Risk Factors for Cervical Lymph Node Metastasis in Middle Eastern Papillary Thyroid Microcarcinoma
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patient Selection
2.2. Clinico-Pathological and Follow-Up Data
2.3. BRAF and TERT Mutation Analysis
2.4. Statistical Analsysis
3. Results
3.1. Patient Characteristics
3.2. Incidence of Lymph Node Metastasis (LNM) in PTMC and Its Clinico-Pathological Associations
3.3. Risk Factors Predicting LNM in PTMC
3.4. LNM and Clinical Outcome in PTMC
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pellegriti, G.; Frasca, F.; Regalbuto, C.; Squatrito, S.; Vigneri, R. Worldwide Increasing Incidence of Thyroid Cancer: Update on Epidemiology and Risk Factors. J. Cancer Epidemiol. 2013, 2013, 965212. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pereira, M.; Williams, V.L.; Johnson, J.H.; Valderrabano, P. Thyroid Cancer Incidence Trends in the United States: Association with Changes in Professional Guideline Recommendations. Thyroid 2020, 30, 1132–1140. [Google Scholar] [CrossRef]
- Baldini, E.; Tuccilli, C.; Pironi, D.; Catania, A.; Tartaglia, F.; Di Matteo, F.M.; Palumbo, P.; Arcieri, S.; Mascagni, D.; Palazzini, G.; et al. Expression and Clinical Utility of Transcription Factors Involved in Epithelial–Mesenchymal Transition during Thyroid Cancer Progression. J. Clin. Med. 2021, 10, 4076. [Google Scholar] [CrossRef] [PubMed]
- Alrawaji, A.; Alshahrani, Z.; Alzahrani, W.; Alomran, F.; Almadouj, A. Cancer Incidence Report Saudi Arabia 2015; Saudi Health Council, Saudi Cancer Registry: Riyadh, Saudi Arabia, 2018. [Google Scholar]
- Asa, S. The Current Histologic Classification of Thyroid Cancer. Endocrinol. Metab. Clin. N. Am. 2019, 48, 1–22. [Google Scholar] [CrossRef] [PubMed]
- Cramer, J.D.; Fu, P.; Harth, K.C.; Margevicius, S.; Wilhelm, S.M. Analysis of the rising incidence of thyroid cancer using the Surveillance, Epidemiology and End Results national cancer data registry. Surgery 2010, 148, 1147–1153. [Google Scholar] [CrossRef] [PubMed]
- Simard, E.P.; Ward, E.M.; Siegel, R.; Jemal, A. Cancers with increasing incidence trends in the United States: 1999 through 2008. CA Cancer J. Clin. 2012, 62, 118–128. [Google Scholar] [CrossRef]
- Udelsman, R.; Zhang, Y. The Epidemic of Thyroid Cancer in the United States: The Role of Endocrinologists and Ultrasounds. Thyroid 2014, 24, 472–479. [Google Scholar] [CrossRef] [Green Version]
- Brito, J.P.; Morris, J.C.; Montori, V.M. Thyroid cancer: Zealous imaging has increased detection and treatment of low risk tumours. BMJ 2013, 347, f4706. [Google Scholar] [CrossRef] [Green Version]
