The Effects of Race on Acute Kidney Injury
Abstract
1. Introduction
2. Racial Disparities in the Incidence of AKI
3. Race, APOL1 Status, and Incidence of AKI
4. Race and COVID-19-Related AKI
5. Race-Adjusted eGFR and AKI Prediction
6. Racial Disparities in the AKI-Related Mortality
7. Racial Disparities in the Management of AKI
Author Contributions
Funding
Conflicts of Interest
References
- Available online: https://www.genome.gov/genetics-glossary/Race (accessed on 22 July 2022).
- Eneanya, N.D.; Boulware, L.E.; Tsai, J.; Bruce, M.A.; Ford, C.L.; Harris, C.; Morales, L.S.; Ryan, M.J.; Reese, P.P.; Thorpe, R.J., Jr.; et al. Health inequities and the inappropriate use of race in nephrology. Nat. Rev. Nephrol. 2022, 18, 84–94. [Google Scholar] [CrossRef]
- Biello, K.B.; Rawlings, J.; Carroll-Scott, A.; Browne, R.; Ickovics, J.R. Racial disparities in age at preventable hospitalization among U.S. Adults. Am. J. Prev. Med. 2010, 38, 54–60. [Google Scholar] [CrossRef]
- Grams, M.E.; Matsushita, K.; Sang, Y.; Estrella, M.; Foster, M.; Tin, A.; Kao, W.H.; Coresh, J. Explaining the racial difference in AKI incidence. J. Am. Soc. Nephrol. 2014, 25, 1834–1841. [Google Scholar] [CrossRef]
- Hsu, R.K.; McCulloch, C.E.; Dudley, R.A.; Lo, L.J.; Hsu, C.Y. Temporal changes in incidence of dialysis-requiring AKI. J. Am. Soc. Nephrol. 2013, 24, 37–42. [Google Scholar] [CrossRef]
- Norris, K.C.; Agodoa, L.Y. Unraveling the racial disparities associated with kidney disease. Kidney Int. 2005, 68, 914–924. [Google Scholar] [CrossRef]
- Nicholas, S.B.; Kalantar-Zadeh, K.; Norris, K.C. Racial disparities in kidney disease outcomes. Semin. Nephrol. 2013, 33, 409–415. [Google Scholar] [CrossRef]
- Lunyera, J.; Clare, R.M.; Chiswell, K.; Scialla, J.J.; Pun, P.H.; Thomas, K.L.; Starks, M.A.; Diamantidis, C.J. Rcial Differences in AKI Incidence Following Percutaneous Coronary Intervention. J. Am. Soc. Nephrol. 2021, 32, 654–662. [Google Scholar] [CrossRef]
- Norton, J.M.; Moxey-Mims, M.M.; Eggers, P.W.; Narva, A.S.; Star, R.A.; Kimmel, P.L.; Rodgers, G.P. Social Determinants of Racial Disparities in CKD. J. Am. Soc. Nephrol. 2016, 27, 2576–2595. [Google Scholar] [CrossRef]
- Bailey, Z.D.; Krieger, N.; Agénor, M.; Graves, J.; Linos, N.; Bassett, M.T. Structural racism and health inequities in the USA: Evidence and interventions. Lancet 2017, 389, 1453–1463. [Google Scholar] [CrossRef]
- KDIGO clinical practice guidelines for acute kidney injury. Kidney Int. 2012, 2, 1–138. [CrossRef]
- Chawla, L.S.; Eggers, P.W.; Star, R.A.; Kimmel, P.L. Acute kidney injury and chronic kidney disease as interconnected syndromes. N. Engl. J. Med. 2014, 371, 58–66. [Google Scholar] [CrossRef]
- Koulouridis, I.; Price, L.L.; Madias, N.E.; Jaber, B.L. Hospital-acquired acute kidney injury and hospital readmission: A cohort study. Am. J. Kidney Dis. 2015, 65, 275–282. [Google Scholar] [CrossRef] [PubMed]
- Rewa, O.; Bagshaw, S.M. Acute kidney injury-epidemiology, outcomes and economics. Nat. Rev. Nephrol. 2014, 10, 193–207. [Google Scholar] [CrossRef] [PubMed]
- Hassan, M.O.; Owoyemi, I.; Abdel-Rahman, E.M.; Ma, J.Z.; Balogun, R.A. Association of Race with In-Hospital and Post-Hospitalization Mortality in Patients with Acute Kidney Injury. Nephron 2021, 145, 214–224. [Google Scholar] [CrossRef]
