Long-Term Performance of the Magmaris Drug-Eluting Bioresorbable Metallic Scaffold in All-Comers Patients’ Population
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Data Collection, Clinical Follow-Up, and Adverse Events
2.3. Statistical Analysis
3. Results
3.1. Clinical and Angiographic Characteristics
3.2. Procedural Data and QCA
3.3. Clinical Outcome
4. Discussion
Study Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bangalore, S.; Kumar, S.; Fusaro, M.; Amoroso, N.; Attubato, M.J.; Feit, F.; Bhatt, D.L.; Slater, J. Short- and long term outcomes with drug-eluting and bare-metal coronary stents: A mixed treatment comparison analysis of 117762 patient-years of follow-up from randomized trials. Circulation 2012, 25, 2873–2891. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iqbal, J.; Onuma, Y.; Ormiston, J.; Abizaid, A.; Waksman, R.; Serruys, P. Bioresorbable scaffolds: Rationale, current status, challenges, and future. Eur. Heart J. 2014, 35, 765–776. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Serruys, P.W.; Onuma, Y.; Dudek, D.; Smits, P.C.; Koolen, J.; Chevalier, B.; de Bruyne, B.; Thuesen, L.; McClean, D.; van Geuns, R.J.; et al. Evaluation of a second-generation of a bioresorbable everolimus-eluted vascular scaffold on for the treatment of de novo coronary stenosis. J. Am. Coll. Cardiol. 2011, 58, 1578–1588. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sotomi, Y.; Onuma, Y.; Collet, C.; Tenekecioglu, E.; Virmani, R.; Kleiman, N.S.; Serruys, P.W. Bioresorbable scaffold: The emerging reality and future directions. Circ. Res. 2017, 120, 1341–1352. [Google Scholar] [CrossRef]
- Onuma, Y.; Dudek, D.; Thuesen, L.; Webster, M.; Nieman, K.; Garcia-Garcia, H.M.; Ormiston, J.A.; Serruys, P.W. Five-year clinical and functional multislice comptuted tomography angiographic results after implantation of the fully resorbable polymeric everolimus-eluting scaffold in patients with de novo coronary artery disease. The ABSORB Cohort A trial. JACC Cardiovasc. Interv. 2013, 6, 999–1009. [Google Scholar] [CrossRef] [Green Version]
- Serruys, P.W.; Chevalier, B.; Dudek, D.; Cequier, A.; Carrié, D.; Iniguez, A.; Dominici, M.; van der Schaaf, R.J.; Haude, M.; Wasungu, L.; et al. A bioresorbable everolimus-eluting scaffolds versus a metallic everolimus-eluting stent for ischemic heart disease caused by de novo native coronary lesions (ABSORB II): An interim 1-year analysis of clinical and procedural secondary outcomes from a randomized controlled trial. Lancet 2015, 385, 45–54. [Google Scholar]
- Kimura, T.; Kozuma, K.; Tanabe, K.; Nakamura, S.; Yamane, M.; Muramatsu, T.; Saito, S.; Yajima, J.; Hagiwara, N.; Mitsudo, K.; et al. A randomized trial evaluating everolimus-eluting Absorb bioresorbable scaffolds vs. everolimus-eluting metallic stents in patients with coronary artery disease: ABSORB Japan. Eur. Heart J. 2015, 36, 3332–3342. [Google Scholar] [CrossRef]
- Gao, R.; Yang, Y.; Han, Y.; Huo, Y.; Chen, J.; Yu, B.; Su, X.; Li, L.; Kuo, H.C.; Ying, S.W.; et al. for the ABSORB CHINA investigators. Bioresorbable vascular scaffolds versus metallic stents in patients with coronary artery disease: ABSORB China trial. J. Am. Coll. Cardiol. 2015, 66, 2298–2309. [Google Scholar] [CrossRef] [Green Version]
- Sorrentino, S.; Giustino, G.; Mehran, R.; Kini, A.S.; Sharma, S.K.; Faggioni, M.; Farhan, S.; Vogel, B.; Indolfi, C.; Dangas, G.D. Everolimus-eluting bioresorbable scaffolds versus everolimus-eluting metallic stents. J. Am. Coll. Cardiol. 2017, 69, 3055–3066. [Google Scholar] [CrossRef]
