temperature of Titanium and Its Restoration by UV Photofunctionalization. Materials 2021, 14, 5493. [Google Scholar] [CrossRef]
- Mehl, C.; Kern, M.; Zimmermann, A.; Harder, S.; Huth, S.; Selhuber-Unkel, C. Impact of Cleaning Procedures on Adhesion of Living Cells to Three Abutment Materials. Int. J. Oral. Maxillofac. Implant. 2017, 32, 976–984. [Google Scholar] [CrossRef]
- Harder, S.; Quabius, E.S.; Meinke, F.; Mehl, C.; Kern, M. Changes in proinflammatory gene expression in human whole blood after contact with UV-conditioned implant surfaces. Clin. Oral. Investig. 2019, 23, 3731–3738. [Google Scholar] [CrossRef]
- Nakhaei, K.; Ishijima, M.; Ikeda, T.; Ghassemi, A.; Saruta, J.; Ogawa, T. Ultraviolet Light Treatment of Titanium Enhances Attachment, Adhesion, and Retention of Human Oral Epithelial Cells via Decarbonization. Materials 2020, 14, 151. [Google Scholar] [CrossRef]
- Okubo, T.; Ikeda, T.; Saruta, J.; Tsukimura, N.; Hirota, M.; Ogawa, T. Compromised Epithelial Cell Attachment after Polishing Titanium Surface and Its Restoration by UV Treatment. Materials 2020, 13, 3946. [Google Scholar] [CrossRef]
- Razali, M.; Ngeow, W.C.; Omar, R.A.; Chai, W.L. An In-Vitro Analysis of Peri-Implant Mucosal Seal Following Photofunctionalization of Zirconia Abutment Materials. Biomedicines 2021, 9, 78. [Google Scholar] [CrossRef]
- Taniyama, T.; Saruta, J.; Mohammadzadeh Rezaei, N.; Nakhaei, K.; Ghassemi, A.; Hirota, M.; Okubo, T.; Ikeda, T.; Sugita, Y.; Hasegawa, M.; et al. UV-Photofunctionalization of Titanium Promotes Mechanical Anchorage in A Rat Osteoporosis Model. Int. J. Mol. Sci. 2020, 21, 1235. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shen, J.; Liu, J.; Chen, X.; Wang, X.; He, F.; Wang, H. The In Vivo Bone Response of Ultraviolet-Irradiated Titanium Implants Modified with Spontaneously Formed Nanostructures: An Experimental Study in Rabbits. Int. J. Oral. Maxillofac. Implant. 2016, 31, 776–784. [Google Scholar] [CrossRef] [PubMed]
- Brezavscek, M.; Fawzy, A.; Bachle, M.; Tuna, T.; Fischer, J.; Att, W. The Effect of UV Treatment on the Osteoconductive Capacity of Zirconia-Based Materials. Materials 2016, 9, 958. [Google Scholar] [CrossRef] [PubMed]
- Hirota, M.; Ikeda, T.; Tabuchi, M.; Ozawa, T.; Tohnai, I.; Ogawa, T. Effects of Ultraviolet Photofunctionalization on Bone Augmentation and Integration Capabilities of Titanium Mesh and Implants. Int. J. Oral. Maxillofac. Implant. 2017, 32, 52–62. [Google Scholar] [CrossRef]
- Jimbo, R.; Fernandez-Rodriguez, J.; Sul, Y.T.; Johansson, C.B. Principal component analysis: A novel analysis to evaluate the characteristics of osseointegration of different implant surfaces. Implant Dent. 2011, 20, 364–368. [Google Scholar] [CrossRef]
- Sanchez-Perez, A.; Cachazo-Jimenez, C.; Sanchez-Matas, C.; Martin-de-Llano, J.J.; Davis, S.; Carda-Batalla, C. Effects of Ultraviolet Photoactivation on Osseointegration of Commercial Pure Titanium Dental Implant After 8 Weeks in a Rabbit Model. J. Oral. Implantol. 2020, 46, 101–107. [Google Scholar] [CrossRef]
