Factors for Predicting Instant Neurological Recovery of Patients with Motor Complete Traumatic Spinal Cord Injury
Abstract: Objective
1. Introduction
2. Materials and Methods
2.1. Ethical Approval
2.2. Study Population
2.3. Data Recording Form
2.4. Statistical Analysis
3. Results
3.1. General Characteristics of Patients
3.2. Neurological Function Recovery
3.3. Univariate and Multivariate Logistic Regression Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Eli, I.; Lerner, D.P.; Ghogawala, Z. Acute Traumatic Spinal Cord Injury. Neurol. Clin. 2021, 39, 471–488. [Google Scholar] [CrossRef] [PubMed]
- Bock, T.; Heller, R.A.; Haubruck, P.; Raven, T.F.; Pilz, M.; Moghaddam, A.; Biglari, B. Pursuing More Aggressive Timelines in the Surgical Treatment of Traumatic Spinal Cord Injury (TSCI): A Retrospective Cohort Study with Subgroup Analysis. J. Clin. Med. 2021, 10, 5977. [Google Scholar] [CrossRef] [PubMed]
- Jazayeri, S.B.; Beygi, S.; Shokraneh, F.; Hagen, E.M.; Rahimi-Movaghar, V. Incidence of traumatic spinal cord injury worldwide: A systematic review. Eur. Spine J. 2015, 24, 905–918. [Google Scholar] [CrossRef] [PubMed]
- Karsy, M.; Hawryluk, G. Modern Medical Management of Spinal Cord Injury. Curr. Neurol. Neurosci. Rep. 2019, 19, 65. [Google Scholar] [CrossRef] [PubMed]
- GBD 2016 Traumatic Brain Injury and Spinal Cord Injury Collaborators. Global, regional, and national burden of traumatic brain injury and spinal cord injury, 1990–2016: A systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 2019, 18, 56–87. [Google Scholar] [CrossRef] [Green Version]
- Ahuja, C.S.; Wilson, J.R.; Nori, S.; Kotter, M.R.N.; Druschel, C.; Curt, A.; Fehlings, M.G. Traumatic spinal cord injury. Nat. Rev. Dis. Primers 2017, 3, 17018. [Google Scholar] [CrossRef]
- Shank, C.D.; Walters, B.C.; Hadley, M.N. Current Topics in the Management of Acute Traumatic Spinal Cord Injury. Neurocrit Care 2019, 30, 261–271. [Google Scholar] [CrossRef]
- Facchinello, Y.; Beauséjour, M.; Richard-Denis, A.; Thompson, C.; Mac-Thiong, J.M. Use of Regression Tree Analysis for Predicting the Functional Outcome after Traumatic Spinal Cord Injury. J. Neurotrauma 2021, 38, 1285–1291. [Google Scholar] [CrossRef]
- Kaminski, L.; Cordemans, V.; Cernat, E.; M’Bra, K.I.; Mac-Thiong, J.M. Functional Outcome Prediction after Traumatic Spinal Cord Injury Based on Acute Clinical Factors. J. Neurotrauma 2017, 34, 2027–2033. [Google Scholar] [CrossRef]
- Al-Habib, A.F.; Attabib, N.; Ball, J.; Bajammal, S.; Casha, S.; Hurlbert, R.J. Clinical predictors of recovery after blunt spinal cord trauma: Systematic review. J. Neurotrauma 2011, 28, 1431–1443. [Google Scholar] [CrossRef]
- Squair, J.W.; Bélanger, L.M.; Tsang, A.; Ritchie, L.; Mac-Thiong, J.M.; Parent, S.; Christie, S.; Bailey, C.; Dhall, S.; Street, J.; et al. Spinal cord perfusion pressure predicts neurologic recovery in acute spinal cord injury. Neurology 2017, 89, 1660–1667. [Google Scholar] [CrossRef] [PubMed]
- Wilson, J.R.; Cadotte, D.W.; Fehlings, M.G. Clinical predictors of neurological outcome, functional status, and survival after traumatic spinal cord injury: A systematic review. J. Neurosurg. Spine 2012, 17, 11–26. [Google Scholar] [CrossRef] [PubMed]
- Motiei-Langroudi, R.; Sadeghian, H. Traumatic Spinal Cord Injury: Long-Term Motor, Sensory, and Urinary Outcomes. Asian Spine J. 2017, 11, 412–418. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mputu Mputu, P.; Beauséjour, M.; Richard-Denis, A.; Mac-Thiong, J.M. Early Predictors of Neurological Outcomes After Traumatic Spinal Cord Injury: A Systematic Review and Proposal of a Conceptual Framework. Am. J. Phys. Med. Rehabil. 2021, 100, 700–711. [Google Scholar] [CrossRef]
