Circulating Profile of ECM-Related Proteins as Diagnostic Markers in Inflammatory Bowel Diseases
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Patients with Ulcerative Colitis—Inclusion and Exclusion Criteria
2.3. Patients with Crohn’s Disease—Inclusion and Exclusion Criteria
2.4. Control Subjects
2.5. Biological Material for Research
2.6. Assesing the Serum Laminin Concentration
2.7. Assesing the Serum Fibronectin Concentration
2.8. Assesing the Serum Neutrophil Gelatinase-Associated Lipocalin Concentration
2.9. Statistical Analysis
3. Results
3.1. Research Data
3.2. Quantative Changes of Serum LM, FN and NGAL in Patients with Ulcerative Colitis
3.3. Quantative Changes of Serum LM, FN and NGAL in Patients with Crohn’s Disease
3.4. The Relationship between Serum LM, FN, NGAL and Inflammatory Processes and Disease Activity
4. Discussion
4.1. Quantative Changes of the ECM-Related Markers (LM, FN and NGAL) in the Serum of Patients with UC or CD before Therapy
4.2. The Influence of Implemented Treatment on the Profile of ECM-Related Markers in the Serum of Patients with IBD
4.3. The Influence of Inflammatory Processes and Disease Activity on ECM-Related Markers in Patients with IBD
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Latella, G.; Sferra, R.; Speca, S.; Vetuschi, A.; Gaudio, E. Can we prevent, reduce or reverse intestinal fibrosis in IBD? Eur. Rev. Med. Pharmacol. Sci. 2013, 17, 1283–1304. [Google Scholar] [PubMed]
- Li, A.C.; Thompson, R.P. Basement membrane components. J. Clin. Pathol. 2003, 56, 885–887. [Google Scholar] [CrossRef]
- Lindholm, M.; Di Sabatino, A.; Manon-Jensen, T.; Mazza, G.; Madsen, G.I.; Giuffrida, P.; Pinzani, M.; Krag, A.; Karsdal, M.A.; Kjeldsen, J.; et al. A Serological Biomarker of Laminin Gamma 1 Chain Degradation Reflects Altered Basement Membrane Re-modeling in Crohn’s Disease and DSS Colitis. Dig. Dis. Sci. 2021, 24. [Google Scholar]
- Spenlé, C.; Lefebvre, O.; Lacroute, J.; Méchine-Neuville, A.; Barreau, F.; Blottière, H.M.; Duclos, B.; Arnold, C.; Hussenet, T.; Hemmerlé, J.; et al. The laminin response in inflammatory bowel disease: Protection or malignancy? PLoS ONE 2014, 9, e111336. [Google Scholar] [CrossRef]
- Pellino, G.; Pallante, P.; Selvaggi, F. Novel biomarkers of fibrosis in Crohn’s disease. World J. Gastrointest. Pathophysiol. 2016, 7, 266–275. [Google Scholar] [CrossRef] [PubMed]
- Chakraborty, S.; Kaur, S.; Guha, S.; Batra, S.K. The multifaceted roles of neutrophil gelatinase associated lipocalin (NGAL) in in-flammation and cancer. Biochim. Biophys. Acta 2012, 1826, 129–169. [Google Scholar] [PubMed]
- Mortensen, J.; Lindholm, M.; Langholm, L.; Kjeldsen, J.; Bay-Jensen, A.; Karsdal, M.; Manon-Jensen, T. The intestinal tissue homeostasis—The role of extracellular matrix remodeling in inflammatory bowel disease. Expert Rev. Gastroenterol. Hepatol. 2019, 13, 977–993. [Google Scholar] [CrossRef]
- Derkacz, A.; Olczyk, P.; Jura-Półtorak, A.; Olczyk, K.; Komosinska-Vassev, K. The Diagnostic Usefulness of Circulating Profile of Extracellular Matrix Components: Sulfated Glycosaminoglycans (sGAG), Hyaluronan (HA) and Extracellular Part of Syndecan-1 (sCD138) in Patients with Crohn’s Disease and Ulcerative Colitis. J. Clin. Med. 2021, 10, 1722. [Google Scholar] [CrossRef]