- Pyo, S.W.; Park, Y.B.; Moon, H.S.; Lee, J.H.; Ogawa, T. Photofunctionalization enhances bone-implant contact, dynamics of interfacial osteogenesis, marginal bone seal, and removal torque value of implants: A dog jawbone study. Implant Dent. 2013, 22, 666–675. [Google Scholar] [CrossRef]
- Hirakawa, Y.; Jimbo, R.; Shibata, Y.; Watanabe, I.; Wennerberg, A.; Sawase, T. Accelerated bone formation on photo-induced hydrophilic titanium implants: An experimental study in the dog mandible. Clin. Oral. Implant. Res. 2013, 24 (Suppl A100), 139–144. [Google Scholar] [CrossRef]
- Kim, H.S.; Lee, J.I.; Yang, S.S.; Kim, B.S.; Kim, B.C.; Lee, J. The effect of alendronate soaking and ultraviolet treatment on bone-implant interface. Clin. Oral. Implant. Res. 2017, 28, 1164–1172. [Google Scholar] [CrossRef]
- Lee, J.B.; Jo, Y.H.; Choi, J.Y.; Seol, Y.J.; Lee, Y.M.; Ku, Y.; Rhyu, I.C.; Yeo, I.L. The Effect of Ultraviolet Photofunctionalization on a Titanium Dental Implant with Machined Surface: An In Vitro and In Vivo Study. Materials 2019, 12, 2078. [Google Scholar] [CrossRef]
- Mehl, C.; Kern, M.; Neumann, F.; Bahr, T.; Wiltfang, J.; Gassling, V. Effect of ultraviolet photofunctionalization of dental titanium implants on osseointegration. J. Zhejiang Univ. Sci. B 2018, 19, 525–534. [Google Scholar] [CrossRef] [PubMed]
- Hayashi, M.; Jimbo, R.; Xue, Y.; Mustafa, K.; Andersson, M.; Wennerberg, A. Photocatalytically induced hydrophilicity influences bone remodelling at longer healing periods: A rabbit study. Clin. Oral. Implant. Res. 2014, 25, 749–754. [Google Scholar] [CrossRef] [PubMed]
- Ikeda, T.; Hagiwara, Y.; Hirota, M.; Tabuchi, M.; Yamada, M.; Sugita, Y.; Ogawa, T. Effect of photofunctionalization on fluoride-treated nanofeatured titanium. J. BioMater. Appl. 2014, 28, 1200–1212. [Google Scholar] [CrossRef] [PubMed]
- Sugita, Y.; Honda, Y.; Kato, I.; Kubo, K.; Maeda, H.; Ogawa, T. Role of photofunctionalization in mitigating impaired osseointegration associated with type 2 diabetes in rats. Int. J. Oral. Maxillofac. Implant. 2014, 29, 1293–1300. [Google Scholar] [CrossRef]
- Ishijima, M.; Ghassemi, A.; Soltanzadeh, P.; Tanaka, M.; Nakhaei, K.; Park, W.; Hirota, M.; Tsukimura, N.; Ogawa, T. Effect of UV Photofunctionalization on Osseointegration in Aged Rats. Implant Dent. 2016, 25, 744–750. [Google Scholar] [CrossRef]
- Soltanzadeh, P.; Ghassemi, A.; Ishijima, M.; Tanaka, M.; Park, W.; Iwasaki, C.; Hirota, M.; Ogawa, T. Success rate and strength of osseointegration of immediately loaded UV-photofunctionalized implants in a rat model. J. Prosthet. Dent. 2017, 118, 357–362. [Google Scholar] [CrossRef]
- Tabuchi, M.; Ikeda, T.; Hirota, M.; Nakagawa, K.; Park, W.; Miyazawa, K.; Goto, S.; Ogawa, T. Effect of UV Photofunctionalization on Biologic and Anchoring Capability of Orthodontic Miniscrews. Int. J. Oral. Maxillofac. Implant. 2015, 30, 868–879. [Google Scholar] [CrossRef]
