Our Clinical Experience in the Treatment of Myasthenia Gravis Acute Exacerbations with a Novel Nanomembrane-Based Therapeutic Plasma Exchange Technology
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gilhus, N.E. Myasthenia Gravis. N. Engl. J. Med. 2016, 375, 2570–2581. [Google Scholar] [CrossRef] [PubMed]
- Cortese, I.; Chaudhry, V.; So, Y.T.; Cantor, F.; Cornblath, D.R.; Rae-Grant, A. Evidence-based guideline update: Plasmapheresis in neurologic disorders: Report of the Therapeutics and Technology Assessment Subcommittee of the American Academy of Neurology. Neurology 2011, 76, 294–300. [Google Scholar] [CrossRef] [PubMed]
- Gajdos, P.; Chevret, S.; Clair, B.; Tranchant, C.; Chastang, C. Clinical trial of plasma exchange and high-dose intravenous immunoglobulin in myasthenia gravis. Myasthenia Gravis Clinical Study Group. Ann. Neurol. 1997, 41, 789–796. [Google Scholar] [CrossRef] [PubMed]
- Gajdos, P.; Chevret, S.; Toyka, K.V. Plasma exchange for generalised myasthenia gravis. Cochrane Database Syst. Rev. 2002, 4, CD002275. [Google Scholar] [CrossRef]
- Neumann, B.; Angstwurm, K.; Mergenthaler, P.; Kohler, S.; Schönenberger, S.; Bösel, J.; Neumann, U.; Vidal, A.; Huttner, H.B.; Gerner, S.T.; et al. Myasthenic crisis demanding mechanical ventilation: A multicenter analysis of 250 cases. Neurology 2020, 94, e299–e313, Erratum in Neurology 2020, 94, 724. [Google Scholar] [CrossRef]
- Sanders, D.B.; Wolfe, G.I.; Benatar, M.; Evoli, A.; Gilhus, N.E.; Illa, I.; Kuntz, N.; Massey, J.M.; Melms, A.; Murai, H.; et al. International consensus guidance for management of myasthenia gravis: Executive summary. Neurology 2016, 87, 419–425. [Google Scholar] [CrossRef]
- Roper, J.; Fleming, M.E.; Long, B.; Koyfman, A. Myasthenia Gravis and Crisis: Evaluation and Management in the Emergency Department. J. Emerg. Med. 2017, 53, 843–853. [Google Scholar] [CrossRef]
- Lizarraga, A.A.; Lizarraga, K.J.; Benatar, M. Getting Rid of Weakness in the ICU: An Updated Approach to the Acute Management of Myasthenia Gravis and Guillain-Barré Syndrome. Semin. Neurol. 2016, 36, 615–624. [Google Scholar] [CrossRef]
- Liu, Z.; Yao, S.; Zhou, Q.; Deng, Z.; Zou, J.; Feng, H.; Zhu, H.; Cheng, C. Predictors of extubation outcomes following myasthenic crisis. J. Int. Med. Res. 2016, 44, 1524–1533. [Google Scholar] [CrossRef]
- Al-Bassam, W.; Kubicki, M.; Bailey, M.; Walker, L.; Young, P.; Pilcher, D.V.; Bellomo, R. Characteristics, incidence, and outcome of patients admitted to the intensive care unit with myasthenia gravis. J. Crit. Care 2018, 45, 90–94. [Google Scholar] [CrossRef]
- Alhaidar, M.K.; Abumurad, S.; Soliven, B.; Rezania, K. Current Treatment of Myasthenia Gravis. J. Clin. Med. 2022, 11, 1597. [Google Scholar] [CrossRef] [PubMed]
- Köhler, W.; Bucka, C.; Klingel, R. A randomized and controlled study comparing immunoadsorption and plasma exchange in myasthenic crisis. J. Clin. Apher. 2011, 26, 347–355. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Liu, P.; Ma, M.; Yang, H.; Qi, G. Efficacy and safety of double-filtration plasmapheresis treatment of myasthenia gravis: A systematic review and meta-analysis. Medicine 2021, 100, e25622. [Google Scholar] [CrossRef] [PubMed]
