Identification of miRNAs Involved in Foetal Growth Restriction Due to Maternal Smoking during Pregnancy
Abstract
:1. Introduction
- To compare the difference in miRNA methylation in low-birth-weight newborns of smoking mothers with those in normal-weight newborns of non-smoking mothers;
- To establish a relationship between tobacco, altered miRNA expression patterns and IUGR.
2. Materials and Methods
2.1. Inclusion Criteria
- Normal-weight newborns not exposed to tobacco smoke: children of mothers who did not smoke during pregnancy.
2.2. Exclusion Criteria
- Diseases in the mother that could cause IUGR;
- Uterine infections;
- Foetal malformations;
- Chromosome abnormalities;
- Premature birth;
- Not signing informed consent.
2.3. Study Variables
- Clinical variables for the mother and newborn (Table 1);
- Study of differentially methylated miRNAs in umbilical cord blood
2.4. Procedure and Methodology
3. Results
- Placental angiogenesis, as Vascular Endothelial Growth Factor A (VEGFA) and Angiogenic Factor 1 (FA1);
- Foetal and placental growth: insulin-like growth factor 2 mRNA binding protein 2 (IGF2BP2) and Placental Growth Factor (PLGF);
- Compensatory mechanisms to foetal hypoxia: Hypoxia Inducible Factor 3 Subunit Alpha (HIF3A).
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rodríguez-Dorantes, M.; Tancma, L.M.C. DNA methylation: An epigenetic process of medical importance. Rev. De Investig. Clín. 2004, 56, 56–71. [Google Scholar]
- Garcia, R.R.; Paola, A.A.R. Epigenética: Definición, bases moleculares e implicaciones en la salud y en la evolución humana. Rev. Cienc. Salud 2012, 10, 59–71. [Google Scholar]
- Portela, A.; Esteller, M. Epigenetic modifications and human disease. Nat. Biotechnol. 2010, 28, 1057–1068. [Google Scholar] [CrossRef]
- Juvenal, G.J. Epigenética: Vieja palabra, nuevos conceptos. Rev. Argent. Endocrinol. Metab. 2014, 51, 66–74. [Google Scholar]
- Patricia, K. Epigenética, ciencia de la adaptación biológica heredable. Arch. Argent. Pediatría 2007, 105, 529–531. [Google Scholar]
- Clayton, P.E.; Cianfarani, S.; Czernichow, P.; Johannsson, G.; Rapaport, R.; Rogol, A.D. Management of the child born small for gestational age through to adulthood: A consensus statement of the International Societies of Pediatric Endocrinology and the Growth Hormone Research Society. J. Clin. Endocrinol. Metab. 2007, 92, 804–810. [Google Scholar] [CrossRef]
- Agustín, R.; Javier, T. Intrauterine growth retardation (IUGR): Epidemiology and etiology. Pediatric Endocrinol. Rev. 2009, 6 (Suppl. 3), 332–336. [Google Scholar]
- Pringle, P.J.; Geary, M.P.P.; Rodeck, C.H.; Kingdom, J.C.P.; Kayamba-Kay, S.S.; Hindmarsh, P.C. The influence of cigarette smoking on antenatal growth, birth size, and the insulin-like growth factor axis. J. Clin. Endocrinol. Metab. 2005, 90, 2556–2562. [Google Scholar] [CrossRef]