- Mehanna, H.; Al-Maqbili, T.; Carter, B.; Martin, E.; Campain, N.; Watkinson, J.; McCabe, C.; Boelaert, K.; Franklyn, J.A. Differences in the Recurrence and Mortality Outcomes Rates of Incidental and Nonincidental Papillary Thyroid Microcarcinoma: A Systematic Review and Meta-Analysis of 21 329 Person-Years of Follow-up. J. Clin. Endocrinol. Metab. 2014, 99, 2834–2843. [Google Scholar] [CrossRef] [Green Version]
- Zheng, W.; Wang, X.; Rui, Z.; Wang, Y.; Meng, Z.; Wang, R. Clinical features and therapeutic outcomes of patients with papillary thyroid microcarcinomas and larger tumors. Nucl. Med. Commun. 2019, 40, 477–483. [Google Scholar] [CrossRef]
- Baldini, E.; Tuccilli, C.; Prinzi, N.; Sorrenti, S.; Falvo, L.; DE Vito, C.; Catania, A.; Tartaglia, F.; Mocini, R.; Coccaro, C.; et al. Deregulated Expression of Aurora Kinases Is Not a Prognostic Biomarker in Papillary Thyroid Cancer Patients. PLoS ONE 2015, 10, e0121514. [Google Scholar] [CrossRef] [PubMed]
- Caliskan, M.; Park, J.H.; Jeong, J.S.; Lee, C.-R.; Park, S.K.; Kang, S.-W.; Jeong, J.J.; Chung, W.Y.; Park, C.S. Role of prophylactic ipsilateral central compartment lymph node dissection in papillary thyroid microcarcinoma. Endocr. J. 2012, 59, 305–311. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gui, C.Y.; Qiu, S.L.; Peng, Z.H.; Wang, M. Clinical and pathologic predictors of central lymph node metastasis in papillary thyroid microcarcinoma: A retrospective cohort study. J. Endocrinol. Investig. 2017, 41, 403–409. [Google Scholar] [CrossRef] [PubMed]
- Yin, Y.; Xu, X.; Shen, L.; Zhao, W.; Diao, H.; Li, C. Influencing Factors and Cumulative Risk Analysis of Cervical Lymph Node Metastasis of Papillary Thyroid Microcarcinoma. Front. Oncol. 2021, 11, 644645. [Google Scholar] [CrossRef]
- Zhao, J.; Zhao, Y.; Ling, Y.; Kang, H. Risk Factors of Central Lymph Node Metastasis in Papillary Thyroid Microcarcinoma and the Value of Sentinel Lymph Node Biopsy. Front. Surg. 2021, 8, 680493. [Google Scholar] [CrossRef]
- Xiangqian, Z.; Chen, P.; Ming, G.; Jingtai, Z.; Xiukun, H.; Jingzhu, Z.; Xi, W.; Jiadong, C.; Dapeng, L.; Biyun, Q. Risk factors for cervical lymph node metastasis in papillary thyroid microcarcinoma: A study of 1587 patients. Cancer Biol. Med. 2019, 16, 121–130. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Guan, Q.; Xiang, J. Nomogram for predicting central lymph node metastasis in papillary thyroid microcarcinoma: A retrospective cohort study of 8668 patients. Int. J. Surg. 2018, 55, 98–102. [Google Scholar] [CrossRef]
- Huang, K.; Gao, N.; Bian, D.; Zhai, Q.; Yang, P.; Zhang, Y. Associations of BRAF V600E, clinical pathology and imaging factors with the recurrence rate of papillary thyroid microcarcinoma. Exp. Ther. Med. 2020, 20, 243. [Google Scholar] [CrossRef]