- Tabuchi, M.; Ikeda, T.; Nakagawa, K.; Hirota, M.; Park, W.; Miyazawa, K.; Goto, S.; Ogawa, T. Ultraviolet photofunctionalization increases removal torque values and horizontal stability of orthodontic miniscrews. Am. J. Orthod Dentofac. Orthop. 2015, 148, 274–282. [Google Scholar] [CrossRef]
- Huang, Y.; Zhang, H.; Chen, Z.; Wang, Y.; Yang, X.; Yu, H. Improvement in Osseointegration of Titanium Dental Implants After Exposure to Ultraviolet-C Light for Varied Durations: An Experimental Study in Beagle Dogs. J. Oral. Maxillofac. Surg. 2022, 80, 1389–1397. [Google Scholar] [CrossRef]
- Jimbo, R.; Ono, D.; Hirakawa, Y.; Odatsu, T.; Tanaka, T.; Sawase, T. Accelerated photo-induced hydrophilicity promotes osseointegration: An animal study. Clin. Implant Dent. Relat. Res. 2011, 13, 79–85. [Google Scholar] [CrossRef]
- Yamazaki, M.; Yamada, M.; Ishizaki, K.; Sakurai, K. Ultraviolet-C irradiation to titanium implants increases peri-implant bone formation without impeding mineralization in a rabbit femur model. Acta Odontol. Scand. 2015, 73, 302–311. [Google Scholar] [CrossRef] [PubMed]
- Yin, C.; Zhang, T.; Wei, Q.; Cai, H.; Cheng, Y.; Tian, Y.; Leng, H.; Wang, C.; Feng, S.; Liu, Z. Surface treatment of 3D printed porous Ti6Al4V implants by ultraviolet photofunctionalization for improved osseointegration. Bioact. Mater. 2022, 7, 26–38. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.Y.; Choi, H.; Lee, J.H.; Kim, J.H.; Jung, H.S.; Kim, J.H.; Park, Y.B.; Moon, H.S. UV Photofunctionalization Effect on Bone Graft in Critical One-Wall Defect around Implant: A Pilot Study in Beagle Dogs. BioMed Res. Int. 2016, 2016, 4385279. [Google Scholar] [CrossRef] [PubMed]
- Flanagan, D. Photofunctionalization of Dental Implants. J. Oral. Implant. 2016, 42, 445–450. [Google Scholar] [CrossRef] [PubMed]
- Clydesdale, G.J.; Dandie, G.W.; Muller, H.K. Ultraviolet light induced injury: Immunological and inflammatory effects. Immunol. Cell Biol. 2001, 79, 547–568. [Google Scholar] [CrossRef]
- Belibasakis, G.N.; Charalampakis, G.; Bostanci, N.; Stadlinger, B. Peri-implant infections of oral biofilm etiology. Adv. Exp. Med. Biol. 2015, 830, 69–84. [Google Scholar] [CrossRef]
- Butera, A.; Pascadopoli, M.; Pellegrini, M.; Gallo, S.; Zampetti, P.; Scribante, A. Oral Microbiota in Patients with Peri-Implant Disease: A Narrative Review. Appl. Sci. 2022, 12, 3250. [Google Scholar] [CrossRef]
- Guarnieri, R.; Miccoli, G.; Reda, R.; Mazzoni, A.; Di Nardo, D.; Testarelli, L. Sulcus fluid volume, IL-6, and Il-1b concentrations in periodontal and peri-implant tissues comparing machined and laser-microtextured collar/abutment surfaces during 12 weeks of healing: A split-mouth RCT. Clin. Oral. Implant. Res. 2022, 33, 94–104. [Google Scholar] [CrossRef]
Author | Material | Method | Results with UV Treatment |
---|---|---|---|
To Reverse the Biological Aging/Degradation of Implant Surface | |||