- Xue, J.L.; Daniels, F.; Star, R.A.; Kimmel, P.L.; Eggers, P.W.; Molitoris, B.A.; Himmelfarb, J.; Collins, A.J. Incidence and mortality of acute renal failure in Medicare beneficiaries, 1992 to 2001. J. Am. Soc. Nephrol. 2006, 17, 1135–1142. [Google Scholar] [CrossRef]
- Mathioudakis, N.N.; Giles, M.; Yeh, H.C.; Haywood, C.J.; Greer, R.C.; Golden, S.H. Racial differences in acute kidney injury of hospitalized adults with diabetes. J. Diabetes Complicat. 2016, 30, 1129–1136. [Google Scholar] [CrossRef]
- Grams, M.E.; Sang, Y.; Ballew, S.H.; Gansevoort, R.T.; Kimm, H.; Kovesdy, C.P.; Naimark, D.; Oien, C.; Smith, D.H.; Coresh, J.; et al. A Meta-analysis of the Association of Estimated GFR, Albuminuria, Age, Race, and Sex with Acute Kidney Injury. Am. J. Kidney Dis. 2015, 66, 591–601. [Google Scholar] [CrossRef]
- Womble, T.N.K.J.; Hamilton, D.H.; Shrout, M.A.; Jacobs, C.A.; Duncan, S.T. Greater rates of acute kidney injury in African American total knee arthroplasty patients. J. Arthroplast. 2019, 34, 1240–1243. [Google Scholar] [CrossRef]
- Shashaty, M.G.; Meyer, N.J.; Localio, A.R.; Gallop, R.; Bellamy, S.L.; Holena, D.N.; Lanken, P.N.; Kaplan, S.; Yarar, D.; Kawut, S.M.; et al. African American race, obesity, and blood product transfusion are risk factors for acute kidney injury in critically ill trauma patients. J. Crit. Care 2012, 27, 496–504. [Google Scholar] [CrossRef]
- Kobayashi, T.; Glorioso, T.J.; Armstrong, E.J.; Maddox, T.M.; Plomondon, M.E.; Grunwald, G.K.; Bradley, S.M.; Tsai, T.T.; Waldo, S.W.; Rao, S.V.; et al. Comparative Outcomes After Percutaneous Coronary Intervention Among Black and White Patients Treated at US Veterans Affairs Hospitals. JAMA Cardiol. 2017, 2, 967–975. [Google Scholar] [CrossRef]
- Muiru, A.N.; Yang, J.; Derebail, V.K.; Liu, K.D.; Feldman, H.I.; Srivastava, A.; Bhat, Z.; Saraf, S.L.; Chen, T.K.; He, J.; et al. Black and White Adults with CKD Hospitalized with Acute Kidney Injury: Findings from the Chronic Renal Insufficiency Cohort (CRIC) Study. Am. J. Kidney Dis. 2022. [Google Scholar] [CrossRef] [PubMed]
- United States Renal Data System. 2018 USRDS Annual Data Report: Epidemiology of Kidney Disease in the United States; National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases: Bethesda, MD, USA, 2018.
- Thakar, C.V.; Liangos, O.; Yared, J.P.; Nelson, D.; Piedmonte, M.R.; Hariachar, S.; Paganini, E.P. ARF after open-heart surgery: Influence of gender and race. Am. J. Kidney Dis. 2003, 41, 742–751. [Google Scholar] [CrossRef]
- Liangos, O.; Wald, R.; O’Bell, J.W.; Price, L.; Pereira, B.J.; Jaber, B.L. Epidemiology and outcomes of acute renal failure in hospitalized patients: A national survey. Clin. J. Am. Soc. Nephrol. 2006, 1, 43–51. [Google Scholar] [CrossRef]
- Waikar, S.S.; Curhan, G.C.; Ayanian, J.Z.; Chertow, G.M. Race and mortality after acute renal failure. J. Am. Soc. Nephrol. 2007, 18, 2740–2748. [Google Scholar] [CrossRef]
- United States Renal Data System. 2012 USRDS Annual Data Report: Atlas of Chronic Kidney Disease and End-Stage Renal Disease in the United States; National Institutes of Health. National Institute of Diabetes and Digestive and Kidney Diseases: Bethesda, MD, USA, 2012.
