Our Clinical Experience in the Treatment of Myasthenia Gravis Acute Exacerbations with a Novel Nanomembrane-Based Therapeutic Plasma Exchange Technology
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gilhus, N.E. Myasthenia Gravis. N. Engl. J. Med. 2016, 375, 2570–2581. [Google Scholar] [CrossRef] [PubMed]
- Cortese, I.; Chaudhry, V.; So, Y.T.; Cantor, F.; Cornblath, D.R.; Rae-Grant, A. Evidence-based guideline update: Plasmapheresis in neurologic disorders: Report of the Therapeutics and Technology Assessment Subcommittee of the American Academy of Neurology. Neurology 2011, 76, 294–300. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gajdos, P.; Chevret, S.; Clair, B.; Tranchant, C.; Chastang, C. Clinical trial of plasma exchange and high-dose intravenous immunoglobulin in myasthenia gravis. Myasthenia Gravis Clinical Study Group. Ann. Neurol. 1997, 41, 789–796. [Google Scholar] [CrossRef] [PubMed]
- Gajdos, P.; Chevret, S.; Toyka, K.V. Plasma exchange for generalised myasthenia gravis. Cochrane Database Syst. Rev. 2002, 4, CD002275. [Google Scholar] [CrossRef]
- Neumann, B.; Angstwurm, K.; Mergenthaler, P.; Kohler, S.; Schönenberger, S.; Bösel, J.; Neumann, U.; Vidal, A.; Huttner, H.B.; Gerner, S.T.; et al. Myasthenic crisis demanding mechanical ventilation: A multicenter analysis of 250 cases. Neurology 2020, 94, e299–e313, Erratum in Neurology 2020, 94, 724. [Google Scholar] [CrossRef]
- Sanders, D.B.; Wolfe, G.I.; Benatar, M.; Evoli, A.; Gilhus, N.E.; Illa, I.; Kuntz, N.; Massey, J.M.; Melms, A.; Murai, H.; et al. International consensus guidance for management of myasthenia gravis: Executive summary. Neurology 2016, 87, 419–425. [Google Scholar] [CrossRef] [Green Version]
- Roper, J.; Fleming, M.E.; Long, B.; Koyfman, A. Myasthenia Gravis and Crisis: Evaluation and Management in the Emergency Department. J. Emerg. Med. 2017, 53, 843–853. [Google Scholar] [CrossRef]
- Lizarraga, A.A.; Lizarraga, K.J.; Benatar, M. Getting Rid of Weakness in the ICU: An Updated Approach to the Acute Management of Myasthenia Gravis and Guillain-Barré Syndrome. Semin. Neurol. 2016, 36, 615–624. [Google Scholar] [CrossRef]
- Liu, Z.; Yao, S.; Zhou, Q.; Deng, Z.; Zou, J.; Feng, H.; Zhu, H.; Cheng, C. Predictors of extubation outcomes following myasthenic crisis. J. Int. Med. Res. 2016, 44, 1524–1533. [Google Scholar] [CrossRef] [Green Version]
- Al-Bassam, W.; Kubicki, M.; Bailey, M.; Walker, L.; Young, P.; Pilcher, D.V.; Bellomo, R. Characteristics, incidence, and outcome of patients admitted to the intensive care unit with myasthenia gravis. J. Crit. Care 2018, 45, 90–94. [Google Scholar] [CrossRef]
- Alhaidar, M.K.; Abumurad, S.; Soliven, B.; Rezania, K. Current Treatment of Myasthenia Gravis. J. Clin. Med. 2022, 11, 1597. [Google Scholar] [CrossRef] [PubMed]
- Köhler, W.; Bucka, C.; Klingel, R. A randomized and controlled study comparing immunoadsorption and plasma exchange in myasthenic crisis. J. Clin. Apher. 2011, 26, 347–355. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Liu, P.; Ma, M.; Yang, H.; Qi, G. Efficacy and safety of double-filtration plasmapheresis treatment of myasthenia gravis: A systematic review and meta-analysis. Medicine 2021, 100, e25622. [Google Scholar] [CrossRef] [PubMed]