- Kirshblum, S.; Snider, B.; Eren, F.; Guest, J. Characterizing Natural Recovery after Traumatic Spinal Cord Injury. J. Neurotrauma 2021, 38, 1267–1284. [Google Scholar] [CrossRef]
- Chay, W.; Kirshblum, S. Predicting Outcomes After Spinal Cord Injury. Phys. Med. Rehabil. Clin. N. Am. 2020, 31, 331–343. [Google Scholar] [CrossRef]
- Khorasanizadeh, M.; Yousefifard, M.; Eskian, M.; Lu, Y.; Chalangari, M.; Harrop, J.S.; Jazayeri, S.B.; Seyedpour, S.; Khodaei, B.; Hosseini, M.; et al. Neurological recovery following traumatic spinal cord injury: A systematic review and meta-analysis. J. Neurosurg. Spine 2019, 10, 18802. [Google Scholar] [CrossRef]
- Skeers, P.; Battistuzzo, C.R.; Clark, J.M.; Bernard, S.; Freeman, B.J.C.; Batchelor, P.E. Acute Thoracolumbar Spinal Cord Injury: Relationship of Cord Compression to Neurological Outcome. J. Bone Joint Surg. Am. 2018, 100, 305–315. [Google Scholar] [CrossRef]
- Hao, D.; Du, J.; Yan, L.; He, B.; Qi, X.; Yu, S.; Zhang, J.; Zheng, W.; Zhang, R.; Huang, D.G.; et al. Trends of epidemiological characteristics of traumatic spinal cord injury in China, 2009–2018. Eur. Spine J. 2021, 30, 3115–3127. [Google Scholar] [CrossRef]
- Ropper, A.E.; Ropper, A.H. Acute Spinal Cord Compression. N. Engl. J. Med. 2017, 376, 1358–1369. [Google Scholar] [CrossRef]
- Nakajima, H.; Takahashi, A.; Kitade, I.; Watanabe, S.; Honjoh, K.; Matsumine, A. Prognostic factors and optimal management for patients with cervical spinal cord injury without major bone injury. J. Orthop. Sci. 2019, 24, 230–236. [Google Scholar] [CrossRef] [PubMed]
- Haldrup, M.; Schwartz, O.S.; Kasch, H.; Rasmussen, M.M. Early decompressive surgery in patients with traumatic spinal cord injury improves neurological outcome. Acta Neurochir. 2019, 161, 2223–2228. [Google Scholar] [CrossRef] [PubMed]
- Ahuja, C.S.; Nori, S.; Tetreault, L.; Wilson, J.; Kwon, B.; Harrop, J.; Choi, D.; Fehlings, M.G. Traumatic Spinal Cord Injury-Repair and Regeneration. Neurosurgery 2017, 80, S9–S22. [Google Scholar] [CrossRef] [PubMed]
- Duan, R.; Qu, M.; Yuan, Y.; Lin, M.; Liu, T.; Huang, W.; Gao, J.; Zhang, M.; Yu, X. Clinical Benefit of Rehabilitation Training in Spinal Cord Injury: A Systematic Review and Meta-Analysis. Spine 2021, 46, E398–E410. [Google Scholar] [CrossRef]
- Gerber, L.H.; Deshpande, R.; Prabhakar, S.; Cai, C.; Garfinkel, S.; Morse, L.; Harrington, A.L. Narrative Review of Clinical Practice Guidelines for Rehabilitation of People With Spinal Cord Injury: 2010–2020. Am. J. Phys. Med. Rehabil. 2021, 100, 501–512. [Google Scholar] [CrossRef]
- Nam, K.Y.; Kim, H.J.; Kwon, B.S.; Park, J.W.; Lee, H.J.; Yoo, A. Robot-assisted gait training (Lokomat) improves walking function and activity in people with spinal cord injury: A systematic review. J. Neuroeng. Rehabil. 2017, 14, 24. [Google Scholar] [CrossRef] [Green Version]
- Xiong, F.; Lu, J.; Pan, H.; Wang, F.; Huang, Y.; Liu, Y.; Li, L.; Zhang, R.; Wang, Y.; He, C.; et al. Effect of Specific Acupuncture Therapy Combined with Rehabilitation Training on Incomplete Spinal Cord Injury: A Randomized Clinical Trial. Evid. Based Complem. Alternat Med. 2021, 2021, 5671998. [Google Scholar] [CrossRef]
- Badhiwala, J.H.; Wilson, J.R.; Witiw, C.D.; Harrop, J.S.; Vaccaro, A.R.; Aarabi, B.; Grossman, R.G.; Geisler, F.H.; Fehlings, M.G. The influence of timing of surgical decompression for acute spinal cord injury: A pooled analysis of individual patient data. Lancet Neurol. 2021, 20, 117–126. [Google Scholar] [CrossRef]
Characteristics (No., %) | Total Cases (n = 1053) | Motor Complete Injury (n = 822) | Motor Incomplete Injury (n = 231) | p Value |
---|---|---|---|---|
Age (years) | 0.602 | |||
<50 | 595 (56.5) | 461 (56.1) | 134 (58.0) | |