- Fisher, M.; Neugarten, J.; Bellin, E.; Yunes, M.; Stahl, L.; Johns, T.S.; Abramowitz, M.K.; Levy, R.; Kumar, N.; Mokrzycki, M.H.; et al. AKI in Hospitalized Patients with and without COVID-19: A Comparison Study. J. Am. Soc. Nephrol. 2020, 31, 2145–2157. [Google Scholar] [CrossRef] [PubMed]
- Bjornstad, E.C.; Marshall, S.W.; Mottl, A.K.; Gibson, K.; Golightly, Y.M.; Charles, A.; Gower, E.W. Racial and health insurance disparities in pediatric acute kidney injury in the USA. Pediatr. Nephrol. 2020, 35, 1085–1096. [Google Scholar] [CrossRef]
- Beers, K.; Wen, H.H.; Saha, A.; Chauhan, K.; Dave, M.; Coca, S.; Nadkarni, G.; Chan, L. Racial and Ethnic Disparities in Pregnancy-Related Acute Kidney Injury. Kidney360 2020, 1, 169–178. [Google Scholar] [CrossRef] [PubMed]
- Heung, M.; Dickinson, T.; Wu, X.; Fitzgerald, D.C.; DeLucia, A., 3rd; Paone, G.; Chores, J.; Nieter, D.; Grix, D.; Theurer, P. The Role of Race on Acute Kidney Injury after Cardiac Surgery. Ann. Thorac. Surg. 2021. [Google Scholar] [CrossRef] [PubMed]
- Shah, N.; Koch, S.; Hassouneh, Z.; Bustillo, A.; Simonetto, M.; O’Phelan, K.; Boslet, E. Effect of Race–Ethnicity and CT Angiography on Renal Injury During Blood Pressure Treatment for Intracerebral Hemorrhage. Neurocritical Care 2021, 35, 687–692. [Google Scholar] [CrossRef] [PubMed]
- Tzur, S.; Rosset, S.; Shemer, R.; Yudkovsky, G.; Selig, S.; Tarekegn, A.; Bekele, E.; Bradman, N.; Wasser, W.G.; Behar, D.M.; et al. Missense mutations in the APOL1 gene are highly associated with end stage kidney disease risk previously attributed to the MYH9 gene. Hum. Genet. 2010, 128, 345–350. [Google Scholar] [CrossRef] [PubMed]
- Genovese, G.; Friedman, D.J.; Ross, M.D.; Lecordier, L.; Uzureau, P.; Freedman, B.I.; Bowden, D.W.; Langefeld, C.D.; Oleksyk, T.K.; Uscinski Knob, A.L.; et al. Association of trypanolytic ApoL1 variants with kidney disease in African Americans. Science 2010, 329, 841–845. [Google Scholar] [CrossRef]
- Privratsky, J.R.; Li, Y.J.; Haynes, C.; Podgoreanu, M.; Mathew, J.; Shah, S.H.; Stafford-Smith, M. Apolipoprotein L1 (APOL1) Coding Variants are Associated with Creatinine Rise After Cardiac Surgery. J. Cardiothorac. Vasc. Anesth. 2020, 34, 3314–3320. [Google Scholar] [CrossRef] [PubMed]
- Hung, A.M.; Shah, S.C.; Bick, A.G.; Yu, Z.; Chen, H.C.; Hunt, C.M.; Wendt, F.; Wilson, O.; Greevy, R.A.; Chung, C.P.; et al. APOL1 Risk Variants, Acute Kidney Injury, and Death in Participants with African Ancestry Hospitalized with COVID-19 from the Million Veteran Program. JAMA Intern. Med. 2022, 182, 386–395. [Google Scholar] [CrossRef] [PubMed]
- Magoon, S.; Bichu, P.; Malhotra, V.; Alhashimi, F.; Hu, Y.; Khanna, S.; Berhanu, K. COVID-19-Related Glomerulopathy: A Report of 2 Cases of Collapsing Focal Segmental Glomerulosclerosis. Kidney Med. 2020, 2, 488–492. [Google Scholar] [CrossRef] [PubMed]
- Kudose, S.; Batal, I.; Santoriello, D.; Xu, K.; Barasch, J.; Peleg, Y.; Canetta, P.; Ratner, L.E.; Marasa, M.; Gharavi, A.G.; et al. Kidney Biopsy Findings in Patients with COVID-19. J. Am. Soc. Nephrol. 2020, 31, 1959–1968. [Google Scholar] [CrossRef] [PubMed]
- Kissling, S.; Rotman, S.; Gerber, C.; Halfon, M.; Lamoth, F.; Comte, D.; Lhopitallier, L.; Sadallah, S.; Fakhouri, F. Collapsing glomerulopathy in a COVID-19 patient. Kidney Int. 2020, 98, 228–231. [Google Scholar] [CrossRef] [PubMed]
- Larsen, C.P.; Bourne, T.D.; Wilson, J.D.; Saqqa, O.; Sharshir, M.A. Collapsing Glomerulopathy in a Patient with COVID-19. Kidney Int. Rep. 2020, 5, 935–939. [Google Scholar] [CrossRef]
- Peleg, Y.; Kudose, S.; D’Agati, V.; Siddall, E.; Ahmad, S.; Nickolas, T.; Kisselev, S.; Gharavi, A.; Canetta, P. Acute Kidney Injury Due to Collapsing Glomerulopathy Following COVID-19 Infection. Kidney Int. Rep. 2020, 5, 940–945. [Google Scholar] [CrossRef] [PubMed]