- Richmond, R.C.; Simpkin, A.J.; Woodward, G.; Gaunt, T.R.; Lyttleton, O.; McArdle, W.L.; Ring, M.S.; Smith, D.A.C.A.; Timpson, J.N.; Tilling, K.; et al. Prenatal exposure to maternal smoking and offspring DNA methylation across the lifecourse: Findings from the Avon Longitudinal Study of Parents and Children (ALSPAC). Hum. Mol. Genet. 2015, 24, 2201–2217. [Google Scholar] [CrossRef]
- Behl, M.; Rao, D.; Aagaard, K.; Davidson, T.L.; Levin, E.D.; Slotkin, T.A.; Srinivasan, S.; Wallinga, D.; White, F.M.; Walker, R.V.; et al. Evaluation of the association between maternal smoking, childhood obesity, and metabolic disorders: A national toxicology program workshop review. Environ. Health Perspect. 2013, 121, 170–180. [Google Scholar] [CrossRef]
- Lee, K.W.K.; Richmond, R.; Hu, P.; French, L.; Shin, J.; Bourdon, C.; Reischl, E.; Waldenberger, M.; Zeilinger, S.; Gaunt, T.; et al. Prenatal exposure to maternal cigarette smoking and DNA methylation: Epigenome-wide association in a discovery sample of adolescents and replication in an independent cohort at birth through 17 years of age. Environ. Health Perspect. 2015, 123, 193–199. [Google Scholar] [CrossRef] [PubMed]
- Michlewski, G.; Cáceres, J.F. Post-transcriptional control of miRNA biogenesis. RNA 2019, 25, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Haluskova, J. Epigenetic studies in human diseases. Folia Biol. 2010, 56, 83–96. [Google Scholar]
- Treiber, T.; Treiber, N.; Meister, G. Regulation of microRNA biogenesis and its crosstalk with other cellular pathways. Nat. Rev. Mol. Cell Biol. 2019, 20, 5–20. [Google Scholar] [CrossRef] [PubMed]
- Cirillo, F.; Catellani, C.; Sartori, C.; Lazzeroni, P.; Street, M.E. The Role of MicroRNAs in Influencing Body Growth and Development. Horm. Res. Paediatr. 2020, 93, 7–15. [Google Scholar] [CrossRef] [PubMed]
- Goyal, D.; Limesand, S.W.; Goyal, R. Epigenetic responses and the developmental origins of health and disease. J. Endocrinol. 2019, 242, 105–119. [Google Scholar] [CrossRef] [Green Version]
- Hromadnikova, I.; Kotlabova, K.; Ondrackova, M.; Kestlerova, A.; Novotna, V.; Hympanova, L.; Doucha, J.; Krofta, L. Circulating C19MC microRNAs in Preeclampsia, Gestational Hypertension, and Fetal Growth Restriction. Available online: https://pubmed.ncbi.nlm.nih.gov/24347821/ (accessed on 26 July 2022).
- Sebastián, J.S.C.; David, A.J.; Maria, O.S.; Maria, A.G.V. Tabaquismo materno como factor posiblemente implicado en el desarrollo de la obesidad infantil. Rev. Chil. Obstet. Ginecol. 2016, 81, 526–533. [Google Scholar]
- Carrascosa Lezcano, A.; Fernández García, J.M.; Fernández Ramos, C.; Ferrández Longás, A.; López-Siguero, J.P.; Sánchez González, E.; Ruiz, B.S.; Fernández, D.Y.; Grupo Colaborador Español. Spanish cross-sectional growth study 2008. Part II. Height, weight and body mass index values from birth to adulthood. An. Pediatr. 2008, 68, 552–569. Available online: https://pubmed.ncbi.nlm.nih.gov/18559194/ (accessed on 22 June 2022). [CrossRef]