≥50 | 458 (43.5) | 361 (43.9) | 97 (42.0) | |
Sex | 0.486 | |||
Male | 851 (80.8) | 668 (81.3) | 183 (79.2) | |
Female | 202 (19.2) | 154 (18.7) | 48 (20.8) | |
Mechanism of trauma | 0.021 | |||
Vehicle accident | 257 (24.4) | 187 (22.8) | 70 (30.3) | |
Sport accident | 4 (0.5) | 3 (0.4) | 1 (0.4) | |
Tumble | 207 (19.6) | 153 (18.6) | 54 (23.4) | |
Fall from height | 416 (39.5) | 343 (41.7) | 73 (31.6) | |
Others | 169 (16.0) | 136 (16.5) | 33 (14.3) | |
Injury level | <0.001 | |||
Cervical spinal cord | 571 (54.2) | 432 (52.6) | 139 (60.2) | |
Thoracic spinal cord | 254 (24.1) | 223 (27.1) | 31 (13.4) | |
Lumbosacral spinal cord | 228 (21.7) | 167 (20.3) | 61 (26.4) | |
Time before admission (h) | 0.069 | |||
<24 | 748 (71.0) | 595 (72.4) | 153 (66.2) | |
≥24 | 305 (29.0) | 227 (27.6) | 78 (33.8) | |
ASIA score on admission | <0.001 | |||
A | 740 (70.3) | 647 (78.7) | 93 (40.3) | |
B | 313 (29.7) | 175 (21.3) | 138 (59.7) | |
Fracture or dislocations | 0.008 | |||
Without | 213 (20.2) | 152 (18.5) | 61 (26.4) | |
With | 840 (79.8) | 670 (81.5) | 170 (73.6) | |
Treatment protocol | <0.001 | |||
Conservative | 231 (21.9) | 201 (24.5) | 30 (13.0) | |
Surgery | 822 (78.1) | 621 (75.5) | 201 (87.0) | |
Surgical procedures | 0.605 | |||
Simple spinal cord decompression | 20 (2.4) | 13 (2.1) | 7 (3.5) | |
Decompression and fixation | 237 (28.8) | 176 (28.3) | 61 (30.3) | |
Decompression, fixation and fusion | 543 (67.1) | 416 (70.0) | 127 (63.2) | |
Other | 22 (2.7) | 16 (2.6) | 6 (3.0) | |
In-hospital complications | 0.618 | |||
Without | 550 (52.2) | 426 (51.8) | 124 (53.7) | |
With | 503 (47.8) | 396 (48.2) | 107 (46.3) | |
Duration of in-hospital stay (d) | 0.264 | |||
<28 | 804 (76.3) | 634 (77.1) | 170 (73.6) | |
≥28 | 249 (23.7) | 188 (22.9) | 61 (26.4) | |
Inpatient rehabilitation | <0.001 | |||
Without | 691 (65.6) | 592 (72.0) | 99 (42.9) | |
With | 362 (34.4) | 230(28.0) | 132 (57.1) |
Characteristics | p-Value | 95% CI | OR |
---|---|---|---|
Age | 0.602 | 0.688–1.242 | 0.924 |
Sex | 0.486 | 0.791–1.636 | 1.138 |
Mechanism of trauma | 0.004 | 0.779–0.955 | 0.863 |
Injury level | 0.800 | 0.815–1.171 | 0.977 |
In-hospital complications | 0.618 | 0.693–1.244 | 0.298 |
Time before admission | 0.069 | 0.978–1.827 | 1.336 |
ASIA score on admission (A/B) | <0.001 | 4.018–7.491 | 5.486 |
Fracture or dislocations | 0.008 | 0.449–0.890 | 0.632 |
Treatment protocol | <0.001 | 1.432–3.285 | 2.169 |
Surgical procedures | 0.338 | 0.660–1.153 | 0.872 |
Duration of in-hospital stay | 0.264 | 0.866–1.691 | 1.210 |
Inpatient rehabilitation | <0.001 | 1.428–2.611 | 1.930 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, X.; Gong, Y.; Zhang, B.; Hao, D.; He, B.; Yan, L. Factors for Predicting Instant Neurological Recovery of Patients with Motor Complete Traumatic Spinal Cord Injury. J. Clin. Med. 2022, 11, 4086. https://doi.org/10.3390/jcm11144086
Gao X, Gong Y, Zhang B, Hao D, He B, Yan L. Factors for Predicting Instant Neurological Recovery of Patients with Motor Complete Traumatic Spinal Cord Injury. Journal of Clinical Medicine. 2022; 11(14):4086. https://doi.org/10.3390/jcm11144086
Chicago/Turabian StyleGao, Xiangcheng, Yining Gong, Bo Zhang, Dingjun Hao, Baorong He, and Liang Yan. 2022. "Factors for Predicting Instant Neurological Recovery of Patients with Motor Complete Traumatic Spinal Cord Injury" Journal of Clinical Medicine 11, no. 14: 4086. https://doi.org/10.3390/jcm11144086
APA StyleGao, X., Gong, Y., Zhang, B., Hao, D., He, B., & Yan, L. (2022). Factors for Predicting Instant Neurological Recovery of Patients with Motor Complete Traumatic Spinal Cord Injury. Journal of Clinical Medicine, 11(14), 4086. https://doi.org/10.3390/jcm11144086