- Ulisse, S.; Baldini, E.; Lauro, A.; Pironi, D.; Tripodi, D.; Lori, E.; Ferent, I.C.; Amabile, M.I.; Catania, A.; Di Matteo, F.M.; et al. Papillary Thyroid Cancer Prognosis: An Evolving Field. Cancers 2021, 13, 5567. [Google Scholar] [CrossRef]
- Medas, F.; Canu, G.L.; Cappellacci, F.; Boi, F.; Lai, M.L.; Erdas, E.; Calò, P.G. Predictive Factors of Lymph Node Metastasis in Patients with Papillary Microcarcinoma of the Thyroid: Retrospective Analysis on 293 Cases. Front. Endocrinol. 2020, 11, 551. [Google Scholar] [CrossRef] [PubMed]
- Gu, J.-H.; Zhao, Y.-N.; Xie, R.-L.; Xu, W.-J.; You, D.-L.; Zhao, Z.-F.; Wang, F.; Fei, J. Analysis of risk factors for cervical lymph node metastasis of papillary thyroid microcarcinoma: A study of 268 patients. BMC Endocr. Disord. 2019, 19, 124. [Google Scholar] [CrossRef] [PubMed]
- Cheng, F.; Chen, Y.; Zhu, L.; Zhou, B.; Xu, Y.; Chen, Y.; Wen, L.; Chen, S. Risk Factors for Cervical Lymph Node Metastasis of Papillary Thyroid Microcarcinoma: A Single-Center Retrospective Study. Int. J. Endocrinol. 2019, 2019, 8579828. [Google Scholar] [CrossRef] [PubMed]
- Chow, S.-M.; Law, S.C.K.; Chan, J.K.C.; Au, S.-K.; Yau, S.; Lau, W.-H. Papillary microcarcinoma of the thyroid? Prognostic significance of lymph node metastasis and multifocality. Cancer 2003, 98, 31–40. [Google Scholar] [CrossRef] [PubMed]
- Kaliszewski, K.; Diakowska, D.; Rzeszutko, M.; Nowak, Ł.; Aporowicz, M.; Wojtczak, B.; Sutkowski, K.; Rudnicki, J. Risk factors of papillary thyroid microcarcinoma that predispose patients to local recurrence. PLoS ONE 2020, 15, e0244930. [Google Scholar] [CrossRef] [PubMed]
- Kim, T.Y.; Hong, S.J.; Kim, J.M.; Kim, W.G.; Gong, G.; Ryu, J.S.; Kim, W.B.; Yun, S.-C.; Shong, Y.K. Prognostic parameters for recurrence of papillary thyroid microcarcinoma. BMC Cancer 2008, 8, 296. [Google Scholar] [CrossRef] [Green Version]
- Siraj, A.K.; Parvathareddy, S.K.; Qadri, Z.; Siddiqui, K.; Al-Sobhi, S.S.; Al-Dayel, F.; Al-Kuraya, K.S. Annual Hazard Rate of Recurrence in Middle Eastern Papillary Thyroid Cancer over a Long-Term Follow-Up. Cancers 2020, 12, 3624. [Google Scholar] [CrossRef]
- Parvathareddy, S.K.; Siraj, A.K.; Qadri, Z.; Ahmed, S.O.; DeVera, F.; Al-Sobhi, S.; Al-Dayel, F.; Al-Kuraya, K.S. Lymph node ratio is superior to AJCC N stage for predicting recurrence in papillary thyroid carcinoma. Endocr. Connect. 2022, 11, e210518. [Google Scholar] [CrossRef]
- Parvathareddy, S.K.; Siraj, A.K.; Iqbal, K.; Qadri, Z.; Ahmed, S.O.; Al-Rasheed, M.; AlQatie, A.A.; Al-Sobhi, S.S.; Al-Dayel, F.; Al-Kuraya, K.S. TERT Promoter Mutations Are an Independent Predictor of Distant Metastasis in Middle Eastern Papillary Thyroid Microcarcinoma. Front. Endocrinol. 2022, 13, 808298. [Google Scholar] [CrossRef]