Iwasa F et al. 2011 [6] | Ti with micro-nano-hybrid topography vs. Ti with microtopography alone Rat bone-marrow-derived osteoblasts | UV using a 15 W bacterial lamp for 48 h Stored for 8 weeks, then the PhF of a fresh, 3-day-old and 7-day-old UV-treated implant surface |
|
Tuna T et al. 2015 [7] | Zirconia-based discs Smooth vs. rough surfaces | UV using TheraBeam® Affiny for 15 min |
|
Roy M et al. 2016 [26] | Commercial osteoplant base and rapid titanium dental implants | UVC with TheraBeam® SuperOsseo for 12 min |
|
Roy M et al. 2017 [27] | ZrO2 (Zr similar to titanium) | UVC with TheraBeam® SuperOsseo for 12 min |
|
Arroyo-Lamas N et al. 2020 [28] | Ti with Ti oxide surface | UVC for 12 min Mercury (Hg)-vapor (λ = 254 nm) vs. Light-emitting diodes (LEDs; λ = 278 nm) |
|
Roy M et al. 2021 [29] | TiO2, ZrO2, polyether-ether-ketone (PEEK) | UVC using TheraBeam® SuperOsseo for 12 min |
|
Jaikumar RA et al. 2021 [30] | Zirconia implant | UV (λ = 254 nm) for 48 h |
|
To decrease peri-implant stress distribution | |||
Ohyama T et al. 2013 [31] | 3-dimensional finite element analysis of different lengths with various BICs (53.0% and 98.2%) | BIC 98.2% as UV treatment |
|
Ohyama T et al. 2017 [32] | Unique finite element analysis model with a 3D model (BIC: 53.0% or 98.2%) | BIC 98.2% as UV treatment Vertical or oblique loading |
|
Antimicrobial effect | |||
Yamada Y et al. 2014 [9] | Wound pathogens such as Streptococcus pyogenes and Staphylococcus aureus Titanium disc | UVA (λ = 352 +/− 20 nm) or UVC (λ = 254 +/− 20 nm) with a mercury lamp for 48 h (500 J/cm2) |
|
De Avila ED et al. 2015 [10] | Titanium disc Oral microbial community | UVC using TheraBeam® SuperOsseo for 12 min |
|
Jain S et al. 2018 [11] | Streptococcus sanguinis Anodized layer with a anatase phase Anodized layer with anatase and rutile phases | 15 W UVA (Philips; λ = 365 nm) or 15 W UVC (Philips; λ = 254 nm) for 10 min |
|
Different cell studies | |||
Shen JW et al. 2016 [33] | MC3T3-E1 cells Aqueous medium (dH2O) | UV using a 15 W bacterial lamp for 24 h 5 groups of Ti implants (SLAnew, SLAold, modSLA, UV-SLA and UV-modSLA) |
|
Henningsen A et al. 2018 [34] | Murine osteoblasts Sandblasted and acid-etched titanium discs | UVC using TheraBeam® SuperOsseo for 12 min |
|
Ikeda T et al. 2021 [35] | Osteoblasts derived from rat bone marrow Acid-etched titanium disks | UV treatment |
|
Mehl C et al. 2017 [36] | Gingival fibroblast Abutments: zirconium dioxide and titanium alloy | UVC using TheraBeam® SuperOsseo for 12 min Argon plasma Ultrasound disinfection |
|
Harder S et al. 2019 [37] | Human whole blood Titanium with SLA surface | UVC using TheraBeam® SuperOsseo for 12 min |
|
Nakhaei K et al. 2020 [38] | Human epithelial cells Pure titanium discs | UVC using TheraBeam® SuperOsseo for 12 min |
|
Okubo T et al. 2020 [39] | Human epithelial cells Titanium discs with a machined or polished surface | UVC using TheraBeam SuperOsseo for 12 min |
|