- Derkacz, A.; Olczyk, P.; Jura-Poltorak, A.; Waluga-Kozlowska, E.; Olczyk, K.; Komosinska-Vassev, K. Clinical significance of uri-nary glycosaminoglycan excretion in inflammatory bowel disease patients. J. Physiol. Pharmacol. 2020, 71. [Google Scholar]
- A Lenselink, E. Role of fibronectin in normal wound healing. Int. Wound J. 2015, 12, 313–316. [Google Scholar] [CrossRef]
- Theocharis, A.D.; Manou, D.; Karamanos, N.K. The extracellular matrix as a multitasking player in disease. FEBS J. 2019, 286, 2830–2869. [Google Scholar] [CrossRef]
- Petrey, A.C.; de la Motte, C.A. The extracellular matrix in IBD: A dynamic mediator of inflammation. Curr. Opin. Gastroenterol. 2017, 33, 234–238. [Google Scholar] [CrossRef]
- Verspaget, H.W.; Biemond, I.; Allaart, C.F.; van Weede, H.; Weterman, I.T.; Gooszen, H.G.; Peña, A.S.; Lamers, C.B. Assessment of plas-ma fibronectin in Crohn’s disease. Hepatogastroenterology 1991, 38, 231–234. [Google Scholar] [PubMed]
- Allan, A.; Wyke, J.; Allan, R.N.; Morel, P.; Robinson, M.; Scott, D.L.; Alexander-Williams, J. Plasma fibronectin in Crohn’s disease. Gut 1989, 30, 627–633. [Google Scholar] [CrossRef] [PubMed]
- Kochhar, R.; Kumar, N.; Singh, V.; Goenka, M.K.; Mehta, S.K. Plasma fibronectin levels in patients with idiopathic ulcerative colitis. Natl. Med. J. India 1991, 4, 108–110. [Google Scholar]
- Moschen, A.R.; Adolph, T.E.; Gerner, R.R.; Wieser, V.; Tilg, H. Lipocalin-2: A Master Mediator of Intestinal and Metabolic Inflam-mation. Trends Endocrinol. Metab. 2017, 28, 388–397. [Google Scholar] [CrossRef] [PubMed]
- Oikonomou, K.A.; Kapsoritakis, A.N.; Theodoridou, C.; Karangelis, D.; Germenis, A.; Stefanidis, I.; Potamianos, S.P. Neutrophil gelatinase-associated lipocalin (NGAL) in inflammatory bowel disease: Association with pathophysiology of inflammation, established markers, and disease activity. J. Gastroenterol. 2012, 47, 519–530. [Google Scholar] [CrossRef]
- Jaberi, S.A.; Cohen, A.; D’Souza, C.; Abdulrazzaq, Y.M.; Ojha, S.; Bastaki, S.; Adeghate, E.A. Lipocalin-2: Structure, function, distribu-tion and role in metabolic disorders. Biomed. Pharmacother. 2021, 142, 112002. [Google Scholar] [CrossRef] [PubMed]
- Yeşil, A.; Gönen, C.; Şenateş, E.; Paker, N.; Gökden, Y.; Koçhan, K.; Erdem, E.D.; Gündüz, F. Relationship Between Neutrophil Gelatinase-Associated Lipocalin (NGAL) Levels and Inflammatory Bowel Disease Type and Activity. Am. J. Dig. Dis. 2013, 58, 2587–2593. [Google Scholar] [CrossRef] [PubMed]
- Francoeur, C.; Escaffit, F.; Vachon, P.H.; Beaulieu, J.F. Proinflammatory cytokines TNF-alpha and IFN-gamma alter laminin ex-pression under an apoptosis-independent mechanism in human intestinal epithelial cells. Am. J. Physiol. Gastrointest. Liver Phys-iol 2004, 287, G592–G598. [Google Scholar] [CrossRef]
- Baradaran Ghavami, S.; Mohebbi, S.R.; Karimi, K.; Azimzadeh, P.; Sharifian, A.; Mojahed Yazdi, H.; Hatami, B. Variants in two gene members of the TNF ligand superfamily and hepatitis C virus chronic disease. Gastroenterol. Hepatol. Bed Bench 2018, 11 (Suppl. 1), S66–S72. [Google Scholar] [PubMed]