- Al-Zaher, N.; Al-Salam, S.; El Teraifi, H. Thyroid carcinoma in the United Arab Emirates: Perspectives and experience of a tertiary care hospital. Hematol. Oncol. Stem Cell Ther. 2008, 1, 14–21. [Google Scholar] [CrossRef] [Green Version]
- Keinan-Boker, L.; Silverman, B.G. Trends of thyroid cancer in Israel: 1980–2012. Rambam Maimonides Med. J. 2016, 7, e0001. [Google Scholar] [CrossRef] [Green Version]
- Doubi, A.; Al-Qannass, A.; Al-Angari, S.; Al-Qahtani, K.H.; Alessa, M.; Al-Dhahri, S. Trends in thyroid carcinoma among thyroidectomy patients: A 12-year multicenter study. Ann. Saudi Med. 2019, 39, 345–349. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Samargandy, S.; Qari, R.; Aljadani, A.; Assaqaf, D.; Etaiwi, A.; Alghamdi, D.; Marzouki, H.; Alhozali, A.; Merdad, M.; Al-Hajeili, M.; et al. Clinicopathological Characteristics of Thyroid Cancer in a Saudi Academic Hospital. Cureus 2020, 12, e8044. [Google Scholar] [CrossRef]
- Lim, H.; Devesa, S.S.; Sosa, J.A.; Check, D.; Kitahara, C.M. Trends in Thyroid Cancer Incidence and Mortality in the United States, 1974–2013. JAMA 2017, 317, 1338–1348. [Google Scholar] [CrossRef] [PubMed]
- Haugen, B.R.; Alexander, E.K.; Bible, K.C.; Doherty, G.M.; Mandel, S.J.; Nikiforov, Y.E.; Pacini, F.; Randolph, G.W.; Sawka, A.M.; Schlumberger, M.; et al. 2015 American Thyroid Association Management Guidelines for Adult Patients with Thyroid Nodules and Differentiated Thyroid Cancer: The American Thyroid Association Guidelines Task Force on Thyroid Nodules and Differentiated Thyroid Cancer. Thyroid 2016, 26, 1–133. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Siraj, A.K.; Parvathareddy, S.K.; Pratheeshkumar, P.; Divya, S.P.; Al-Sobhi, S.S.; Al-Dayel, F.; Al-Kuraya, K.S. PD-L1 Is an Independent Prognostic Marker in Middle Eastern PTC and Its Expression is Upregulated by BRAFV600E Mutation. Cancers 2021, 13, 555. [Google Scholar] [CrossRef] [PubMed]
- Bu, R.; Siraj, A.K.; Divya, S.P.; Kong, Y.; Parvathareddy, S.K.; Al-Rasheed, M.; Al Obaisi, K.A.S.; Victoria, I.G.; Al-Sobhi, S.S.; Al-Dawish, M.; et al. Telomerase reverse transcriptase mutations are independent predictor of disease-free survival in Middle Eastern papillary thyroid cancer. Int. J. Cancer 2018, 142, 2028–2039. [Google Scholar] [CrossRef] [Green Version]
- Kim, K.-E.; Kim, E.-K.; Yoon, J.H.; Han, K.; Moon, H.J.; Kwak, J.Y. Preoperative Prediction of Central Lymph Node Metastasis in Thyroid Papillary Microcarcinoma Using Clinicopathologic and Sonographic Features. World J. Surg. 2012, 37, 385–391. [Google Scholar] [CrossRef]
- Huang, Y.; Yin, Y.; Zhou, W. Risk Factors for Central and Lateral Lymph Node Metastases in Patients with Papillary Thyroid Micro-Carcinoma: Retrospective Analysis on 484 Cases. Front. Endocrinol. 2021, 12, 640565. [Google Scholar] [CrossRef]