- Nadim, M.K.; Forni, L.G.; Mehta, R.L.; Connor, M.J.; Liu, K.D.; Ostermann, M.; Rimmelé, T.; Zarbock, A.; Bell, S.; Bihorac, A.; et al. COVID-19-associated acute kidney injury: Consensus report of the 25th acute disease quality initiative (ADQI) workgroup. Nat. Rev. Nephrol. 2020, 16, 747–764. [Google Scholar] [CrossRef] [PubMed]
- Hu, B.; Guo, H.; Zhou, P.; Shi, Z.L. Characteristics of SARS-CoV-2 and COVID-19. Nat. Rev. Microbiol. 2020, 19, 141–154. [Google Scholar] [CrossRef]
- The Lancet Infectious Disease. COVID-19, a pandemic or not? Lancet Infect. Dis. 2020, 20, 383. [Google Scholar] [CrossRef]
- Kullar, R.; Marcelin, J.R.; Swartz, T.H.; Piggott, D.A.; Macias Gil, R.; Mathew, T.A.; Kullar, R.; Marcelin, J.R.; Swartz, T.H.; Piggott, D.A.; et al. Racial Disparity of Coronavirus Disease 2019 in African American Communities. J. Infect. Dis. 2020, 222, 890–893. [Google Scholar] [CrossRef] [PubMed]
- Risk for COVID-19 Infection H, and Death by Race/Ethnicity. Available online: https://www.cdc.gov/coronavirus/2019-ncov/covid-data/investigations-discovery/hospitalization-death-by-race-ethnicity.html (accessed on 27 July 2022).
- Charoenngam, N.; Ilori, T.O.; Holick, M.F.; Hochberg, N.S.; Apovian, C.M. Self-identified Race and COVID-19-Associated Acute Kidney Injury and Inflammation: A Retrospective Cohort Study of Hospitalized Inner-City COVID-19 Patients. J. Gen. Intern. Med. 2021, 36, 3487–3496. [Google Scholar] [CrossRef]
- Nimkar, A.; Naaraayan, A.; Hasan, A.; Pant, S.; Durdevic, M.; Suarez, C.N.; Elenius, H.; Hambardzumyan, A.; Lakshmi, K.; Mandel, M.; et al. Incidence and Risk Factors for Acute Kidney Injury and Its Effect on Mortality in Patients Hospitalized from COVID-19. Mayo Clin. Proc. Innov. Qual. Outcomes 2020, 4, 687–695. [Google Scholar] [CrossRef] [PubMed]
- Hirsch, J.S.; Ng, J.H.; Ross, D.W.; Sharma, P.; Shah, H.H.; Barnett, R.L.; Barnett, R.L.; Hazzan, A.D.; Fishbane, S.; Jhaveri, K.D.; et al. Acute kidney injury in patients hospitalized with COVID-19. Kidney Int. 2020, 98, 209–218. [Google Scholar] [CrossRef]
- Bowe, B.; Cai, M.; Xie, Y.; Gibson, A.K.; Maddukuri, G.; Al-Aly, Z. Acute Kidney Injury in a National Cohort of Hospitalized US Veterans with COVID-19. Clin. J. Am. Soc. Nephrol. 2021, 16, 14–25. [Google Scholar] [CrossRef]
- Phillips, N.; Park, I.W.; Robinson, J.R.; Jones, H.P. The Perfect Storm: COVID-19 Health Disparities in US Blacks. J. Racial Ethn. Health Disparities 2020, 8, 1153–1160. [Google Scholar] [CrossRef]
- Vinciguerra, M.; Greco, E. Sars-CoV-2 and black population: ACE2 as shield or blade? Infect. Genet. Evol. 2020, 84, 104361. [Google Scholar] [CrossRef]
- Holick, M.F. Vitamin D deficiency. N. Engl. J. Med. 2007, 357, 266–281. [Google Scholar] [CrossRef]
- Charoenngam, N.; Shirvani, A.; Holick, M.F. Vitamin D and Its Potential Benefit for the COVID-19 Pandemic. Endocr. Pract. 2021, 27, 484–493. [Google Scholar] [CrossRef]
- Raharja, A.; Tamara, A.; Kok, L.T. Association Between Ethnicity and Severe COVID-19 Disease: A Systematic Review and Meta-analysis. J. Racial Ethn. Health Disparities 2021, 8, 1563–1572. [Google Scholar] [CrossRef] [PubMed]
- Nugent, J.; Aklilu, A.; Yamamoto, Y.; Simonov, M.; Li, F.; Biswas, A.; Ghazi, L.; Greenberg, H.; Mansour, G.; Moledina, G.; et al. Assessment of Acute Kidney Injury and Longitudinal Kidney Function After Hospital Discharge Among Patients with and without COVID-19. JAMA Netw. Open 2021, 4, e211095. [Google Scholar] [CrossRef] [PubMed]
- Bandelac, L.; Shah, K.D.; Purmessur, P.; Ghazanfar, H.; Nasr, R. Acute Kidney Injury Incidence, Stage, and Recovery in Patients with COVID-19. Int. J. Nephrol. Renov. Dis. 2022, 15, 77–83. [Google Scholar] [CrossRef]