- Voinov, V. Plasmapheresis in Treatment of Myasthenia Gravis. In Selected Topics in Myasthenia Gravis; Al-Zwaini, I.J., AL-Mayahi, A., Eds.; IntechOpen: London, UK, 2018; pp. 1–11. [Google Scholar] [CrossRef] [Green Version]
- Slavic, V.; Djurdjic, B.; Randjelovic, D.; Rajovic, G.; Delic, M. Nanomembrane-based Apheresis as Safe and Effective Therapy for Cytomegalovirus and Epstein-Barr Virus Reactivation. Case Report. Open Access Maced. J. Med. Sci. 2021, 9, 258–262. [Google Scholar] [CrossRef]
- Milanov, I.; Milanova, M.; Semerdzieva, N. National consensus for application of the therapeutic plasmapheresis in the neurological diseases. Bulg. Neurol. 2019, 20, 1–11. [Google Scholar]
- Milanov, I.; Milanova, M. National consensus on the diagnosis and treatment of myasthenia gravis. Bulg. Neurol. 2021, 22, 1–16. [Google Scholar]
- Vavrek, E.; Koleva, N.; Alexandrov, A.; Vassileva, E.; Muradyan, N.; Vavrek, N.; Daskalov, M. Late and elderly onset myasthenia gravis in Bulgarian population. Comptes Rendus L’academie Bulg. Des Sci. 2014, 67, 1019–1024. [Google Scholar]
- Sakai, W.; Matsui, N.; Ishida, M.; Furukawa, T.; Miyazaki, Y.; Fujita, K.; Miyamoto, R.; Yamamoto, N.; Sako, W.; Sato, K.; et al. Late-onset myasthenia gravis is predisposed to become generalized in the elderly. eNeurologicalSci 2016, 2, 17–20. [Google Scholar] [CrossRef]
- Cortés-Vicente, E.; Álvarez-Velasco, R.; Segovia, S.; Paradas, C.; Casasnovas, C.; Guerrero-Sola, A.; Pardo, J.; Ramos-Fransi, A.; Sevilla, T.; López de Munain, A.; et al. Clinical and therapeutic features of myasthenia gravis in adults based on age at onset. Neurology 2020, 94, e1171–e1180. [Google Scholar] [CrossRef]
- Mandawat, A.; Mandawat, A.; Kaminski, H.J.; Shaker, Z.A.; Alawi, A.A.; Alshekhlee, A. Outcome of plasmapheresis in myasthenia gravis: Delayed therapy is not favorable. Muscle Nerve 2011, 43, 578–584. [Google Scholar] [CrossRef]
- Dhawan, P.S.; Goodman, B.P.; Harper, C.M.; Bosch, P.E.; Hoffman-Snyder, C.R.; Wellik, K.E.; Wingerchuk, D.M.; Demaerschalk, B.M. IVIG Versus PLEX in the Treatment of Worsening Myasthenia Gravis: What is the Evidence?: A Critically Appraised Topic. Neurologist 2015, 19, 145–148. [Google Scholar] [CrossRef] [PubMed]
- Qureshi, A.I.; Choudhry, M.A.; Akbar, M.S.; Mohammad, Y.; Chua, H.C.; Yahia, A.M.; Ulatowski, J.A.; Krendel, D.A.; Leshner, R.T. Plasma exchange versus intravenous immunoglobulin treatment in myasthenic crisis. Neurology 1999, 52, 629–632. [Google Scholar] [CrossRef] [PubMed]
- Iori, E.; Mazzoli, M.; Ariatti, A.; Bastia, E.; Agnoletto, V.; Gozzi, M.; Marchioni, A.; Galassi, G. Predictors of outcome in patients with myasthenic crisis undergoing non-invasive mechanical ventilation: A retrospective 20 year longitudinal cohort study from a single Italian center. Neuromuscul. Disord. 2021, 31, 1241–1250. [Google Scholar] [CrossRef]
- Ipe, T.S.; Davis, A.R.; Raval, J.S. Therapeutic Plasma Exchange in Myasthenia Gravis: A Systematic Literature Review and Meta-Analysis of Comparative Evidence. Front. Neurol. 2021, 12, 662856. [Google Scholar] [CrossRef] [PubMed]
- Seneviratne, J.; Mandrekar, J.; Wijdicks, E.F.; Rabinstein, A.A. Noninvasive ventilation in myasthenic crisis. Arch. Neurol. 2008, 65, 54–58. [Google Scholar] [CrossRef] [Green Version]