- Kim, S.K.; Park, I.; Woo, J.-W.; Lee, J.H.; Choe, J.-H.; Kim, J.-H.; Kim, J.S. Predictive Factors for Lymph Node Metastasis in Papillary Thyroid Microcarcinoma. Ann. Surg. Oncol. 2016, 23, 2866–2873. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, L.; Xue, S.; Wang, P.; Chen, G. Predictive factors of lateral lymph node metastasis in solitary papillary thyroid microcarcinoma without gross extrathyroidal extension. Asian J. Surg. 2018, 42, 563–570. [Google Scholar] [CrossRef]
- Mercante, G.; Frasoldati, A.; Pedroni, C.; Formisano, D.; Renna, L.; Piana, S.; Gardini, G.; Valcavi, R.; Barbieri, V. Prognostic Factors Affecting Neck Lymph Node Recurrence and Distant Metastasis in Papillary Microcarcinoma of the Thyroid: Results of a Study in 445 Patients. Thyroid 2009, 19, 707–716. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Lei, J.; Liu, Y.; Fan, Y.; Wang, X.; Lu, X. Preoperative predictors of lateral neck lymph node metastasis in papillary thyroid microcarcinoma. Medicine 2017, 96, e6240. [Google Scholar] [CrossRef] [PubMed]
- Zhou, C.; Li, J.; Wang, Y.; Xue, S.; Zhang, Y. Association of BRAF gene and TSHR with cervical lymph node metastasis of papillary thyroid microcarcinoma. Oncol. Lett. 2018, 17, 183–194. [Google Scholar] [CrossRef] [PubMed]
- Vorasubin, N.; Nguyen, C.; Wang, M. Risk factors for cervical lymph node metastasis in papillary thyroid microcarcinoma: A meta-analysis. Ear Nose Throat J. 2016, 95, 73–77. [Google Scholar] [PubMed]
- Jeon, M.J.; Chung, M.S.; Kwon, H.; Kim, M.; Park, S.; Baek, J.H.; Song, D.E.; Sung, T.-Y.; Shong, Y.K.; Kim, T.Y.; et al. Features of papillary thyroid microcarcinoma associated with lateral cervical lymph node metastasis. Clin. Endocrinol. 2017, 86, 845–851. [Google Scholar] [CrossRef] [PubMed]
- Back, K.; Kim, J.S.; Kim, J.-H.; Choe, J.-H. Superior located papillary thyroid microcarcinoma is a risk factor for lateral lymph node metastasis. Ann. Surg. Oncol. 2019, 26, 3992–4001. [Google Scholar] [CrossRef] [PubMed]
- Qu, N.; Zhang, L.; Ji, Q.-H.; Chen, J.-Y.; Zhu, Y.-X.; Cao, Y.-M.; Shen, Q. Risk Factors for Central Compartment Lymph Node Metastasis in Papillary Thyroid Microcarcinoma: A Meta-Analysis. World J. Surg. 2015, 39, 2459–2470. [Google Scholar] [CrossRef]
- Al-Qurayshi, Z.; Nilubol, N.; Tufano, R.P.; Kandil, E. Wolf in Sheep’s Clothing: Papillary Thyroid Microcarcinoma in the US. J. Am. Coll. Surg. 2020, 230, 484–491. [Google Scholar] [CrossRef]
- Giordano, D.; Gradoni, P.; Oretti, G.; Molina, E.; Ferri, T. Treatment and prognostic factors of papillary thyroid microcarcinoma. Clin. Otolaryngol. 2010, 35, 118–124. [Google Scholar] [CrossRef]