- Carrascosa Lezcano, A.; Ferrández Longás, A.; Yeste Fernández, D.; García-Dihinx Villanova, J.; Romo Montejo, A.; Copil Copil, A.; Mendoza, J.A.; Abizanda, S.S.; Canadell, M.G.; Mor, L.B. Spanish cross-sectional growth study 2008. Part I: Weight and height values in newborns of 26–42 weeks of gestational age. An. Pediatr. 2008, 68, 544–551. Available online: https://pubmed.ncbi.nlm.nih.gov/18559193/ (accessed on 22 June 2022). [CrossRef]
- Joubert, B.R.; Felix, J.F.; Yousefi, P.; Bakulski, K.M.; Just, A.C.; Breton, C.; Sarah, E.R.; Christina, A.M.; Rebecca, C.R.; Xu, C.J.; et al. DNA Methylation in Newborns and Maternal Smoking in Pregnancy: Genome-wide Consortium Meta-analysis. Am. J. Hum. Genet. 2016, 98, 680–696. [Google Scholar] [CrossRef]
- Ivorra, C.; Fraga, M.F.; Bayón, G.F.; Fernández, A.F.; Garcia-Vicent, C.; Chaves, F.J.; Redon, J.; Lurbe, E. DNA methylation patterns in newborns exposed to tobacco in utero. J. Transl. Med. 2015, 13, 25. [Google Scholar] [CrossRef] [PubMed]
- Luo, J.; Fan, Y.; Shen, L.; Niu, L.; Zhao, Y.; Jiang, N.; Zhu, L.; Jiang, A.; Tang, Q.; Ma, J.; et al. The Pro-angiogenesis Of Exosomes Derived From Umbilical Cord Blood Of Intrauterine Growth Restriction Pigs Was Repressed Associated With MiRNAs. Int. J. Biol. Sci. 2018, 14, 1426–1436. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Liu, J. MicroRNA-206 predicts raised fetal growth retardation risk through the interaction with vascular endothelial growth factor in pregnancies. Medicine 2020, 99, e18897. [Google Scholar] [CrossRef] [PubMed]
- Loscalzo, G.; Scheel, J.; Ibañez-Cabellos, J.S.; García-Lopez, E.; Gupta, S.; García-Gimenez, J.L.; Mena-Mollá, S.; Perales-Marín, A.; Morales-Roselló, J. Overexpression of microRNAs miR-25-3p, miR-185-5p and miR-132-3p in Late Onset Fetal Growth Restriction, Validation of Results and Study of the Biochemical Pathways Involved. Int. J. Mol. Sci. 2022, 23, 293. [Google Scholar] [CrossRef] [PubMed]
- Stepan, H.; Galindo, A.; Hund, M.; Schlembach, D.; Sillman, J.; Surbek, D.; Vatish, M. Clinical utility of sFlt-1 and PlGF in screening, prediction, diagnosis and monitoring of pre-eclampsia and fetal growth restriction. Ultrasound Obstet. Gynecol. 2022. Available online: https://pubmed.ncbi.nlm.nih.gov/35816445/ (accessed on 26 July 2022). [CrossRef]
- Chaemsaithong, P.; Sahota, D.S.; Poon, L.C. First trimester preeclampsia screening and prediction. Am. J. Obstet. Gynecol. 2020, 226, S1071–S1097.e2. [Google Scholar] [CrossRef]
- Noël, L.; Guy, G.P.; Jones, S.; Forenc, K.; Buck, E.; Papageorghiou, A.T.; Thilaganathan, B. Routine first-trimester combined screening for pre-eclampsia: Pregnancy-associated plasma protein-A or placental growth factor? Ultrasound Obstet. Gynecol. 2021, 58, 540–545. [Google Scholar] [CrossRef]
- Khaliq, A. Hypoxia down-regulates placenta growth factor, whereas fetal growth restriction up-regulates placenta growth factor expression: Molecular evidence for “placental hyperoxia” in intrauterine growth restriction. Lab. Investig. 1999, 79, 151–170. [Google Scholar]