- Voinov, V. Plasmapheresis in Treatment of Myasthenia Gravis. In Selected Topics in Myasthenia Gravis; Al-Zwaini, I.J., AL-Mayahi, A., Eds.; IntechOpen: London, UK, 2018; pp. 1–11. [Google Scholar] [CrossRef][Green Version]
- Slavic, V.; Djurdjic, B.; Randjelovic, D.; Rajovic, G.; Delic, M. Nanomembrane-based Apheresis as Safe and Effective Therapy for Cytomegalovirus and Epstein-Barr Virus Reactivation. Case Report. Open Access Maced. J. Med. Sci. 2021, 9, 258–262. [Google Scholar] [CrossRef]
- Milanov, I.; Milanova, M.; Semerdzieva, N. National consensus for application of the therapeutic plasmapheresis in the neurological diseases. Bulg. Neurol. 2019, 20, 1–11. [Google Scholar]
- Milanov, I.; Milanova, M. National consensus on the diagnosis and treatment of myasthenia gravis. Bulg. Neurol. 2021, 22, 1–16. [Google Scholar]
- Vavrek, E.; Koleva, N.; Alexandrov, A.; Vassileva, E.; Muradyan, N.; Vavrek, N.; Daskalov, M. Late and elderly onset myasthenia gravis in Bulgarian population. Comptes Rendus L’academie Bulg. Des Sci. 2014, 67, 1019–1024. [Google Scholar]
- Sakai, W.; Matsui, N.; Ishida, M.; Furukawa, T.; Miyazaki, Y.; Fujita, K.; Miyamoto, R.; Yamamoto, N.; Sako, W.; Sato, K.; et al. Late-onset myasthenia gravis is predisposed to become generalized in the elderly. eNeurologicalSci 2016, 2, 17–20. [Google Scholar] [CrossRef]
- Cortés-Vicente, E.; Álvarez-Velasco, R.; Segovia, S.; Paradas, C.; Casasnovas, C.; Guerrero-Sola, A.; Pardo, J.; Ramos-Fransi, A.; Sevilla, T.; López de Munain, A.; et al. Clinical and therapeutic features of myasthenia gravis in adults based on age at onset. Neurology 2020, 94, e1171–e1180. [Google Scholar] [CrossRef]
- Mandawat, A.; Mandawat, A.; Kaminski, H.J.; Shaker, Z.A.; Alawi, A.A.; Alshekhlee, A. Outcome of plasmapheresis in myasthenia gravis: Delayed therapy is not favorable. Muscle Nerve 2011, 43, 578–584. [Google Scholar] [CrossRef]
- Dhawan, P.S.; Goodman, B.P.; Harper, C.M.; Bosch, P.E.; Hoffman-Snyder, C.R.; Wellik, K.E.; Wingerchuk, D.M.; Demaerschalk, B.M. IVIG Versus PLEX in the Treatment of Worsening Myasthenia Gravis: What is the Evidence?: A Critically Appraised Topic. Neurologist 2015, 19, 145–148. [Google Scholar] [CrossRef] [PubMed]
- Qureshi, A.I.; Choudhry, M.A.; Akbar, M.S.; Mohammad, Y.; Chua, H.C.; Yahia, A.M.; Ulatowski, J.A.; Krendel, D.A.; Leshner, R.T. Plasma exchange versus intravenous immunoglobulin treatment in myasthenic crisis. Neurology 1999, 52, 629–632. [Google Scholar] [CrossRef] [PubMed]
- Iori, E.; Mazzoli, M.; Ariatti, A.; Bastia, E.; Agnoletto, V.; Gozzi, M.; Marchioni, A.; Galassi, G. Predictors of outcome in patients with myasthenic crisis undergoing non-invasive mechanical ventilation: A retrospective 20 year longitudinal cohort study from a single Italian center. Neuromuscul. Disord. 2021, 31, 1241–1250. [Google Scholar] [CrossRef]
- Ipe, T.S.; Davis, A.R.; Raval, J.S. Therapeutic Plasma Exchange in Myasthenia Gravis: A Systematic Literature Review and Meta-Analysis of Comparative Evidence. Front. Neurol. 2021, 12, 662856. [Google Scholar] [CrossRef] [PubMed]
- Seneviratne, J.; Mandrekar, J.; Wijdicks, E.F.; Rabinstein, A.A. Noninvasive ventilation in myasthenic crisis. Arch. Neurol. 2008, 65, 54–58. [Google Scholar] [CrossRef]