- Wu, M.-H.; Shen, W.T.; Gosnell, J.; Duh, Q.-Y. Prognostic significance of extranodal extension of regional lymph node metastasis in papillary thyroid cancer. Head Neck 2014, 37, 1336–1343. [Google Scholar] [CrossRef]
- Park, Y.M.; Wang, S.-G.; Lee, J.-C.; Shin, N.H.; Kim, I.-J.; Son, S.-M.; Mun, M.; Lee, B.-J. Metastatic lymph node status in the central compartment of papillary thyroid carcinoma: A prognostic factor of locoregional recurrence. Head Neck 2015, 38, E1172–E1176. [Google Scholar] [CrossRef] [PubMed]
- Randolph, G.; Duh, Q.-Y.; Heller, K.S.; LiVolsi, V.A.; Mandel, S.J.; Steward, D.; Tufano, R.P.; Tuttle, R.M. The Prognostic Significance of Nodal Metastases from Papillary Thyroid Carcinoma can be Stratified Based on the Size and Number of Metastatic Lymph Nodes, as Well as the Presence of Extranodal Extension ATA Surgical Affairs Committee’s Taskforce on Thyroid Cancer Nodal Surgery. Thyroid 2012, 22, 1144–1152. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Song, Y.; Soh, E.Y. Prognostic Significance of the Number of Metastatic Lymph Nodes to Stratify the Risk of Recurrence. World J. Surg. 2013, 38, 858–862. [Google Scholar] [CrossRef] [PubMed]
No. | % | |
---|---|---|
Total | 226 | |
Age, median (range) | 40.4 (11.5–84.0) | |
<55 | 191 | 84.5 |
≥55 | 35 | 15.5 |
Gender | ||
Female | 181 | 80.1 |
Male | 45 | 19.9 |
Histologic subtype | ||
Aggressive variants | 29 | 12.8 |
Non-aggressive variants | 197 | 87.2 |
Tumor laterality | ||
Unilateral | 154 | 68.1 |
Bilateral | 72 | 31.9 |
Multifocality | ||
Yes | 91 | 40.3 |
No | 135 | 59.7 |
Extrathyroidal extension | ||
Gross | 15 | 6.7 |
Microscopic | 48 | 21.2 |
Absent | 163 | 72.1 |
Lymphovascular invasion | ||
Present | 42 | 18.6 |
Absent | 184 | 81.4 |
Tumor size | ||
<0.5 cm | 54 | 23.9 |
0.5–1.0 cm | 172 | 76.1 |
pN | ||
N0 | 103 | 45.6 |
N1 | 99 | 43.8 |
Central only | 40 | 17.7 |
Central + lateral | 8 | 3.5 |
Lateral only | 51 | 22.6 |
Nx | 24 | 10.6 |
pM | ||
M0 | 220 | 97.3 |
M1 | 6 | 2.7 |
TNM Stage | ||
I | 206 | 91.2 |
II | 11 | 4.8 |
III | 3 | 1.3 |
IV | 4 | 1.8 |
Unknown | 2 | 0.9 |
Hashimoto’s thyroiditis | ||
Present | 46 | 20.4 |
Absent | 180 | 79.6 |
BRAF mutation | ||
Present | 103 | 45.6 |
Absent | 117 | 51.8 |
Unknown | 6 | 2.6 |
NRAS mutation | ||
Present | 16 | 7.1 |
Absent | 203 | 89.8 |
Unknown | 7 | 3.1 |
HRAS mutation | ||
Present | 3 | 1.3 |
Absent | 217 | 96.0 |
Unknown | 6 | 2.7 |
KRAS mutation | ||
Present | 2 | 0.9 |
Absent | 218 | 96.4 |
Unknown | 6 | 2.7 |
TERT mutation | ||
Present | 16 | 7.1 |
Absent | 184 | 81.4 |
Unknown | 26 | 11.5 |
Recurrence | ||
Yes | 33 | 14.6 |
No | 193 | 85.4 |
ATA risk category | ||
Low | 67 | 29.6 |
Intermediate | 92 | 40.8 |
High | 67 | 29.6 |
Total follow-up duration (mean ± S.D.) (in years) | 9.8 ± 6.9 |
