Hypotension Prediction Index Software to Prevent Intraoperative Hypotension during Major Non-Cardiac Surgery: Protocol for a European Multicenter Prospective Observational Registry (EU-HYPROTECT)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participating Sites
2.2. Patients
2.3. Objectives and Outcomes
2.4. Data Collection and Management
2.5. Statistics
2.6. Data Monitoring
3. Discussion
4. Trial Status
Author Contributions
Funding
Institutional Review Board Statement
- (1)
- Research Ethics Committee with Medical Products of Cantabria (N/A)
- (2)
- Ethics Committee of the Department of Medicine of Justus Liebig University Giessen (AZ 141/21)
- (3)
- Ethics Committee of the Department of Medicine of Ruhr-University Bochum (21-7299)
- (4)
- Ethics Committee of the Department of Medicine of University of Marburg (Philipps University of Marburg) (AZ 168/21)
- (5)
- Ethics Committee of the Hamburg Medical Association (2021-200157-BO-bet)
- (6)
- Research Ethics Committee of the Hospital Universitario Infanta Leonor and Hospital Virgen de la Torre (095-21)
- (7)
- The Marche Region Ethics Committee (2021 464)
- (8)
- The Marche Region Ethics Committee (2021 465)
- (9)
- Ethics Committee of The Fondazione Policlinico Universitario Agostino Gemelli IRCCS (4423).
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Investigators’ List
Abbreviations
AUT | area under the threshold |
HPI | Hypotension Prediction Index |
MAP | mean arterial pressure |
TWA | time-weighted average |
References
- Bijker, J.B.; van Klei, W.A.; Kappen, T.H.; van Wolfswinkel, L.; Moons, K.G.; Kalkman, C.J. Incidence of intraoperative hypotension as a function of the chosen definition. Literature definitions applied to a retrospective cohort using automated data collection. Anesthesiology 2007, 107, 213–220. [Google Scholar] [CrossRef] [PubMed]
- Gregory, A.; Stapelfeldt, W.H.; Khanna, A.K.; Smischney, N.J.; Boero, I.J.; Chen, Q.; Stevens, M.; Shaw, A.D. Intraoperative Hypotension Is Associated With Adverse Clinical Outcomes After Noncardiac Surgery. Anesth. Analg. 2021, 132, 1654–1665. [Google Scholar] [CrossRef] [PubMed]
- Salmasi, V.; Maheshwari, K.; Yang, D.; Mascha, E.J.; Singh, A.; Sessler, D.I.; Kurz, A. Relationship between Intraoperative Hypotension, Defined by Either Reduction from Baseline or Absolute Thresholds, and Acute Kidney and Myocardial Injury after Noncardiac Surgery. A Retrospective Cohort Analysis. Anesthesiology 2017, 126, 47–65. [Google Scholar] [CrossRef] [PubMed]
- Sessler, D.I.; Khanna, A.K. Perioperative myocardial injury and the contribution of hypotension. Intensive Care Med. 2018, 44, 811–822. [Google Scholar] [CrossRef]
- Sun, L.Y.; Wijeysundera, D.N.; Tait, G.A.; Beattie, W.S. Association of intraoperative hypotension with acute kidney injury after elective noncardiac surgery. Anesthesiology 2015, 123, 515–523. [Google Scholar] [CrossRef] [PubMed]
- Walsh, M.; Devereaux, P.J.; Garg, A.X.; Kurz, A.; Turan, A.; Rodseth, R.N.; Cywinski, J.; Thabane, L.; Sessler, D.I. Relationship between intraoperative mean arterial pressure and clinical outcomes after noncardiac surgery. Toward an empirical definition of hypotension. Anesthesiology 2013, 119, 507–515. [Google Scholar] [CrossRef]
- Mascha, E.J.; Yang, D.; Weiss, S.; Sessler, D.I. Intraoperative Mean Arterial Pressure Variability and 30-day Mortality in Patients Having Noncardiac Surgery. Anesthesiology 2015, 123, 79–91. [Google Scholar] [CrossRef]
- Monk, T.G.; Bronsert, M.R.; Henderson, W.G.; Mangione, M.P.; Sum-Ping, S.T.; Bentt, D.R.; Nguyen, J.D.; Richman, J.S.; Meguid, R.A.; Hammermeister, K.E. Association between Intraoperative Hypotension and Hypertension and 30-day Postoperative Mortality in Noncardiac Surgery. Anesthesiology 2015, 123, 307–319. [Google Scholar] [CrossRef]
- Stapelfeldt, W.H.; Yuan, H.; Dryden, J.K.; Strehl, K.E.; Cywinski, J.B.; Ehrenfeld, J.M.; Bromley, P. The SLUScore. A Novel Method for Detecting Hazardous Hypotension in Adult Patients Undergoing Noncardiac Surgical Procedures. Anesth. Analg. 2017, 124, 1135–1152. [Google Scholar] [CrossRef]