- Pei, J.; Li, Y.; Min, Z.; Dong, Q.; Ruan, J.; Wu, J.; Hua, X. MiR-590-3p and its targets VEGF, PIGF, and MMP9 in early, middle, and late pregnancy: Their longitudinal changes and correlations with risk of fetal growth restriction. Ir. J. Med. Sci. 2022, 191, 1251–1257. [Google Scholar] [CrossRef]
- Ali, A.; Hadlich, F.; Abbas, M.W.; Iqbal, M.A.; Tesfaye, D.; Bouma, G.J.; Winger, A.Q.; Ponsuksili, S. Microrna–mrna networks in pregnancy complications: A comprehensive downstream analysis of potential biomarkers. Int. J. Mol. Sci. 2021, 22, 2313. [Google Scholar] [CrossRef]
- Street, M.E.; Grossi, E.; Volta, C.; Faleschini, E.; Bernasconi, S. Placental determinants of fetal growth: Identification of key factors in the insulin-like growth factor and cytokine systems using artificial neural networks. BMC Pediatr. 2008, 8, 24. [Google Scholar] [CrossRef] [PubMed]
- Carter, A.M.; Kingston, M.J.; Han, K.K.; Mazzuca, D.M.; Nygard, K.; Han, V.K.M.; Sohmiya, M.; Kato, Y. Altered expression of IGFs and IGF-binding proteins during intrauterine growth restriction in guinea pigs. J. Endocrinol. 2005, 184, 179–189. [Google Scholar] [CrossRef] [PubMed]
- Chard, T. Insulin-like growth factors and their binding proteins in normal and abnormal human fetal growth. Growth Regul. 1994, 4, 91–100. [Google Scholar] [PubMed]
- Smerieri, A.; Petraroli, M.; Ziveri, M.A.; Volta, C.; Bernasconi, S.; Street, M.E. Effects of Cord Serum Insulin, IGF-II, IGFBP-2, IL-6 and Cortisol Concentrations on Human Birth Weight and Length: Pilot Study. PLoS ONE 2011, 6, e29562. [Google Scholar] [CrossRef] [PubMed]
- Bang, P.; Westgren, M.; Schwander, J.; Blum, W.F.; Rosenfeld, R.G.; Stangenberg, M. Ontogeny of insulin-like growth factor-binding protein-1, -2, and -3: Quantitative measurements by radioimmunoassay in human fetal serum. Pediatr. Res. 1994, 36, 528–536. [Google Scholar] [CrossRef]
- Elsamadicy, E.A.; Thompson, L.P. Sex-Selective Increase of IGF-2 Expression in the Hypoxic Guinea Pig Placenta of Growth-Restricted Fetuses. Reprod. Sci. 2022, 1–11. Available online: https://pubmed.ncbi.nlm.nih.gov/35616874/ (accessed on 26 July 2022). [CrossRef]
- Hu, X.-Q.; Zhang, L. MicroRNAs in Uteroplacental Vascular Dysfunction. Cells 2019, 8, 1344. Available online: https://pubmed.ncbi.nlm.nih.gov/31671866/ (accessed on 26 July 2022). [CrossRef]
- Serocki, M.; Bartoszewska, S.; Janaszak-Jasiecka, A.; Ochocka, R.J.; Collawn, J.F.; Bartoszewski, R. miRNAs regulate the HIF switch during hypoxia: A novel therapeutic target. Angiogenesis 2018, 21, 183–202. [Google Scholar] [CrossRef] [Green Version]
- Barker, D.J. The fetal and infant origins of adult disease. BMJ 1990, 301, 1111. [Google Scholar] [CrossRef]
- Barker, D.J. Developmental origins of adult health and disease. J. Epidemiol. Community Health 2004, 58, 114–115. [Google Scholar] [CrossRef] [Green Version]