Total | LNM Present | LNM Absent | p Value | ||||
---|---|---|---|---|---|---|---|
No. | % | No. | % | No. | % | ||
Total | 202 | 99 | 49.0 | 103 | 51.0 | ||
Age (years) | |||||||
<55 | 171 | 84.6 | 88 | 88.9 | 83 | 80.6 | 0.0992 |
≥55 | 31 | 15.4 | 11 | 11.1 | 20 | 19.4 | |
Gender | |||||||
Female | 165 | 81.7 | 77 | 77.8 | 88 | 85.4 | 0.1587 |
Male | 37 | 18.3 | 22 | 22.2 | 15 | 14.6 | |
Histologic subtype | |||||||
Aggressive variants | 26 | 12.9 | 12 | 12.1 | 14 | 13.6 | 0.7548 |
Non-aggressive variants | 176 | 87.1 | 87 | 87.9 | 89 | 86.4 | |
Tumor laterality | |||||||
Unilateral | 132 | 65.3 | 51 | 51.5 | 81 | 78.6 | <0.0001 |
Bilateral | 70 | 34.7 | 48 | 48.5 | 22 | 21.4 | |
Multifocality | |||||||
Yes | 84 | 41.6 | 52 | 52.5 | 32 | 31.1 | 0.0019 |
No | 118 | 58.4 | 47 | 47.5 | 71 | 68.9 | |
Extrathyroidal extension | |||||||
None | 145 | 71.8 | 61 | 61.6 | 84 | 81.5 | 0.0034 |
Microscopic | 42 | 20.8 | 26 | 26.2 | 16 | 15.6 | |
Gross | 15 | 7.4 | 12 | 12.2 | 3 | 2.9 | |
Lymphovascular invasion | |||||||
Present | 35 | 17.3 | 17 | 17.2 | 18 | 17.5 | 0.9545 |
Absent | 167 | 82.7 | 82 | 82.8 | 85 | 82.5 | |
Tumor size | |||||||
≤0.5 cm | 47 | 23.3 | 24 | 24.2 | 23 | 22.3 | 0.7478 |
0.6–1.0 | 155 | 76.7 | 75 | 75.8 | 80 | 77.7 | |
Distant metastasis | |||||||
Yes | 12 | 5.9 | 9 | 9.1 | 3 | 2.9 | 0.0582 |
No | 190 | 94.1 | 90 | 90.9 | 100 | 97.1 | |
TNM stage | |||||||
I–II | 195 | 96.5 | 94 | 94.9 | 101 | 98.1 | 0.2155 |
III–IV | 7 | 3.5 | 5 | 5.1 | 2 | 1.9 | |
Hashimoto’s thyroiditis | |||||||
Yes | 40 | 19.8 | 19 | 19.2 | 21 | 20.4 | 0.8310 |
No | 162 | 80.2 | 80 | 80.8 | 82 | 79.6 | |
BRAF mutation | |||||||
Present | 95 | 47.0 | 53 | 53.5 | 42 | 40.8 | 0.0693 |
Absent | 107 | 53.0 | 46 | 46.5 | 61 | 59.2 | |
NRAS mutation | |||||||
Present | 15 | 7.7 | 4 | 4.2 | 11 | 11.0 | 0.1061 |
Absent | 180 | 92.3 | 91 | 95.8 | 89 | 89.0 | |
HRAS mutation | |||||||
Present | 3 | 1.5 | 1 | 1.0 | 2 | 2.0 | 0.5809 |
Absent | 193 | 98.5 | 95 | 99.0 | 98 | 98.0 | |
KRAS mutation | |||||||
Present | 1 | 0.5 | 0 | 0.0 | 1 | 1.0 | 0.2451 |
Absent | 195 | 99.5 | 96 | 100.0 | 99 | 99.0 | |
TERT mutation | |||||||
Present | 15 | 8.5 | 8 | 9.0 | 7 | 8.1 | 0.8227 |
Absent | 161 | 91.5 | 81 | 91.0 | 80 | 91.9 | |
Tumor recurrence | |||||||
Yes | 33 | 16.3 | 24 | 24.2 | 9 | 8.7 | 0.0025 |
No | 169 | 83.7 | 75 | 75.8 | 94 | 91.3 | |
ATA risk category | |||||||
Low | 63 | 31.2 | 2 | 2.0 | 61 | 59.2 | <0.0001 |
Intermediate/high | 139 | 68.8 | 97 | 98.0 | 42 | 40.8 |
Multivariate (LNM) | ||
---|---|---|
Clinico-Pathological Variables | HR (95% CI) | p Value |
Age | ||
≥55 years (vs. <55years) | 0.44 (0.18–1.09) | 0.0747 |
Gender | ||
Male (vs. female) | 1.45 (0.63–3.31) | 0.3794 |
Histology | ||