- Saugel, B.; Sessler, D.I. Perioperative Blood Pressure Management. Anesthesiology 2021, 134, 250–261. [Google Scholar] [CrossRef]
- Sessler, D.I.; Bloomstone, J.A.; Aronson, S.; Berry, C.; Gan, T.J.; Kellum, J.A.; Plumb, J.; Mythen, M.G.; Grocott, M.P.W.; Edwards, M.R.; et al. Perioperative Quality Initiative consensus statement on intraoperative blood pressure, risk and outcomes for elective surgery. Br. J. Anaesth. 2019, 122, 563–574. [Google Scholar] [CrossRef] [PubMed]
- Ackland, G.L.; Brudney, C.S.; Cecconi, M.; Ince, C.; Irwin, M.G.; Lacey, J.; Pinsky, M.R.; Grocott, M.P.; Mythen, M.G.; Edwards, M.R.; et al. Perioperative Quality Initiative consensus statement on the physiology of arterial blood pressure control in perioperative medicine. Br. J. Anaesth. 2019, 122, 542–551. [Google Scholar] [CrossRef]
- Saugel, B.; Kouz, K.; Hoppe, P.; Maheshwari, K.; Scheeren, T.W.L. Predicting hypotension in perioperative and intensive care medicine. Best Pract. Res. Clin. Anaesthesiol. 2019, 33, 189–197. [Google Scholar] [CrossRef] [PubMed]
- Hatib, F.; Jian, Z.; Buddi, S.; Lee, C.; Settels, J.; Sibert, K.; Rinehart, J.; Cannesson, M. Machine-learning Algorithm to Predict Hypotension Based on High-fidelity Arterial Pressure Waveform Analysis. Anesthesiology 2018, 129, 663–674. [Google Scholar] [CrossRef] [PubMed]
- Chan, A.W.; Tetzlaff, J.M.; Altman, D.G.; Laupacis, A.; Gøtzsche, P.C.; Krleža-Jerić, K.; Hróbjartsson, A.; Mann, H.; Dickersin, K.; Berlin, J.A.; et al. SPIRIT 2013 statement. Defining standard protocol items for clinical trials. Ann. Intern. Med. 2013, 158, 200–207. [Google Scholar] [CrossRef] [PubMed]
- Sessler, D.I.; Saugel, B. Beyond ‘failure to rescue’. The time has come for continuous ward monitoring. Br. J. Anaesth. 2019, 122, 304–306. [Google Scholar] [CrossRef]
- Maheshwari, K.; Khanna, S.; Bajracharya, G.R.; Makarova, N.; Riter, Q.; Raza, S.; Cywinski, J.B.; Argalious, M.; Kurz, A.; Sessler, D.I. A Randomized Trial of Continuous Noninvasive Blood Pressure Monitoring During Noncardiac Surgery. Anesth. Analg. 2018, 127, 424–431. [Google Scholar] [CrossRef]
- Wijnberge, M.; Geerts, B.F.; Hol, L.; Lemmers, N.; Mulder, M.P.; Berge, P.; Schenk, J.; Terwindt, L.E.; Hollmann, M.W.; Vlaar, A.P.; et al. Effect of a Machine Learning-Derived Early Warning System for Intraoperative Hypotension vs Standard Care on Depth and Duration of Intraoperative Hypotension During Elective Noncardiac Surgery: The HYPE Randomized Clinical Trial. JAMA 2020, 323, 1052–1060. [Google Scholar] [CrossRef]
- Thygesen, K.; Alpert, J.S.; Jaffe, A.S.; Chaitman, B.R.; Bax, J.J.; Morrow, D.A.; White, H.D.; Executive Group on behalf of the Joint European Society of Cardiology (ESC)/American College of Cardiology (ACC)/American Heart Association (AHA)/World Heart Federation (WHF) Task Force for the Universal Definition of Myocardial Infarction. Fourth universal definition of myocardial infarction (2018). Eur. Heart J. 2018, 40, 237–269. [Google Scholar] [CrossRef]
- Goren, O.; Matot, I. Perioperative acute kidney injury. Br. J. Anaesth. 2015, 115 (Suppl. 2), ii3–ii14. [Google Scholar] [CrossRef] [Green Version]
- McIlroy, D.R.; Bellomo, R.; Billings FTt Karkouti, K.; Prowle, J.R.; Shaw, A.D.; Myles, P.S. Systematic review and consensus definitions for the Standardised Endpoints in Perioperative Medicine (StEP) initiative. Renal endpoints. Br. J. Anaesth. 2018, 121, 1013–1024. [Google Scholar] [CrossRef] [PubMed]
- Carlisle, J.B. Data fabrication and other reasons for non-random sampling in 5087 randomised, controlled trials in anaesthetic and general medical journals. Anaesthesia 2017, 72, 944–952. [Google Scholar] [CrossRef] [PubMed]
- Pinsky, M.R. Complexity modeling. Identify instability early. Crit. Care Med. 2010, 38 (Suppl. 10), S649–S655. [Google Scholar] [CrossRef]
- Pinsky, M.R.; Dubrawski, A. Gleaning knowledge from data in the intensive care unit. Am. J. Respir. Crit. Care Med. 2014, 190, 606–610. [Google Scholar] [CrossRef] [PubMed]