Razali M et al. 2021 [40] | Human gingival keratinocytes and fibroblasts Yttria-stabilized zirconia, alumina-toughened zirconia, and pure titanium abutments | UVC using Therabeam® SuperOsseo for 12 min. |
|
Author | Material | UV Light | Results with UV Treatment |
---|---|---|---|
Rat model | |||
Aita H et al. 2009 [5] | Machined and acid-etched Ti In 9 rats (8 weeks old) | UVA/UVC for variable time up to 48 h |
|
Ikeda T et al. 2014 [53] | Nanofeatured Ti Femurs of 6 rats (8 weeks old) | UV-T for 15 min using TheraBeam Affiny |
|
Sugita Y et al. 2014 [54] | Ti femurs of 10 genetically modified rats (phenotype close to human type 2 diabetes; 10 weeks old) | UV for 15 min using TheraBeam Affiny |
|
Minamikawa H et al. 2014 [8] | Ti6Al4V (smooth or rough surface) Femurs of 6 rats (8 weeks old) | UV-T for 15 min using TheraBeam Affiny |
|
Tabuchi M et al. 2015 [57] | Ti-6Al-4V mini-screw Femurs of 6 rats (8 weeks old) | UV for 12 min using TheraBeam SuperOsseo device |
|
Tabuchi M et al. 2015 [58] | Ti-6Al-4V mini-screw Femurs of 6 rats (8 weeks old) | UV for 12 min using TheraBeam SuperOsseo |
|
Brezavscek M et al. 2016 [43] | Zirconia-based disc Femurs of 88 rats (8 weeks old) | Push-in test (48 rats) UV for 15 min using TheraBeam Affiny |
|
Ishijima M et al. 2016 [55] | Ti mini-implants Femur of 6 aged rats (15 months old) | UV for 12 min using TheraBeam SuperOsseo |
|
Hirota M et al. 2017 [44] | Acid-etched Ti implants (1 × 4 mm) and Ti mesh Femurs of 20 rats (8 weeks old) | Half of implants in 2 mm defect, half exposed UV for 12 min using TheraBeam SuperOsseo |
|
Soltanzadeh P et al. 2017 [56] | Ti implants Femurs of 7 rats (8 weeks old) | 0.46 N of constant lateral force UV for 12 min using TheraBeam SuperOsseo |
|
Taniyama T et al. 2020 [41] | Ti implants (1 × 2 mm) Femurs of sham-operated vs. ovariectomized rats (each n = 8; 12 weeks old) | Rat osteoporosis model Push-in test UV for 12 min using TheraBeam SuperOsseo |
|
Rabbit model | |||
Sawase T et al. 2008 [1] | Ti implant with the anatase form of a TiO2 surface Tibia of 6 rabbits (28–36 weeks old) | UV for 24 h |
|
Jimbo R et al. 2011 [60] | Fluoride-modified TiUnite implants Tibial metaphyses of 12 rabbits (28–36 weeks old) | UV (352 nm) for 24 h |
|
Hayashi M et al. 2014 [52] | TiO2 powder spin-coated onto pure titanium disc tibiae of 9 rabbits | UV (352 nm, 6 W) for 24 h |
|
Yamazaki M et al. 2015 [61] | Acid-etched pure titanium screws Femur of 20 rabbits (16 weeks old) | UVC (3 mW/cm2) for 48 h using a 15 W bactericidal UV bench lamp (254 nm) |
|
Shen J et al. 2016 [42] | Ti implants (4 × 8 mm) Tibial metaphyses and femoral condyles of 40 rabbits | 32 implants × 5 groups: SLAnew, SLAold, modSLA, UV-SLA, and UV-modSLA UVA/UVC for 24 h |
|
Kim HS et al. 2017 [49] | Commercial Ti implants (4 × 6 mm) Tibia of 12 rabbits (>12 weeks old) | ALN on titanium surface UV at 189.4 nm and 253.7 nm of wavelength for 2 h using UV-Cleaner |
|
Lee JB et al. 2019 [50] | Machined SLA surface Ti implants Tibia of 4 rabbits (12 and 16 weeks old) | UVC for 48 h |