- Birch, T.B. Neuromuscular Disorders in the Intensive Care Unit. Contin. Lifelong Learn. Neurol. 2021, 27, 1344–1364. [Google Scholar] [CrossRef]
- Usmani, A.; Kwan, L.; Wahib-Khalil, D.; Trivedi, J.; Nations, S.; Sarode, R. Excellent response to therapeutic plasma exchange in myasthenia gravis patients irrespective of antibody status. J. Clin. Apher. 2019, 34, 416–422. [Google Scholar] [CrossRef]
- Farmakidis, C.; Pasnoor, M.; Dimachkie, M.M.; Barohn, R.J. Treatment of Myasthenia Gravis. Neurol. Clin. 2018, 36, 311–337. [Google Scholar] [CrossRef]
- Hoffmann, S.; Kohler, S.; Ziegler, A.; Meisel, A. Glucocorticoids in myasthenia gravis—If, when, how, and how much? Acta Neurol. Scand. 2014, 130, 211–221. [Google Scholar] [CrossRef]
- Farrugia, M.E.; Goodfellow, J.A. A Practical Approach to Managing Patients with Myasthenia Gravis—Opinions and a Review of the Literature. Front. Neurol. 2020, 11, 604. [Google Scholar] [CrossRef]
- Nagane, Y.; Suzuki, S.; Suzuki, N.; Utsugisawa, K. Early aggressive treatment strategy against myasthenia gravis. Eur. Neurol. 2011, 65, 16–22. [Google Scholar] [CrossRef] [PubMed]
- Carandina-Maffeis, R.; Nucci, A.; Marques, J.F., Jr.; Roveri, E.G.; Pfeilsticker, B.H.; Garibaldi, S.G.; de Deus-Silva, L. Plasmapheresis in the treatment of myasthenia gravis: Retrospective study of 26 patients. Arq. Neuro-Psiquiatr. 2004, 62, 391–395. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Angstwurm, K.; Vidal, A.; Stetefeld, H.; Dohmen, C.; Mergenthaler, P.; Kohler, S.; Schönenberger, S.; Bösel, J.; Neumann, U.; Lee, D.-H.; et al. Early Tracheostomy Is Associated with Shorter Ventilation Time and Duration of ICU Stay in Patients with Myasthenic Crisis-A Multicenter Analysis. J. Intensive Care Med. 2022, 37, 32–40. [Google Scholar] [CrossRef] [PubMed]
- Chiu, H.-C.; Chen, W.-H.; Yeh, J.-H. The six year experience of plasmapheresis in patients with myasthenia gravis. Ther. Apher. 2000, 4, 291–295. [Google Scholar] [CrossRef]
- Yamakova, Y.; Ilieva, V.A.; Petkov, R.; Yankov, G. Nanomembrane-Based Therapeutic Plasmapheresis after Non-Invasive Ventilation Failure for Treatment of a Patient with Acute Respiratory Distress Syndrome and Myasthenia Gravis: A Case Report. Blood Purif. 2019, 48, 382–384. [Google Scholar] [CrossRef]
- Bennani, H.N.; Lagrange, E.; Noble, J.; Malvezzi, P.; Motte, L.; Chevallier, E.; Rostaing, L.; Jouve, T. Treatment of refractory myasthenia gravis by double-filtration plasmapheresis and rituximab: A case series of nine patients and literature review. J. Clin. Apher. 2021, 36, 348–363. [Google Scholar] [CrossRef]
Conventional Treatment n = 24 | Nanomembrane-Based TPE n = 12 | p Value | |
---|---|---|---|
Gender (males/females) | 8/16 | 6/6 | 0.471 |
Age (mean ± SD) (range) | 41 ± 15 (18–76) | 53 ± 17 (28–77) | 0.078 |
Anti-AchR, n (%) | 12 (50%) | 7 (58%) | 0.637 |
Anti-MuSK, n (%) | 1 (4%) | 2 (17%) | 0.253 |
Double seronegative, n (%) | 11 (46%) | 3 (25%) | 0.230 |
Thymectomy, n (%) | 7 (29%) | 5 (42%) | 0.479 |
Early onset (<50 years), n (%) | 15 (63%) | 6 (50%) | 0.473 |
MGFA class before MC (IV/V) | 10/14 | 9/3 | 0.059 |
Cardiovascular disease, n (%) | 5 (21%) | 5 (42%) | 0.192 |
Lung disease, n (%) | 6 (25%) | 3 (25%) | 1.000 |
Kidney disease, n (%) | 1 (4%) | 2 (17%) | 0.189 |
Diabetes mellitus, n (%) | 1 (4%) | 3 (25%) | 0.061 |