- Mathis, M.R.; Kheterpal, S.; Najarian, K. Artificial Intelligence for Anesthesia. What the Practicing Clinician Needs to Know. More than Black Magic for the Art of the Dark. Anesthesiology 2018, 129, 619–622. [Google Scholar] [CrossRef]
- Davies, S.J.; Vistisen, S.T.; Jian, Z.; Hatib, F.; Scheeren, T.W.L. Ability of an Arterial Waveform Analysis-Derived Hypotension Prediction Index to Predict Future Hypotensive Events in Surgical Patients. Anesth. Analg. 2019; epub ahead of print. [Google Scholar]
- Schneck, E.; Schulte, D.; Habig, L.; Ruhrmann, S.; Edinger, F.; Markmann, M.; Habicher, M.; Rickert, M.; Koch, C.; Sander, M. Hypotension Prediction Index based protocolized haemodynamic management reduces the incidence and duration of intraoperative hypotension in primary total hip arthroplasty. A single centre feasibility randomised blinded prospective interventional trial. J. Clin. Monit. Comput. 2020, 34, 1149–1158. [Google Scholar] [CrossRef]
- Maheshwari, K.; Shimada, T.; Yang, D.; Khanna, S.; Cywinski, J.B.; Irefin, S.A.; Ayad, S.; Turan, A.; Ruetzler, K.; Qiu, Y.; et al. Hypotension Prediction Index for Prevention of Hypotension during Moderate- to High-risk Noncardiac Surgery. Anesthesiology 2020, 133, 1214–1222. [Google Scholar] [CrossRef]
- Maheshwari, K.; Buddi, S.; Jian, Z.; Settels, J.; Shimada, T.; Cohen, B.; Sessler, D.I.; Hatib, F. Performance of the Hypotension Prediction Index with non-invasive arterial pressure waveforms in non-cardiac surgical patients. J. Clin. Monit. Comput. 2021, 35, 71–78. [Google Scholar] [CrossRef]
- Wijnberge, M.; van der Ster, B.J.P.; Geerts, B.F.; de Beer, F.; Beurskens, C.; Emal, D.; Hollmann, M.W.; Vlaar, A.P.J.; Veelo, D.P. Clinical performance of a machine-learning algorithm to predict intra-operative hypotension with noninvasive arterial pressure waveforms. A cohort study. Eur. J. Anaesthesiol. 2021, 38, 609–615. [Google Scholar] [CrossRef]
- Saugel, B.; Kouz, K.; Meidert, A.S.; Schulte-Uentrop, L.; Romagnoli, S. How to measure blood pressure using an arterial catheter. A systematic 5-step approach. Crit. Care 2020, 24, 172. [Google Scholar] [CrossRef] [Green Version]
- Molnar, Z.; Benes, J.; Saugel, B. Intraoperative hypotension is just the tip of the iceberg. A call for multimodal, individualised, contextualised management of intraoperative cardiovascular dynamics. Br. J. Anaesth. 2020, 125, 419–423. [Google Scholar] [CrossRef] [PubMed]
- Bijker, J.B.; Gelb, A.W. Review article. The role of hypotension in perioperative stroke. Can. J. Anaesth. 2013, 60, 159–167. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, J.K.; Dalton, J.E.; Yang, D.; Farag, E.S.; Sessler, D.I.; Kurz, A.M. The Association Between Mild Intraoperative Hypotension and Stroke in General Surgery Patients. Anesth. Analg. 2016, 123, 933–939. [Google Scholar] [CrossRef] [PubMed]
- Aldecoa, C.; Aldecoa, C.; Bettelli, G.; Bilotta, F.; Sanders, R.D.; Audisio, R.; Borozdina, A.; Cherubini, A.; Jones, C.; Kehlet, H.; et al. European Society of Anaesthesiology evidence-based and consensus-based guideline on postoperative delirium. Eur J Anaesthesiol. 2017, 34, 192–214. [Google Scholar] [CrossRef] [PubMed]
Data Category | Information |
---|---|
Primary registry and trial identifying number | ClinicalTrials.gov, identifier: NCT04972266 |
Date of registration in primary registry | 22 July 2021 |
Secondary identifying numbers | n.a. |
Source(s) of monetary or material support | Edwards Lifesciences SA, Route de l’Etraz 70, 1260 Nyon, Switzerland |
Primary sponsor | Edwards Lifesciences SA, Route de l’Etraz 70, 1260 Nyon, Switzerland |
Secondary sponsor(s) | n.a. |
Contact for public queries | IPPMed—Institute for Pharmacology and Preventive Medicine GmbH, Cloppenburg, Germany email: [email protected], [email protected] |
Contact for scientific queries | Prof. Dr. Bernd Saugel Department of Anesthesiology Center of Anesthesiology and Intensive Care Medicine University Medical Center Hamburg-Eppendorf, Hamburg, Germany email: [email protected] |