- Birch, T.B. Neuromuscular Disorders in the Intensive Care Unit. Contin. Lifelong Learn. Neurol. 2021, 27, 1344–1364. [Google Scholar] [CrossRef]
- Usmani, A.; Kwan, L.; Wahib-Khalil, D.; Trivedi, J.; Nations, S.; Sarode, R. Excellent response to therapeutic plasma exchange in myasthenia gravis patients irrespective of antibody status. J. Clin. Apher. 2019, 34, 416–422. [Google Scholar] [CrossRef]
- Farmakidis, C.; Pasnoor, M.; Dimachkie, M.M.; Barohn, R.J. Treatment of Myasthenia Gravis. Neurol. Clin. 2018, 36, 311–337. [Google Scholar] [CrossRef]
- Hoffmann, S.; Kohler, S.; Ziegler, A.; Meisel, A. Glucocorticoids in myasthenia gravis—If, when, how, and how much? Acta Neurol. Scand. 2014, 130, 211–221. [Google Scholar] [CrossRef]
- Farrugia, M.E.; Goodfellow, J.A. A Practical Approach to Managing Patients with Myasthenia Gravis—Opinions and a Review of the Literature. Front. Neurol. 2020, 11, 604. [Google Scholar] [CrossRef]
- Nagane, Y.; Suzuki, S.; Suzuki, N.; Utsugisawa, K. Early aggressive treatment strategy against myasthenia gravis. Eur. Neurol. 2011, 65, 16–22. [Google Scholar] [CrossRef] [PubMed]
- Carandina-Maffeis, R.; Nucci, A.; Marques, J.F., Jr.; Roveri, E.G.; Pfeilsticker, B.H.; Garibaldi, S.G.; de Deus-Silva, L. Plasmapheresis in the treatment of myasthenia gravis: Retrospective study of 26 patients. Arq. Neuro-Psiquiatr. 2004, 62, 391–395. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Angstwurm, K.; Vidal, A.; Stetefeld, H.; Dohmen, C.; Mergenthaler, P.; Kohler, S.; Schönenberger, S.; Bösel, J.; Neumann, U.; Lee, D.-H.; et al. Early Tracheostomy Is Associated with Shorter Ventilation Time and Duration of ICU Stay in Patients with Myasthenic Crisis-A Multicenter Analysis. J. Intensive Care Med. 2022, 37, 32–40. [Google Scholar] [CrossRef] [PubMed]
- Chiu, H.-C.; Chen, W.-H.; Yeh, J.-H. The six year experience of plasmapheresis in patients with myasthenia gravis. Ther. Apher. 2000, 4, 291–295. [Google Scholar] [CrossRef]
- Yamakova, Y.; Ilieva, V.A.; Petkov, R.; Yankov, G. Nanomembrane-Based Therapeutic Plasmapheresis after Non-Invasive Ventilation Failure for Treatment of a Patient with Acute Respiratory Distress Syndrome and Myasthenia Gravis: A Case Report. Blood Purif. 2019, 48, 382–384. [Google Scholar] [CrossRef]
- Bennani, H.N.; Lagrange, E.; Noble, J.; Malvezzi, P.; Motte, L.; Chevallier, E.; Rostaing, L.; Jouve, T. Treatment of refractory myasthenia gravis by double-filtration plasmapheresis and rituximab: A case series of nine patients and literature review. J. Clin. Apher. 2021, 36, 348–363. [Google Scholar] [CrossRef]
Conventional Treatment n = 24 | Nanomembrane-Based TPE n = 12 | p Value | |
---|---|---|---|
Gender (males/females) | 8/16 | 6/6 | 0.471 |
Age (mean ± SD) (range) | 41 ± 15 (18–76) | 53 ± 17 (28–77) | 0.078 |
Anti-AchR, n (%) | 12 (50%) | 7 (58%) | 0.637 |
Anti-MuSK, n (%) | 1 (4%) | 2 (17%) | 0.253 |
Double seronegative, n (%) | 11 (46%) | 3 (25%) | 0.230 |
Thymectomy, n (%) | 7 (29%) | 5 (42%) | 0.479 |
Early onset (<50 years), n (%) | 15 (63%) | 6 (50%) | 0.473 |
MGFA class before MC (IV/V) | 10/14 | 9/3 | 0.059 |
Cardiovascular disease, n (%) | 5 (21%) | 5 (42%) | 0.192 |
Lung disease, n (%) | 6 (25%) | 3 (25%) | 1.000 |
Kidney disease, n (%) | 1 (4%) | 2 (17%) | 0.189 |
Diabetes mellitus, n (%) | 1 (4%) | 3 (25%) | 0.061 |