- Eneanya, N.D.; Yang, W.; Reese, P.P. Reconsidering the Consequences of Using Race to Estimate Kidney Function. JAMA 2019, 322, 113–114. [Google Scholar] [CrossRef]
- Tsai, T.T.; Patel, U.D.; Chang, T.I.; Kennedy, K.F.; Masoudi, F.A.; Matheny, M.E.; Kosiborod, M.; Amin, A.P.; Weintraub, W.S.; Curtis, J.P.; et al. Validated contemporary risk model of acute kidney injury in patients undergoing percutaneous coronary interventions: Insights from the National Cardiovascular Data Registry Cath-PCI Registry. J. Am. Heart Assoc. 2014, 3, e001380. [Google Scholar] [CrossRef]
- Levey, A.S.; Bosch, J.P.; Lewis, J.B.; Greene, T.; Rogers, N.; Roth, D. A More Accurate Method to Estimate Glomerular Filtration Rate from Serum Creatinine: A New Prediction Equation. Ann. Intern. Med. 1999, 130, 461–470. [Google Scholar] [CrossRef]
- Levey, A.S.; Stevens, L.A.; Schmid, C.H.; Zhang, Y.L.; Castro, A.F., 3rd; Feldman, H.I.; Kusek, J.W.; Eggers, P.; Van Lente, F.; Greene, T.; et al. A new equation to estimate glomerular filtration rate. Ann. Intern. Med. 2009, 150, 604–612. [Google Scholar] [CrossRef]
- Delgado, C.; Baweja, M.; Crews, D.C.; Eneanya, N.D.; Gadegbeku, C.A.; Inker, L.A.; Mendu, M.L.; Miller, W.G.; Moxey-Mims, M.M.; Roberts, G.V.; et al. A Unifying Approach for GFR Estimation: Recommendations of the NKF-ASN Task Force on Reassessing the Inclusion of Race in Diagnosing Kidney Disease. Am. J. Kidney Dis. 2022, 79, 268–288. [Google Scholar] [CrossRef]
- Inker, L.A.; Eneanya, N.D.; Coresh, J.; Tighiouart, H.; Wang, D.; Sang, Y.; Crews, D.C.; Doria, A.; Estrella, M.M.; Froissart, M.; et al. New Creatinine- and Cystatin C-Based Equations to Estimate GFR without Race. N. Engl. J. Med. 2021, 385, 1737–1749. [Google Scholar] [CrossRef]
- Huang, C.; Murugiah, K.; Li, X.; Masoudi, F.A.; Messenger, J.C.; Mortazavi, B.J.; Krumholz, H.M. Effect of removing race correction factor in glomerular filtration rate estimation on predicting acute kidney injury after percutaneous coronary intervention. medRxiv 2022. [Google Scholar] [CrossRef]
- Miller, W.G. Uncertainty in estimated glomerular filtration rate is much larger than the race adjustment term. Clin. Chem. 2021, 36, 464–471. [Google Scholar] [CrossRef] [PubMed]
- El-Khoury, J.M.; Ovalle, A.A.; Cervinski, M.A.; Levey, A.S.; Jones, G.; Eneanya, N.D.; Lieske, J.C.; Jha, V. Is It Time to Move On? Reexamining Race in Glomerular Filtration Rate Equations. Clin. Chem. 2021, 67, 585–591. [Google Scholar] [CrossRef] [PubMed]
- Murray, C.J.; Kulkarni, S.C.; Michaud, C.; Tomijima, N.; Bulzacchelli, M.T.; Iandiorio, T.J.; Ezzati, M. Eight Americas: Investigating mortality disparities across races, counties, and race-counties in the United States. PLoS Med. 2006, 3, e260. [Google Scholar] [CrossRef]
- Mensah, G.A.; Mokdad, A.H.; Ford, E.S.; Greenlund, K.J.; Croft, J.B. State of disparities in cardiovascular health in the United States. Circulation 2005, 111, 1233–1241. [Google Scholar] [CrossRef]
- United States Renal Data System. 2021 USRDS Annual Data Report: Epidemiology of Kidney Disease in the United States//Chronic Kidney Disease//4: Acute Kidney Injury; National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases: Bethesda, MD, USA, 2021. [CrossRef]
- Lertdumrongluk, P.; Streja, E.; Rhee, C.M.; Moradi, H.; Chang, Y.; Reddy, U.; Tantisattamo, E.; Kalantar-Zadeh, K.; Kopp, J.B. Survival Advantage of African American Dialysis Patients with End-Stage Renal Disease Causes Related to APOL1. Cardiorenal Med. 2019, 9, 212–221. [Google Scholar] [CrossRef]
- Kahn, D.F.; Duffy, S.J.; Tomasian, D.; Holbrook, M.; Rescorl, L.; Russell, J.; Gokce, N.; Loscalzo, J.; Vita, J.A. Effects of black race on forearm resistance vessel function. Hypertension 2002, 40, 195–201. [Google Scholar] [CrossRef]