Public title | The EU-HYPROTECT Registry |
Scientific title | AcumenTM Hypotension Prediction Index software to prevent intraoperative hypotension during major non-cardiac surgery (EU-HYPROTECT): study protocol for a European multicenter prospective observational registry |
Countries of recruitment | France, Germany, Italy, Spain, United Kingdom |
Health condition(s) or problem(s) studied | Intraoperative hypotension, postoperative complications |
Intervention(s) | na |
Key inclusion and exclusion criteria | Inclusion criteria: consenting adults (≥18 years) who were scheduled for elective non-cardiac surgery under general anesthesia that was expected to last at least 120 min and in whom arterial catheter placement was planned for clinical indications independent of the study and in whom hypotension prediction index monitoring was planned. Exclusion criteria: patients having emergency surgery, nephrectomy, and liver or kidney transplantation; patients with atrial fibrillation and/or sepsis (according to current Sepsis-3 definition); patients with American Society of Anesthesiology physical status classification V or VI; patients who were not able to understand the nature, significance, and scope of the investigation; pregnant women; patients without signed informed consent/data protection statement; and patients participating in interventional trials. |
Study type | Multicenter prospective observational registry |
Date of first enrolment | 27 September 2021 |
Target sample size | 700 patients evaluable |
Recruitment status | Recruitment complete |
Key outcome(s) |
|
Screening Visit | Baseline Visit | Surgery Visit | Postoperative Data | Registry Exit | |
---|---|---|---|---|---|
Inclusion/exclusion criteria | X | ||||
ASA classification | X | ||||
Signed informed consent 1 | X | ||||
Demographics | X | ||||
Comorbidities | X | ||||
Medications | X | ||||
Lab values | X | X | |||
Type of surgery | X | ||||
Vital signs | X | ||||
Procedural details, anesthesia & surgery | X | ||||
Safety parameter/complications | X | X | |||
Length of hospital stay | X | ||||
Registry exit | X |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Monge García, M.I.; García-López, D.; Gayat, É.; Sander, M.; Bramlage, P.; Cerutti, E.; Davies, S.J.; Donati, A.; Draisci, G.; Frey, U.H.; et al. Hypotension Prediction Index Software to Prevent Intraoperative Hypotension during Major Non-Cardiac Surgery: Protocol for a European Multicenter Prospective Observational Registry (EU-HYPROTECT). J. Clin. Med. 2022, 11, 5585. https://doi.org/10.3390/jcm11195585
Monge García MI, García-López D, Gayat É, Sander M, Bramlage P, Cerutti E, Davies SJ, Donati A, Draisci G, Frey UH, et al. Hypotension Prediction Index Software to Prevent Intraoperative Hypotension during Major Non-Cardiac Surgery: Protocol for a European Multicenter Prospective Observational Registry (EU-HYPROTECT). Journal of Clinical Medicine. 2022; 11(19):5585. https://doi.org/10.3390/jcm11195585
Chicago/Turabian StyleMonge García, Manuel Ignacio, Daniel García-López, Étienne Gayat, Michael Sander, Peter Bramlage, Elisabetta Cerutti, Simon James Davies, Abele Donati, Gaetano Draisci, Ulrich H. Frey, and et al. 2022. "Hypotension Prediction Index Software to Prevent Intraoperative Hypotension during Major Non-Cardiac Surgery: Protocol for a European Multicenter Prospective Observational Registry (EU-HYPROTECT)" Journal of Clinical Medicine 11, no. 19: 5585. https://doi.org/10.3390/jcm11195585
APA StyleMonge García, M. I., García-López, D., Gayat, É., Sander, M., Bramlage, P., Cerutti, E., Davies, S. J., Donati, A., Draisci, G., Frey, U. H., Noll, E., Ripollés-Melchor, J., Wulf, H., & Saugel, B. (2022). Hypotension Prediction Index Software to Prevent Intraoperative Hypotension during Major Non-Cardiac Surgery: Protocol for a European Multicenter Prospective Observational Registry (EU-HYPROTECT). Journal of Clinical Medicine, 11(19), 5585. https://doi.org/10.3390/jcm11195585