SEX | Smokig | Gestational Age | Weight | APGAR test | Delivery | Height (cm) | Head Circunference (cm) | Placental Weight (g) |
---|---|---|---|---|---|---|---|---|
F | Yes | 39 + 2 | 2680 | 10 | Vaginal | 46.5 | 32.5 | 420 |
M | Yes | 38 | 2600 | 10 | Cesarean | 50 | 33 | 530 |
M | Yes | 39 + 1 | 2725 | 9 | Vaginal | 49 | 33 | 465 |
M | Yes | 40 | 2835 | 10 | Vaginal | 50 | 33.5 | 480 |
F | Yes | 39 + 6 | 2600 | 10 | Vaginal | 50 | 33 | 510 |
F | No | 39 | 2885 | 10 | Vaginal | 49 | 34.5 | 520 |
M | No | 38 | 3070 | 10 | Vaginal | 51 | 34 | 515 |
F | No | 41 | 4005 | 9 | Vaginal | 51 | 34 | 635 |
F | No | 41 | 4100 | 10 | Cesarean | 51 | 35 | 700 |
M | No | 41 | 3850 | 9 | Cesarean | 51.5 | 35.5 | 525 |
miR 7-1 3p | miR 3918 | miR 1244-1 | miR 4721 | |
---|---|---|---|---|
Symbols | MIR7-1 | MIR3918 | MIR1244-1 | MIR4721 |
Alias | hsa-mir-7-1 | hsa-mir-3918 | hsa-mir-1244-1 | hsa-mir-4721 |
Species | Homo Sapiens | Homo Sapiens | Homo Sapiens | Homo Sapiens |
Gene Family | mir-7 | mir-3918 | mir-1244 | mir-4721 |
Mapped | Chromosome 9 (9q21.32) | Chromosome 6 (6q35.3) | Chromosome 2 (2q37.1) | Chromosome 16 (16P11.2) |
Start | 83969748 | 158764661 | 231713314 | 28843919 |
End | 83969857 (−) | 158764753 (−) | 231713398 (+) | 28844007 (−) |
Gene ID NCBI | 407043 | 100500851 | 100302285 | 100616256 |
Gene Type | ncRNA | ncRNA | ncRNA | ncRNA |
Central RNA | URS00002C5007_9606 | URS000075B9DC_9606 | URS000075BB1F_9606 | URS000075EF66_9606 |
Mature Sequence miRNA | 66-CAACAAAUCACAGU CUGCCAUA-87 | 19-ACAGGGCCGCAGA UGGAGACU-39 | 55-AAGUAGUUGGUUUGUAUGAGAUGGUU-80 | 60-UGAGGGCUCCAGGUGACGGUGG-81 |
TARGET | 2037 | 639 | 390 | 390 |
Promotor miRNA | MI0000263 | MI0016424 | MI0006379 | MI0017356 |
Mature miRNA | MIMAT0004553 | MIMAT0018192 | MIMAT0055896 | MIMAT0019835 |
miRDB ID | hsa-mir-7-1-3p | hsa-mir-3918 | hsa-mir-1244 | hsa-mir-74721 |
OMIM ID | 615239 | |||
HCNG ID | 407043 | 38919 | 35310 | 41609 |
Evidence | Experimental Clonado | Experimental Illumina | Experimental Illumina | Experimental Illumina |
miR 25 5p | miR 25 3p | miR 93 5p | miR 93 3P | miR 3656 | |
---|---|---|---|---|---|
Symbols | MIR25 | MIR25 | MIR93 | MIR93 | MIR3656 |
Alias | hsa-mir-25 5p | hsa-mir-25 3p | hsa-mir-93 5p | hsa-mir-93 3p | hsa-mir-3656 |
Species | Homo Sapiens | Homo Sapiens | Homo Sapiens | Homo Sapiens | Homo Sapiens |
Gene Family | mir-25 | mir-25 | mir-93 | mir-93 | mir-3656 |
Mapped | Chromosome7 (7q22.1) | Chromosome 7 (7q22.1) | Chromosome 7 (7q22.1) | Chromosome 7 (7q22.1) | Chromosome 11 (11q23.3) |
Start | 100093560 | 100093560 | 100093768 | 100093768 | 119018944 |
End | 100093643 (−) | 100093643 (−) | 100093847 (−) | 100093847 (−) | 119019012 (−) |
Gene ID- NCBI | 407014 | 407014 | 407050 | 407050 | 100500840 |
Gene Type | ncRNA | ncRNA | ncRNA | ncRNA | ncRNA |
Central RNA | URS00000C85B2_9606 | URS00000C85B2_9606 | URS00000DDD35_9606 | URS00000DDD35_9606 | URS000075C7 FA_9606 |