|
Sanchez-Perez A et al. 2020 [46] | 20 commercial Titanium implants (3.75 × 8 mm) 5 rabbits (3–3.5 kgs) | UVC-lamp (254 nm; 6 W) at a distance of 15 cm for 15 min |
|
Yin C et al. 2022 [62] | 3D-printed porous Ti6Al4V scaffolds in a dark place for 4 weeks Bilateral femur condyles of 27 mature male New Zealand rabbits | A irradiation cube: >2 MW/cm2 (270 nm) and 30 MW/cm2 (365 nm) for 15 min |
|
Dog model | |||
Hirakawa Y et al. 2013 [48] | Ti implants with TiO2 surface Mandible of 6 beagle dogs | Plasma source ion implantation method UVA (352 nm) for 24 h |
|
Pyo SW et al. 2013 [47] | Commercial Ti implants Both jaws of 4 dogs (72–96 weeks old) | UV for 15 min using TheraBeam Affiny |
|
Kim MY et al. 2016 [63] | Ti implants Mandibular premolars of 4 female beagle dogs (24 weeks old) | 2 as control vs. 2 as UV UV for 15 min using TheraBeam Affiny |
|
Huang Y et al. 2022 [59] | Aged Ti-implant Mandibular premolars of 8 male beagle dogs | 12 as control UVC for 1/6 h (12) UVC for 1/2 h (12) UVC for 1 h (12) |
|
Minipig model | |||
Mehl C et al. 2018 [51] | 48 titanium implants Both jaws of 3 mini-pigs | UVC for 48 h |
|
Author | Study Type | Material and Method | Results with UV Treatment |
---|---|---|---|
I-1. Dentistry | |||
Ogawa T. Study Group (Japan) | |||
Funato A et al. 2013 [12] | Case series |
|
|
Funato A et al. 2013 [13] | Retrospective study |
|
|
Suzuki S et al. 2013 [14] | Prospective study |
|
|
Kitajima H et al. 2016 [15] | Retrospective study |
|
|
Hirota M et al. 2016 [16] | Retrospective case-control study |
|
|
Hirota M et al. 2018 [17] | Retrospective study |
|
|
Hirota M et al. 2020 [18] | Prospective study |
|
|
I-2. Other study groups | |||
Puisys A et al. 2020 (German) [19] | Triple-blinded, split-mouth, randomized controlled clinical trial |
|
|
Choi B et al. 2021 (Korea) [20] | Parallel-designed randomized double-blinded clinical trial |
<300: group IV UV machine (TheraBeam Affiny; Ushio Inc. Tokyo, Japan): for 15 min |
|
Shah SA et al. 2021 (India) [21] | Randomized controlled trial |
|
|
II. Orthopedics | |||
Tominaga H et al. 2019 [22] | Prospective study |
|
|
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chang, L.-C. Clinical Applications of Photofunctionalization on Dental Implant Surfaces: A Narrative Review. J. Clin. Med. 2022, 11, 5823. https://doi.org/10.3390/jcm11195823
Chang L-C. Clinical Applications of Photofunctionalization on Dental Implant Surfaces: A Narrative Review. Journal of Clinical Medicine. 2022; 11(19):5823. https://doi.org/10.3390/jcm11195823
Chicago/Turabian StyleChang, Li-Ching. 2022. "Clinical Applications of Photofunctionalization on Dental Implant Surfaces: A Narrative Review" Journal of Clinical Medicine 11, no. 19: 5823. https://doi.org/10.3390/jcm11195823
APA StyleChang, L.-C. (2022). Clinical Applications of Photofunctionalization on Dental Implant Surfaces: A Narrative Review. Journal of Clinical Medicine, 11(19), 5823. https://doi.org/10.3390/jcm11195823