- Koutroubakis, I.E.; Petinaki, E.; Dimoulios, P.; Vardas, E.; Roussomoustakaki, M.; Maniatis, A.N.; Kouroumalis, E.A. Serum laminin and collagen IV in inflammatory bowel disease. J. Clin. Pathol. 2003, 56, 817–820. [Google Scholar] [CrossRef] [PubMed]
- Komine-Aizawa, S.; Masuda, H.; Mazaki, T.; Shiono, M.; Hayakawa, S.; Takayama, T. Plasma Osteopontin Predicts Inflammatory Bowel Disease Activities. Int. Surg. 2015, 100, 38–43. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ogata, H.; Hagiwara, T.; Kawaberi, T.; Kobayashi, M.; Hibi, T. Safety and effectiveness of adalimumab in the treatment of ulcera-tive colitis: Results from a large-scale, prospective, multicenter, observational study. Intest. Res. 2021, 19, 419–429. [Google Scholar] [CrossRef] [PubMed]
- Henriksen, M.; Jahnsen, J.; Lygren, I.; Stray, N.; Sauar, J.; Vatn, M.H.; Moum, B.; IBSEN Study Group. C-reactive protein: A predictive factor and marker of inflammation in inflammatory bowel disease. Results from a prospective population-based study. Gut 2008, 57, 1518–1523. [Google Scholar] [CrossRef]
- Rutgeerts, P.; Löfberg, R.; Malchow, H.; Lamers, C.; Olaison, G.; Jewell, D.; Danielsson, A.; Goebell, H.; Thomsen, O.O.; Lorenz-Meyer, H.; et al. A comparison of budesonide with prednisolone for active Crohn’s disease. N. Engl. J. Med. 1994, 331, 842–845. [Google Scholar] [CrossRef]
Parameter | Patients with Ulcerative Colitis n = 31 | p | |
---|---|---|---|
Before Treatment (UC0) | After Treatment (UC1) | UC0 vs. UC1 | |
Mayo score | 3 (2–3) | 2 (1–3) | 0.000 * |
CRP (mg/L) | 3.40 (1.26–17.51) | 2.47 (1.51–7.68) | 0.012 * |
Glucose (mmol/L) | 4.99 ± 0.7 | 4.81 ± 0.81 | 0.293 |
Cholesterol (mmol/L) | 4.98 ± 0.8 | 4.93 ± 0.91 | 0.724 |
Triglycerides (mmol/L) | 1.23 (0.87–1.36) | 1.36 ± 0.47 | 0.022 |
Indirect bilirubin (μmol/L) | 4.75 (1.8–7.7) | 9.35 (5.5–16.35) | 0.000 |
Direct bilirubin (μmol/L) | 3.45 (1.9–3.8) | 5.3 (3.6–8.2) | 0.000 |
ALT (U/L) | 15 (10–26) | 16 (10–25) | 0.809 * |
AST(U/L) | 17.92 ± 4.81 | 19 (15–23) | 0.044 * |
Creatinine (μmol/L) | 79.88 (69–88.4) | 74.7 (63.4–87.1) | 0.137 * |
Total protein (g/L) | 73.48 ± 5.43 | 74.73 ± 5.63 | 0.231 |
Albumin (g/L) | 42 (40–46) | 43.34 ± 4.52 | 0.522 * |
Sodium (mmol/L) | 139.9 ± 1.93 | 140 (138–141) | 0.190 * |
Potassium (mmol/L) | 4.17 ± 0.4 | 3.97 ± 0.33 | 0.011 |
Calcium (mmol/L) | 2.36 ± 0.09 | 2.32 (2.25–2.44) | 0.677 * |
Hemoglobin (g/dL) | 12.83 ± 2.28 | 13.5 ±2.3 | 0.005 |
Lymphocytes (%) | 24.27 ± 10.71 | 28.3 (17.8–34.5) | 0.000 |
Basophils (%) | 0.76 ± 0.43 | 0.6 (0.45–1.1) | 0.000 |
Eosinophils (%) | 2.6 (1.1–3.3) | 1.8 (0.8–2.6) | 0.063 |
Monocytes (%) | 5.72 ± 2.27 | 5.6 (4.5–7.8) | 0.000 |
PLT (×109/L) | 372 (292–457) | 342 ± 101,72 | 0.000 |
Parameter | Patients with Crohn’s Disease n = 20 | p | |
---|---|---|---|
Before Treatment (CD0) | After Treatment (CD1) | CD0 vs. CD1 | |
Age (years) | 32.1 ± 9.32 | ||
CDAI | 303.4 ± 52.45 | 273.85 ± 40.82 | 0.017 |
CRP (mg/L) | 15.7 (4.2–39.05) | 18.5 (9.4–28.75) | 0.242 |
Sodium (mmol/L) | 138.15 ± 2.89 | 138.38 ± 3.9 | 0.886 |
Potassium (mmol/L) | 4.35 (4.2–4.45) | 4.29 ± 0.22 | 0.606 * |