Comorbidities (CCI > 2), n (%) | 3 (12%) | 5 (42%) | 0.086 |
Recurrent MC, n (%) | 9 (37%) | 6 (50%) | 0.473 |
Prior use of azathioprine, n (%) | 7 (29%) | 4 (33%) | 0.808 |
Conventional Treatment n = 24 | Nanomembrane-Based TPE n = 12 | p Value | |
---|---|---|---|
Therapy | |||
Escalated corticosteroids | 12 (50%) | 9 (75%) | 0.282 |
Total dose corticosteroids [g (median)] | 0.859 ± 0.959 (0.620) | 0.235 ± 0.450 (0.030) | 0.109 |
Intravenous immunoglobulin | 6 (25%) | 4 (33%) | 0.700 |
Therapeutic plasma exchange | 1 (4%) | 9 (75%) | <0.0001 |
Non-invasive ventilation trial | 9 (37%) | 7 (58%) | 0.236 |
Intubation with invasive ventilation | 20 (83%) | 5 (42%) | 0.020 |
Early tracheotomy (≤10 days) | 12 (50%) | 3 (25%) | 0.282 |
Outcomes | |||
Extubation time (days) | 17 ± 21 | 5 ± 7 | 0.023 |
Responders (MMS ≥ 20) | 18 (75%) | 10 (83%) | 0.691 |
Neuro-ICU LOS (days) | 20 ± 24 | 10 ± 5 | 0.118 |
Hospital LOS (days) | 28 ± 25 | 19 ± 11 | 0.470 |
Complications (VAP, atelectasis, CPR) | 5 (21%) | 3 (25%) | 0.788 |
Mortality | 1 (4.2%) | 1 (8.3%) | 0.618 |
Short-Term Respiratory Support (≤7 Days) n = 16 | Long-Term Respiratory Support (≥8 Days) n = 20 | p Value | |
---|---|---|---|
Baseline characteristics | |||
Gender (males/females) | 6/10 | 8/12 | 0.878 |
Age (mean ± SD) (range) | 53 ± 15 (32–76) | 39 ± 15 (22–77) | 0.010 |
Early onset (<50 years), n (%) | 7 (44%) | 14 (70%) | 0.112 |
MGFA class on neuro-ICU admission (IV/V) | 13/3 | 6/14 | 0.002 |
Comorbidities (CCI > 2), n (%) | 4 (25%) | 4 (20%) | 1.000 |
Therapy | |||
Escalated corticosteroids | 8 (50%) | 13 (65%) | 0.364 |
Intravenous immunoglobulin | 3 (19%) | 7 (35%) | 0.456 |
Therapeutic plasma exchange | 8 (50%) | 2 (10%) | 0.011 |
Non-invasive ventilation trial | 12 (75%) | 4 (20%) | 0.001 |
Predictors | OR | 95% CI of OR | p Value |
---|---|---|---|
Age | 0.942 | 0.896–0.990 | 0.018 |
MGFA class on neuro-ICU admission (IV/V) | 10.111 | 2.086–48.999 | 0.004 |
Therapeutic plasma exchange | 9.000 | 1.550–52.266 | 0.014 |
Non-invasive ventilation trial | 12.000 | 2.484–57.975 | 0.002 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tonev, D.; Georgieva, R.; Vavrek, E. Our Clinical Experience in the Treatment of Myasthenia Gravis Acute Exacerbations with a Novel Nanomembrane-Based Therapeutic Plasma Exchange Technology. J. Clin. Med. 2022, 11, 4021. https://doi.org/10.3390/jcm11144021
Tonev D, Georgieva R, Vavrek E. Our Clinical Experience in the Treatment of Myasthenia Gravis Acute Exacerbations with a Novel Nanomembrane-Based Therapeutic Plasma Exchange Technology. Journal of Clinical Medicine. 2022; 11(14):4021. https://doi.org/10.3390/jcm11144021
Chicago/Turabian StyleTonev, Dimitar, Radostina Georgieva, and Evgeniy Vavrek. 2022. "Our Clinical Experience in the Treatment of Myasthenia Gravis Acute Exacerbations with a Novel Nanomembrane-Based Therapeutic Plasma Exchange Technology" Journal of Clinical Medicine 11, no. 14: 4021. https://doi.org/10.3390/jcm11144021
APA StyleTonev, D., Georgieva, R., & Vavrek, E. (2022). Our Clinical Experience in the Treatment of Myasthenia Gravis Acute Exacerbations with a Novel Nanomembrane-Based Therapeutic Plasma Exchange Technology. Journal of Clinical Medicine, 11(14), 4021. https://doi.org/10.3390/jcm11144021