Comorbidities (CCI > 2), n (%) | 3 (12%) | 5 (42%) | 0.086 |
Recurrent MC, n (%) | 9 (37%) | 6 (50%) | 0.473 |
Prior use of azathioprine, n (%) | 7 (29%) | 4 (33%) | 0.808 |
Conventional Treatment n = 24 | Nanomembrane-Based TPE n = 12 | p Value | |
---|---|---|---|
Therapy | |||
Escalated corticosteroids | 12 (50%) | 9 (75%) | 0.282 |
Total dose corticosteroids [g (median)] | 0.859 ± 0.959 (0.620) | 0.235 ± 0.450 (0.030) | 0.109 |
Intravenous immunoglobulin | 6 (25%) | 4 (33%) | 0.700 |
Therapeutic plasma exchange | 1 (4%) | 9 (75%) | <0.0001 |
Non-invasive ventilation trial | 9 (37%) | 7 (58%) | 0.236 |
Intubation with invasive ventilation | 20 (83%) | 5 (42%) | 0.020 |
Early tracheotomy (≤10 days) | 12 (50%) | 3 (25%) | 0.282 |
Outcomes | |||
Extubation time (days) | 17 ± 21 | 5 ± 7 | 0.023 |
Responders (MMS ≥ 20) | 18 (75%) | 10 (83%) | 0.691 |
Neuro-ICU LOS (days) | 20 ± 24 | 10 ± 5 | 0.118 |
Hospital LOS (days) | 28 ± 25 | 19 ± 11 | 0.470 |
Complications (VAP, atelectasis, CPR) | 5 (21%) | 3 (25%) | 0.788 |
Mortality | 1 (4.2%) | 1 (8.3%) | 0.618 |
Short-Term Respiratory Support (≤7 Days) n = 16 | Long-Term Respiratory Support (≥8 Days) n = 20 | p Value | |
---|---|---|---|
Baseline characteristics | |||
Gender (males/females) | 6/10 | 8/12 | 0.878 |
Age (mean ± SD) (range) | 53 ± 15 (32–76) | 39 ± 15 (22–77) | 0.010 |
Early onset (<50 years), n (%) | 7 (44%) | 14 (70%) | 0.112 |
MGFA class on neuro-ICU admission (IV/V) | 13/3 | 6/14 | 0.002 |
Comorbidities (CCI > 2), n (%) | 4 (25%) | 4 (20%) | 1.000 |
Therapy | |||
Escalated corticosteroids | 8 (50%) | 13 (65%) | 0.364 |
Intravenous immunoglobulin | 3 (19%) | 7 (35%) | 0.456 |
Therapeutic plasma exchange | 8 (50%) | 2 (10%) | 0.011 |
Non-invasive ventilation trial | 12 (75%) | 4 (20%) | 0.001 |
Predictors | OR | 95% CI of OR | p Value |
---|---|---|---|
Age | 0.942 | 0.896–0.990 | 0.018 |
MGFA class on neuro-ICU admission (IV/V) | 10.111 | 2.086–48.999 | 0.004 |
Therapeutic plasma exchange | 9.000 | 1.550–52.266 | 0.014 |
Non-invasive ventilation trial | 12.000 | 2.484–57.975 | 0.002 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tonev, D.; Georgieva, R.; Vavrek, E. Our Clinical Experience in the Treatment of Myasthenia Gravis Acute Exacerbations with a Novel Nanomembrane-Based Therapeutic Plasma Exchange Technology. J. Clin. Med. 2022, 11, 4021. https://doi.org/10.3390/jcm11144021
Tonev D, Georgieva R, Vavrek E. Our Clinical Experience in the Treatment of Myasthenia Gravis Acute Exacerbations with a Novel Nanomembrane-Based Therapeutic Plasma Exchange Technology. Journal of Clinical Medicine. 2022; 11(14):4021. https://doi.org/10.3390/jcm11144021
Chicago/Turabian StyleTonev, Dimitar, Radostina Georgieva, and Evgeniy Vavrek. 2022. "Our Clinical Experience in the Treatment of Myasthenia Gravis Acute Exacerbations with a Novel Nanomembrane-Based Therapeutic Plasma Exchange Technology" Journal of Clinical Medicine 11, no. 14: 4021. https://doi.org/10.3390/jcm11144021
APA StyleTonev, D., Georgieva, R., & Vavrek, E. (2022). Our Clinical Experience in the Treatment of Myasthenia Gravis Acute Exacerbations with a Novel Nanomembrane-Based Therapeutic Plasma Exchange Technology. Journal of Clinical Medicine, 11(14), 4021. https://doi.org/10.3390/jcm11144021