Mature Sequence miRNA | 14-AGGCGGAGACUU GGGCAAUUG-34 | 52-CAUUGCACUUGUC UCGGUCUGA-73 | 11-CAAAGUGCUGUUCG UGCAGGUAG-33 | 50-ACUGCUGAGCUAGCACUUCCCG-71 | 49-GGCGGGUGCG GGGGUGG-65 |
TARGET | 51 | 919 | 1319 | 651 | |
Promotor miRNA | MI0000082 | MI0000082 | MI0000095 | MI0000095 | MI0015056 |
Mature miRNA | MIMAT0004498 | MIMAT0000081 | MIMAT0000093 | MIMAT0004509 | MIMAT00180 76 |
miRDB ID | hsa-mir-25-5p | hsa-mir-25-3p | hsa-mir-93 5p | hsa-mir-93 3p | |
OMIM ID | 612150 | 612150 | 612984 | 612984 | |
HCNG ID | 407014 | 407014 | 407050 | 407050 | 38889 |
Evidence | Experimental Clonado | Experimental Clonado Northern | Experimental Clonado Northern | Experimental Clonado | Experimental |
Gene Name | GENE ID NCBI | |
---|---|---|
TUSC2 | Mitochondrial Calcium Regulator of Tumor Suppressor Gene 2 | 11334 |
TNFSF4 | Member number 4 superfamily TNF (Tumor Necrosis Factor) | 7292 |
CADM2 | cell adhesion molecule 2 | 253559 |
VEGFA | Vascular Endothelial Growth Factor A | 7422 |
TP531NP1 | Inducible nuclear p53 tumor protein 1 (Tumor Suppressor Gene) | 94241 |
TRAF6 | TNF receptor (Tumor Necrosis Factor) associated with factor 6 | 7189 |
BCCIP | BRCA2 interaction protein (Tumor Suppressor Gene) | 56647 |
TRAF7 | Factor 7 associated with the TNF Receptor (Tumor Necrosis Factor) | 84231 |
AMMECR1 | Alport syndrome. Gen 1 | 9949 |
CDC23 | Cell Division Cycle Protein 23 | 8697 |
CDC73 | Protein 73 Cell Division Cycle | 79577 |
BCL2L1 | BCL2-like 1 (Apoptosis Inhibitory Protein) | 598 |
MORF4L2 | Mortality Factor 4-like 2 | |
CDC14A | Cell Division Cycle 14A | 8556 |
CDC37L1 | Cell Division Cycle 37 like 1 | 55664 |
CLLU1OS | Chronic Lymphocytic Leukemia, positive regulation of the opposite chain | 574016 |
FMR1 | Fragile X syndrome | 2332 |
RAP1B | Member of the RAS oncogene family | 9643 |
Gene Name | GENE ID NCBI | |
---|---|---|
RAB5B | RAB5B Member of the RAS oncogene family | 5869 |
BAP1 | Protein associated with BRCA1 (Tumor Suppressor Gene) | 8314 |
TRARG1 | GLUT4 Receptor Regulator (Glucose transporter protein regulated by insulin) | 286753 |
PGF | Placental Growth Factor | 5228 |
CDON | Cell Adhesion Regulatory Oncogene | 50937 |
RAB4B | RAB4B Member of the RAS oncogene family | 53916 |
CSHL1 | Human Chorionic Somatomammotropin Hormone-like 1 | 1444 |
TNFRSF18 | Member 18 TNF (Tumor Necrosis Factor) receptor superfamily | 8784 |
OSGIN1 | Inhibitor 1 of the Oxidative Stress Induction Factor | 29948 |
TNFAIP2 | TNF α-inducing protein 2 (Tumor Necrosis Factor alpha) | 7127 |
TNFAIP1 | TNF α-inducing protein 1 (Tumor Necrosis Factor alpha) | 7126 |
SOHLH1 | Specific Basic Protein of spermatogenesis and oogenesis | 402381 |
NBAS | Neuroblastoma amplified sequence | 51594 |
RAB40C | RAB40C member of the RAS oncogene family | 57799 |
IGF2BP2 | IGF2 mRNA-binding protein 2 (Insulin Growth Factor 2) | 10644 |
Target | Gene Name | GENE ID NCBI |
---|---|---|