- Kalinowski, L.; Dobrucki, I.T.; Malinski, T. Race-specific differences in endothelial function: Predisposition of African Americans to vascular diseases. Circulation 2004, 109, 2511–2517. [Google Scholar] [CrossRef]
- Zitouni, K.; Nourooz-Zadeh, J.; Harry, D.; Kerry, S.M.; Betteridge, D.J.; Cappuccio, F.P.; Earle, K.A. Race-specific differences in antioxidant enzyme activity in patients with type 2 diabetes: A potential association with the risk of developing nephropathy. Diabetes Care 2005, 28, 1698–1703. [Google Scholar] [CrossRef][Green Version]
- Crews, D.C.; Sozio, S.M.; Liu, Y.; Coresh, J.; Powe, N.R. Inflammation and the paradox of racial differences in dialysis survival. J. Am. Soc. Nephrol. 2011, 22, 2279–2286. [Google Scholar] [CrossRef]
- Parr, S.K.; Matheny, M.E.; Abdel-Kader, K.; Greevy, R.A., Jr.; Bian, A.; Fly, J.; Chen, G.; Speroff, T.; Hung, A.M.; Ikizler, T.A.; et al. Acute kidney injury is a risk factor for subsequent proteinuria. Kidney Int. 2018, 93, 460–469. [Google Scholar] [CrossRef]
- Zarkowsky, D.S.; Arhuidese, I.J.; Hicks, C.W.; Canner, J.K.; Qazi, U.; Obeid, T.; Schneider, E.; Abularrage, C.J.; Freischlag, J.A.; Malas, M.B. Racial/Ethnic Disparities Associated with Initial Hemodialysis Access. JAMA Surg. 2015, 150, 529–536. [Google Scholar] [CrossRef] [PubMed]
- Boulware, L.E.; Purnell, T.S.; Mohottige, D. Systemic Kidney Transplant Inequities for Black Individuals: Examining the Contribution of Racialized Kidney Function Estimating Equations. JAMA Netw. Open 2021, 4, e2034630. [Google Scholar] [CrossRef] [PubMed]
- Jungers, P. Late referral: Loss of chance for the patient, loss of money for society. Nephrol. Dial. Transplant. 2002, 17, 371–375. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Ifudu, O.; Dawood, M.; Homel, P.; Friedman, E.A. Excess morbidity in patients starting uremia therapy without prior care by a nephrologist. Am. J. Kidney Dis. 1996, 28, 841–845. [Google Scholar] [CrossRef]
- Ford, C.L.; Airhihenbuwa, C.O. Commentary: Just what is critical race theory and what’s it doing in a progressive field like public health? Ethn. Dis. 2018, 28, 223–230. [Google Scholar] [CrossRef]
- Ford, C.L.; Airhihenbuwa, C.O. Critical race theory, race equity, and public health: Toward antiracism praxis. Am. J. Public Health 2010, 100, S30–S35. [Google Scholar] [CrossRef]
- Vyas, D.A.; Eisenstein, L.G.; Jones, D.S. Hidden in plain sight—Reconsidering the use of race correction in clinical algorithms. N. Engl. J. Med. 2020, 383, 874–882. [Google Scholar] [CrossRef]
Study | Design | Clinical Setting | Population Characteristics | AKI Definition | AKI Rates/Risks (Black vs. White) | Management | Outcomes |
---|---|---|---|---|---|---|---|
Thakar et al., 2003 [24] | Observational cohort study | Database of the Department of Cardiothoracic Anesthesiology, Cleveland | Open-heart surgery patients (n = 22,589) | 50% reduction or greater decline in GFR relative to baseline or ARF requiring dialysis | 2.94% vs. 1.80% | Dialysis (not specified) | ARF and all-cause postoperative mortality |
Liangos et al., 2006 [25] | Observational cohort study | National Hospital Discharge Survey database | Hospitalized adult patients (n = 29,039,599) | ICD-9-CM codes | ARF more common in Black patients (Data not available) | Dialysis (not specified) | Hospital length of stay, dialysis requirement, hospital death |
Xue et al., 2006 [16] | Observational cohort study | Medicare beneficiaries, 1992 to 2001 | Hospitalized patients (n = 5,403,015) | ICD-9-CM codes | 34.4 vs. 22.3 cases per 1000 discharges | Dialysis (not specified) | ARF, sepsis, ICU stay, other acute organ failure, and death within 90 days after admission |
Waikar et al., 2007 [26] | Observational cohort study | Nationwide Inpatient Sample | Hospitalized adults (n = 15,820,871) | ICD-9-CM codes | 3.1% vs. 2.4% | HD and CRRT | In-hospital mortality |