Glucose (mmol/L) | 4.94 (4.72–5.33) | 4.89 ± 0.43 | 0.579 * |
Creatinine (μmol/L) | 81.33 ± 14.14 | 86.63 ± 13.26 | 0.300 |
WBC | 7.2 ± 3.21 | 6.22 ± 1.97 | 0.630 |
RBC | 4.04 (3.78–4.71) | 4.25 ± 0.59 | 0.803 * |
Hemoglobin (g/dL) | 11.58 ±2.3 | 12.41 ± 1.94 | 0.411 |
HCT (%) | 35.04 ± 5.54 | 37.09 ± 5.1 | 0.405 |
MCV (fL) | 85.81 ± 8.44 | 86.21 ± 6.65 | 0.908 |
MCH (pg) | 28.25 ± 3.55 | 29.7 (27.65–30.5) | 0.803 * |
MCHC (g/dL) | 33.05 (31.45–34) | 33.06 ± 1.57 | 0.803 * |
RDWCV (%) | 15.14 ± 2.35 | 14.01 ± 1.48 | 0.171 |
PLT (×109/L) | 364.68 ± 134.03 | 260.75 ± 118.45 | 0.016 |
PCT (%) | 0.34 ± 0.12 | 0.27 ± 0.11 | 0.108 |
PLCR (%) | 20.73 ± 5.23 | 10.28 ± 1.3 | 0.000 |
MPV (fL) | 9.43 ± 0.72 | 11.55 (9.75–12.65) | 0.000 |
PDW (fL) | 10.3 ± 1.26 | 11.55 (9.75–12.65) | 0.000 |
Parameter | Control n = 48 | Patients with Ulcerative Colitis n = 31 | Patients with Crohn’s Disease n = 20 | ||
---|---|---|---|---|---|
Before Treatment (UC0) | After Treatment (UC1) | Before Treatment (CD0) | After Treatment (CD1) | ||
LM [ng/mL] | 1012.07 ± 260.85 CI (217.15–326.74) | 1016.40 ± 259.40 CI (386.38–658.49) | 1138.05 ± 273.77 CI (285.22–486.08) | 1329.50 ± 389.36 CI (296.10–568.68) | 1400 ± 412.56 CI (313.75–602.58) |
FN [μg/mL] | 287.93 ± 79.69 CI (66.34–99.82) | 130.56 ± 52.87 CI (42.25–70.67) | 176.88 ± 82.02 CI (65.54–109.63) | 89.26 ± 43.86 CI (33.35–64.06) | 135.89 ± 49.86 CI (37.92–72.82) |
NGAL [ng/mL] | 102.65 ± 37.39 CI (28.43–54.60) | 133.34 ± 51.51 CI (41.16–68.85) | 125.80 ± 28.37 CI (22.67–37.92) | 138.94 ± 51.31 CI (39.02–74.94) | 131.10 ± 46.39 CI (35.28–67.75) |
Parameter | Groups | p Value |
---|---|---|
LM | C vs. CD0 | 0.002 |
C vs. CD1 | 0.000 | |
UC0 vs. CD0 | 0.000 * | |
UC1 vs. CD1 | 0.018 | |
FN | C vs. CD0 | 0.000 |
C vs. CD1 | 0.000 | |
C vs. UC0 | 0.000 | |
C vs. UC1 | 0.000 | |
UC0 vs. UC1 | 0.005 | |
CD0 vs. CD1 | 0.000 | |
UC0 vs. CD0 | 0.005 | |
UC1 vs. CD1 | 0.031 | |
NGAL | C vs. UC0 | 0.017 |
C vs. UC1 | 0.015 | |
C vs. CD0 | 0.015 | |
C vs. CD1 | 0.04 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Komosinska-Vassev, K.; Kałużna, A.; Jura-Półtorak, A.; Derkacz, A.; Olczyk, K. Circulating Profile of ECM-Related Proteins as Diagnostic Markers in Inflammatory Bowel Diseases. J. Clin. Med. 2022, 11, 5618. https://doi.org/10.3390/jcm11195618
Komosinska-Vassev K, Kałużna A, Jura-Półtorak A, Derkacz A, Olczyk K. Circulating Profile of ECM-Related Proteins as Diagnostic Markers in Inflammatory Bowel Diseases. Journal of Clinical Medicine. 2022; 11(19):5618. https://doi.org/10.3390/jcm11195618
Chicago/Turabian StyleKomosinska-Vassev, Katarzyna, Aleksandra Kałużna, Agnieszka Jura-Półtorak, Alicja Derkacz, and Krystyna Olczyk. 2022. "Circulating Profile of ECM-Related Proteins as Diagnostic Markers in Inflammatory Bowel Diseases" Journal of Clinical Medicine 11, no. 19: 5618. https://doi.org/10.3390/jcm11195618
APA StyleKomosinska-Vassev, K., Kałużna, A., Jura-Półtorak, A., Derkacz, A., & Olczyk, K. (2022). Circulating Profile of ECM-Related Proteins as Diagnostic Markers in Inflammatory Bowel Diseases. Journal of Clinical Medicine, 11(19), 5618. https://doi.org/10.3390/jcm11195618