F8 | Coagulation Factor VIII | 2157 |
NCR3LG1 | Natural Killer Cell Receptor 3 Ligand 1 | 374383 |
ATXN1L | Ataxin-like 1 | 342371 |
MYBL1 | MYB-like 1 proto-oncogene | 4603 |
TGFBR2 | TGFB Receptor 2 (Transforming Growth Factor beta) | 7048 |
TNFAIP8L2 | TNF α (Tumor Necrosis Factor alpha) induced protein 8 like 2 that | 79626 |
DNMT3A | DNA Methyltransferase 3α (alpha) | 1788 |
NEUROD4 | Neuronal differentiation 4 | 58158 |
HGF | Liver Growth Factor | 3082 |
OSGIN2 | Member 2 of the stress-induced growth factor inhibitor family | 734 |
CIP2A | oxidative | 57650 |
FGFR1OP2 | Inhibitor of protein phosphatase 2A that regulates cell proliferation | 26127 |
TDGF1 | FGFR1 oncogene partner 2 | 6997 |
CDC34 | Growth Factor 1 derived from teratocarcinoma | 997 |
F3 | Cell division cycle factor 34 | 2152 |
FXR1 | Tissue coagulation factor III | 8087 |
ANAPC11 | Autosomal homologous protein 1 of FMR1 | 51529 |
CBL | Subunit 11 of the anaphase promoting complex | 867 |
Gene Name | GENE ID NCBI | |
---|---|---|
TP63 | Tumor protein p63 | 8626 |
MLLT11 | MLLT11 transcription factor cofactor 7 | 10962 |
RRAS2 | Related to RAS 2 | 22800 |
FXR1 | Autosomal homologous protein 1 of FMR1 | 8087 |
BCAM | Basal cell adhesion molecule | 4059 |
CDCA7 | Factor 7 associated with the cell division cycle | 83879 |
MYCL | MYCL proto-oncogene transcription factor | 4610 |
AREL1 | Apoptosis resistant protein E3 ubiquitin ligase 1 | 9870 |
HIF3A | Hypoxia-inducible factor 3 alpha subunit | 64344 |
ATXN7L3 | Ataxin 7 like 3 | 56970 |
FXR2 | Autosomal homologous protein 2 of FMR1 | 9513 |
C1QTNF6 | CIQ factor related to TNF (Tumor Necrosis Factor) 6 | 114904 |
TNFAIP1 | TNF α-inducing protein 1 (Tumor Necrosis Factor alpha) | 7126 |
BAP1 | BRCA1 proto-oncogene-associated protein 1 | 8314 |
Target | Gene Name | GENE ID NCBI |
---|---|---|
TP63 | p63 tumor protein | 8626 |
MISP3 | MISP (Mitotic Spindle Positioning) family member 3 | 133230 |
APBB2 | Binding protein, member 2, family B, of amyloid beta precursor | 323 |
PAN01 | Nucleolar proapoptotic protein 1 | 101927423 |
Gene Name | GENE ID NCBI | |
---|---|---|
RAB23 | RAB23 member of the RAS oncogene family | 51715 |
FBN1 | Fibrillin 1 | 2200 |
BTG2 | BTG antiproliferative protein factor 2 | 7832 |
CADM2 | Cell adhesion molecule 2 | 253559 |
BCL2L11 | BCL2-like 11 protein | 10018 |
ATXN1 | Ataxin 1 | 6310 |
ATXN3 | Ataxin 3 | 4287 |
ATXN7 | Ataxin 7 | 6314 |
APBB2 | Binding protein, member 2, family B, of amyloid beta precursor. | 323 |
RAB3C | RAB3C RAS oncogene family member | 115827 |
NF2 | Neurofibromin 2 | 4771 |
WASL | Wiskott-Aldrich syndrome | 8976 |
FXR1 | Autosomal homologous protein 1 of FMR1 | 8087 |
INSIG1 | Insulin-inducing gene 1 | 3628 |
RAB8B | RAB8B RAS oncogene family member | 51762 |
IRS2 | Insulin receptor substrate 2 | 8660 |
FMR1 | Fragile X syndrome | 2332 |
SCAI | Cellular invasion suppressor in cancer | 286205 |
CADC42 | Cell division cycle factor 42 | 998 |