USRDS ADR, 2012 [27] | Observational cohort study | Medicare, MarketScan, and Ingenix i3 populations | Hospitalized adult patients (n = 1,201,064) | ICD-9-CM codes | 44.2 vs. 24.3 per 1000 patient years | PD, continuous HD, intermittent HD, daily HD | Recurrent hospitalization, ESRD, Death |
USRDS ADR 2018 [23] | Observational cohort study | Medicare, Optum Clinformatics™, Veterans Affairs population | Hospitalized adult patients (n = 854,990) | ICD-9-CM codes and KDIGO | Medicare (34.3% vs. 23.0%), Optum Clinformatics™ (9.4% vs. 7.4%), Veterans Affairs (30.4% vs. 24.1%) | - | Recurrent AKI hospitalization (Optum Clinformatics™), ESRD, and Death |
Hsu et al., 2013 [5] | Observational cohort study | Nationwide Inpatient Sample | Hospitalized patients with dialysis-requiring AKI (n = 1,095,000) | ICD-9-CM codes | 15.6% vs. 10.2% | Dialysis (not specified) | Dialysis-requiring AKI |
Grams et al., 2014 [4] | Prospective, community-based cohort study | ARIC study | Individuals aged 45–64 years (n = 10,588) | ICD-9-CM codes | 7.4 vs. 5.8 cases per 1000 person-years | - | Hospitalization, follow-up time on ACEI/ARB, and Death |
Mathioudakis et al., 2016 [17] | Observational cohort study | National Hospital Discharge Survey database | Hospitalized adults with diabetes (n = 276,138) | ICD-9-CM codes | 6.0% vs. 4.6% | Dialysis (not specified) | AKI, in-hospital mortality, and length of hospital stay |
Fisher et al., 2020 [28] | Retrospective observational study | New York City Health System | Hospitalized adult patients with or without COVID-19 (n = 9859) | KDIGO | 42.0% vs. 9.6% | CRRT, PIRRT, PD, HD | Incident AKI, composite need for RRT or mortality. |
Bjornstad et al., 2020 [29] | Secondary analysis study | 2012 Kids’ Inpatient Database | Hospitalized pediatric patients aged 1–20 years (n = 1,699,841) | ICD-9-CM codes | Risks: 13.4 vs. 12.4 | - | AKI |
Beers et al., 2020 [30] | Retrospective cohort study | National Inpatient Sample | Patients with pregnancy-related hospitalizations (n = 48,316,430) | ICD-9-CM codes | 29% vs. 13% | - | In-hospital mortality, adverse discharge, pregnancy-related complications such as miscarriage, preterm labor, and preeclampsia/eclampsia |
Hassan et al., 2021 [15] | Observational cohort study | Clinical data repository, UVA Health System | Hospitalized adults with AKI (n = 386,342) | KDIGO | 3.6 vs. 4.2 cases per 10 person-years | Dialysis (not specified) | In-hospital mortality and post-hospitalization mortality |
Heung et al., 2021 [31] | Observational cohort | Perfusion Measures and Outcomes (PERForm) Registry | Adult cardiac surgical patients (n = 34,520) | Serum creatinine-based criteria | 8% vs. 5% | - | Post-operative AKI |
Shah et al., 2021 [32] | Retrospective | Jackson Memorial Hospital database | Patients with ICH hemorrhage and CT angiogram (n = 394) | KDIGO | 19% vs. 17% | - | AKI |
Lunyera et al., 2021 [8] | Observational cohort study | Duke Databank for Cardiovascular Disease | Patients undergoing percutaneous coronary intervention (n = 9422) | KDIGO | 14% vs. 8% | - | AKI incidence, AKI severity, AKI requiring dialysis, and contrast-induced nephropathy |
Muiru et al., 2022 [22] | Multicenter prospective cohort study | Chronic Renal Insufficiency Cohort (CRIC) Study | Participants with CKD hospitalized with AKI (n = 2720) | ≥50% increase from nadir to peak serum creatinine | 6.3 vs. 5.3 per 100 person-years | - | Hospitalized AKI |
Study | Design | Clinical Setting | Population Characteristics | AKI Definition | Patients with AKI | Risk of AKI | Outcomes |
---|---|---|---|---|---|---|---|
Fisher et al., 2020 [28] | Retrospective observational study | New York City Health System | Hospitalized adult patients with or without COVID-19 (n = 9859) | KDIGO | Black (40.5%), White (8.2%), Hispanic (33.5%), Other (17.8%) | Black race was associated with AKI (adjusted odds ratio, 1.7; 95% CI, 1.3 to 2.3) | Incident AKI, composite need for RRT or mortality |