Aggressive variants (vs. non-aggressive variants) | 0.96 (0.38–2.45) | 0.9322 |
Tumor laterality | ||
Bilateral (vs. unilateral) | 3.31 (1.43–7.62) | 0.0050 |
Tumor focality | ||
Multifocal (vs. unifocal) | 0.91 (0.40–2.06) | 0.8261 |
Extrathyroidal extension | ||
Absent | Reference | |
Microscopic | 1.25 (0.36–4.31) | 0.7240 |
Gross | 3.20 (1.36–7.53) | 0.0077 |
Lymphovascular invasion | ||
Present (vs. absent) | 0.73 (0.30–1.76) | 0.4804 |
Tumor size | ||
0.5–1.0 cm (vs. <0.5 cm) | 0.95 (0.46–1.95) | 0.8848 |
Distant metastasis | ||
Present (vs. absent) | 2.44 (0.50–11.99) | 0.2728 |
Multivariate (RFS) | ||
---|---|---|
Clinico-Pathological Variables | HR (95% CI) | p Value |
Age | ||
≥55 years (vs. <55 years) | 1.89 (0.57–5.19) | 0.2760 |
Gender | ||
Male (vs. female) | 2.92 (1.28–6.48) | 0.0116 |
Histology | ||
Aggressive variants (vs. non-aggressive variants) | 0.52 (0.07–2.27) | 0.4238 |
Tumor laterality | ||
Bilateral (vs. unilateral) | 1.21 (0.35–5.63) | 0.7766 |
Tumor focality | ||
Multifocal (vs. unifocal) | 0.52 (0.11–1.78) | 0.3139 |
Extrathyroidal extension | ||
Absent | Reference | |
Microscopic | 2.40 (0.86–6.47) | 0.0937 |
Gross | 3.29 (0.70–16.72) | 0.1325 |
Lymphovascular invasion | ||
Present (vs. absent) | 0.58 (0.09–2.10) | 0.4436 |
Tumor size | ||
0.5–1.0 cm (vs. <0.5 cm) | 0.81 (0.17–3.02) | 0.7658 |
Distant metastasis | ||
Present (vs. absent) | 4.37 (1.08–18.16) | 0.0389 |
Lymph node metastasis | ||
Present (vs. absent) | 2.97 (1.23–7.99) | 0.0149 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Parvathareddy, S.K.; Siraj, A.K.; Annaiyappanaidu, P.; Siraj, N.; Al-Sobhi, S.S.; Al-Dayel, F.; Al-Kuraya, K.S. Risk Factors for Cervical Lymph Node Metastasis in Middle Eastern Papillary Thyroid Microcarcinoma. J. Clin. Med. 2022, 11, 4613. https://doi.org/10.3390/jcm11154613
Parvathareddy SK, Siraj AK, Annaiyappanaidu P, Siraj N, Al-Sobhi SS, Al-Dayel F, Al-Kuraya KS. Risk Factors for Cervical Lymph Node Metastasis in Middle Eastern Papillary Thyroid Microcarcinoma. Journal of Clinical Medicine. 2022; 11(15):4613. https://doi.org/10.3390/jcm11154613
Chicago/Turabian StyleParvathareddy, Sandeep Kumar, Abdul K. Siraj, Padmanaban Annaiyappanaidu, Nabil Siraj, Saif S. Al-Sobhi, Fouad Al-Dayel, and Khawla S. Al-Kuraya. 2022. "Risk Factors for Cervical Lymph Node Metastasis in Middle Eastern Papillary Thyroid Microcarcinoma" Journal of Clinical Medicine 11, no. 15: 4613. https://doi.org/10.3390/jcm11154613
APA StyleParvathareddy, S. K., Siraj, A. K., Annaiyappanaidu, P., Siraj, N., Al-Sobhi, S. S., Al-Dayel, F., & Al-Kuraya, K. S. (2022). Risk Factors for Cervical Lymph Node Metastasis in Middle Eastern Papillary Thyroid Microcarcinoma. Journal of Clinical Medicine, 11(15), 4613. https://doi.org/10.3390/jcm11154613