TRAF3 | Factor 3 associated with TNF (Tumor Necrosis Factor) | 7187 |
AGGF1 | Angiogenic Factor 1 | 55109 |
RAB2C | RAP2C member of the RAS oncogene family | 57826 |
VEZF1 | Vascular Endothelium-Associated Zinc Finger Protein | 7716 |
Target | Gene Name | GENE ID NCBI |
---|---|---|
ITPRIPL2 | ITPRIP-like 2 protein | 162073 |
ATXN1 | Ataxin 1 | 6310 |
TNFRSF21 | Receptor member 21 of the TNF superfamily (Tumor Necrosis Factor) | 27242 |
F3 | Coagulation tissue factor III | 2152 |
RAB5B | RAB5B Member of the RAS oncogene family | 5869 |
LRP8 | LDL receptor protein 8 (Low Density Lipoprotein) | 7804 |
APP | Beta Amyloid Precursor Protein | 351 |
TPRG1L | Tumor protein p53-like 1 regulator | 127262 |
LRPAP1 | Protein 1 associated with the LDL receptor (Low Density Lipoprotein) | 4043 |
CDC23 | Cell Division Cycle Protein 23 | 8697 |
VASP | Vasodilation Stimulating Phosphoprotein | 7408 |
IGF2BP1 | Insulin-like growth factor 2 mRNA-binding protein 1 | 10642 |
VEGFA | Vascular Endothelial Growth Factor A (VEGF) | 7422 |
VEZF1 | Vascular Endothelium-Associated Zinc Finger Protein | 7716 |
FXN | Frataxin protein | 2395 |
VLDLR | VLDL receptor (Very Low Density Lipoprotein) | 7436 |
Target | Gene Name | GENE ID NCBI |
---|---|---|
RAB36 | RAB36 Member of the RAS oncogene family | 9609 |
RAB3B | RAB3B Member of the RAS oncogene family | 5865 |
HYPK | Huntingtin-associated protein K | 25764 |
LDLRAD4 | Domain 4 of the VLDL (Very Low Density Lipoprotein) class A receptor | 753 |
RAB4A | RAB4A Member of the RAS oncogene family | 5867 |
PLAC8 | Placenta Specific Protein 8 | 51316 |
CDC14B | Cell cycle-associated factor 14B | 8555 |
HIVEP3 | HIV (Human Immunodeficiency Virus) type I binding protein 3 | 59269 |
TRAF1 | Factor 1 associated with TNF (Tumor Necrosis Factor) | 7185 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barrio, E.; Quirós, A.; Lerma-Puertas, D.; Labarta, J.I.; Gascón-Catalán, A. Identification of miRNAs Involved in Foetal Growth Restriction Due to Maternal Smoking during Pregnancy. J. Clin. Med. 2022, 11, 5808. https://doi.org/10.3390/jcm11195808
Barrio E, Quirós A, Lerma-Puertas D, Labarta JI, Gascón-Catalán A. Identification of miRNAs Involved in Foetal Growth Restriction Due to Maternal Smoking during Pregnancy. Journal of Clinical Medicine. 2022; 11(19):5808. https://doi.org/10.3390/jcm11195808
Chicago/Turabian StyleBarrio, Eva, Alba Quirós, Diego Lerma-Puertas, José I. Labarta, and Ana Gascón-Catalán. 2022. "Identification of miRNAs Involved in Foetal Growth Restriction Due to Maternal Smoking during Pregnancy" Journal of Clinical Medicine 11, no. 19: 5808. https://doi.org/10.3390/jcm11195808
APA StyleBarrio, E., Quirós, A., Lerma-Puertas, D., Labarta, J. I., & Gascón-Catalán, A. (2022). Identification of miRNAs Involved in Foetal Growth Restriction Due to Maternal Smoking during Pregnancy. Journal of Clinical Medicine, 11(19), 5808. https://doi.org/10.3390/jcm11195808