Hirsch et al., 2020 [49] | Retrospective observational cohort study | New York Health System | Hospitalized adult COVID-19-positive patients (n = 5449) | KDIGO | Black (20.8%), White (41.0%), Asian (8.1%), Mixed (25.4%), Other (4.2%), Declined (0.4%) | Black race was an independent predictor of AKI (adjusted odds ratio, 1.23; 95% CI, 1.01 to 1.50) | Development of AKI, or RRT and hospital disposition (i.e., discharge or death) |
Nimkar et al., 2020 [48] | Retrospective case series | New York City metropolitan teaching hospital | Hospitalized confirmed adult COVID-19 patients (n = 370) | KDIGO | Black (43%), White (33.5%), Hispanic (14.5%), Other (8.9%) | African American race showed higher odds of AKI (adjusted odds ratio, 2.1; 95% CI, 1.2 to 3.7 | AKI and mortality |
Raharja et al., 2021 [55] | Systematic review and meta-analysis | MEDLINE, EMBASE, Cochrane, WHO COVID-19 databases | Seventy-two articles with COVID-19-positive participants (n = 17,950,989) | - | White (38%), Black (38%), Asian (5.2%), Hispanic (9.1%), Mixed/other (13%) | Unadjusted analysis showed Black ethnicity had a significantly higher risk of AKI (RR: 1.35, 95% CI: 1.04–1.76), but pooled RR was non-significant (RR: 1.60, 95% CI: 0.89–2.90) | All-cause mortality, hospitalization, critical care admission, invasive mechanical ventilation, extracorporeal membrane oxygenation, and AKI |
Bowe et al., 2021 [50] | Observational cohort study | US Veterans Affairs population | Hospitalized COVID-19 patients (n = 5216) | KDIGO | Black (53%), White (42%), Other (5%) | Black race was a significant predictor of AKI (adjusted odds ratio, 1.93; 95% CI, 1.69 to 2.20) | All-cause mortality, discharge, need for mechanical ventilation, hospital length of stay |
Charoenngam et al., 2021 [47] | Single-center retrospective cohort study | Boston Medical Center | Hospitalized adults with a positive SARS-CoV-2 PCR test (n = 1424) | ICD-10-CM codes | Black (39.4%), White (23.1%) | AKI was statistically significantly associated with Black race (adjusted odds ratio, 2.16; 95% CI, 1.57 to 2.97) | In-hospital mortality, intensive care unit admission, hospital morbidities, and inflammatory marker levels |
Nugent et al., 2021 [56] | Retrospective cohort study | Yale New Haven Health System network | Hospitalized adult patients with positive COVID-19 and AKI; discharged and did not require dialysis within 3 days of discharge (n = 182) | KDIGO | Black (40.1%), White (40.7%), Asian (2.7%), Hispanic (22%), Other (16.5%) | - | Association between COVID-19-associated AKI and eGFR slope after discharge and time to AKI recovery |
Bandelac et al., 2022 [57] | Retrospective study | The BronxCare Health System | Hospitalized adults with a positive SARS-CoV-2 PCR test (n = 1545) | KDIGO | Black (31.9%), White (1.6%), Hispanic (58.1%), Other (8.4%) | - | AKI, incidence, mortality, stage, and recovery of AKI |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hassan, M.O.; Balogun, R.A. The Effects of Race on Acute Kidney Injury. J. Clin. Med. 2022, 11, 5822. https://doi.org/10.3390/jcm11195822
Hassan MO, Balogun RA. The Effects of Race on Acute Kidney Injury. Journal of Clinical Medicine. 2022; 11(19):5822. https://doi.org/10.3390/jcm11195822
Chicago/Turabian StyleHassan, Muzamil Olamide, and Rasheed Abiodun Balogun. 2022. "The Effects of Race on Acute Kidney Injury" Journal of Clinical Medicine 11, no. 19: 5822. https://doi.org/10.3390/jcm11195822
APA StyleHassan, M. O., & Balogun, R. A. (2022). The Effects of Race on Acute Kidney Injury. Journal of Clinical Medicine, 11(19), 5822. https://doi.org/10.3390/jcm11195822