- Mahmoud, A.N.; Barakat, A.F.; Elgendy, A.Y.; Schneibel, E.; Mentias, A.; Abuzaid, A.; Elgendy, I.Y. Long-term efficacy and safety of everolimus-eluting bioresorbable vascular scaffolds versus everolimus-eluting metallic stents: A meta-analysis of randomized trials. Circ. Cardiovasc. Interv. 2017, 10, e005286. [Google Scholar] [CrossRef]
- Peng, X.; Qu, W.; Jia, Y.; Wang, Y.; Yu, B.; Tian, J. Bioresorbable scaffolds: Contemporary practice and future directions. Front. Cardiovasc. Med. 2020, 7, 589571. [Google Scholar] [CrossRef] [PubMed]
- Waksman, R.; Zumstein, P.; Pritsch, M.; Wittchow, E.; Haude, M.; Lapointe-Corriveau, C.; Leclerc, G.; Joner, M. Second-generation magnesium scaffold Magmaris, device design, and preclinical evaluation in a porcine coronary artery model. EuroIntervention 2017, 13, 440–449. [Google Scholar] [CrossRef] [PubMed]
- Haude, M.; Ince, H.; Abizaid, A.; Toelg, R.; Lemos, P.A.; von Birgelen, C.; Christiansen, E.H.; Wijns, W.; Neumann, F.J.; Kaiser, C.; et al. Sustained safety and performance of the second-generation drug-eluting absoarbable metal scaffold in patients with de novo coronary lesions: 12-month clinical results and angiographic findings of the BIOSOLVE-II first-in-man trial. Eur. Heart J. 2016, 37, 2701–2709. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garcia-Garcia, H.M.; Haude, M.; Kuku, K.; Hideo-Kajita, A.; Ince, H.; Abizaid, A.; Tölg, R.; Lemos, P.A.; von Birgelen, C.; Christiansen, E.H.; et al. In vivo serial invasive imaging of the second-generation drug-eluting metal scaffold (Magmaris-DREAMS 2G) in de novo coronary lesions: Insights from the BIOSOLVE-II First-in-Man trial. Int. J. Cardiol. 2018, 252, 22–28. [Google Scholar] [CrossRef] [PubMed]
- Haude, M.; Ince, H.; Kische, S.; Abizaid, A.; Tölg, R.; Alves Lemos, P.; van Mieghem, N.M.; Verheye, S.; von Birgelen, C.; Christiansen, E.H.; et al. Safety and clinical performance of a drug eluting absorbable metal scaffold in the treatment of subjects with de novo lesions in native coronary arteries: Pooled 12-month outcomes of BIOSOLVE-II and BIOSOLVE-III. Catheter Cardiovasc. Interv. 2018, 92, E502–E511. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haude, M.; Ince, H.; Kische, S.; Abizaid, A.; Tölg, R.; Alves, L.P.; van Mieghem, N.; Verheye, S.; Von Birgelen, C.; Christiansen, E. Sustained safety and clinical performance of a drug-eluting absorbable metal scaffold up to 24 months: Pooled outcomes of BIOSOLVE-II and BIOSOLVE-III. EuroIntervention 2017, 13, 432–439. [Google Scholar]
- Bennett, J.; Wlodarczak, A.; Torzewski, J.; Starmer, G.; Buck, T.; Haude, M.; Moccetti, M.; Kang-Yin Lee, M.; Verheye, S. Performance and Safety of the Resorbable Magnesium Scaffold, Magmaris, in a Real-World Setting: Primary and Secondary Endpoint Analysis of the Full Cohort (2066 Subjects) of the BIOSOLVE-IV Registry. J. Am. Coll. Cardiol. 2021, 78 (Suppl. S19), B49. [Google Scholar] [CrossRef]
- U.S. Food and Drug Administration. Absorb GTI Bioresorbable Vascular Scaffold (BVS) by Abbot Vascular: Letter to Health Care Providers—FDA Investigating Increased Rate of Major Adverse Cardiac Events. March 18, 2017. Available online: https://www.fda.gov/Safety/MedWatch/SafetyInformation/SafetyAlerts/forHumanMedicalProducts/ucm547256.htm (accessed on 15 January 2022).
- Fajadet, J.; Haude, M.; Joner, M.; Koolen, J.; Lee, M.; Tolg, R.; Waksman, R. Magmaris preliminary recommendation upon comercial lounch: A consensus from the expert panel on 14 April 2016. EuroIntervention 2016, 12, 828–833. [Google Scholar] [CrossRef]
- Waksman, R.; Lipinski, M.J.; Acampado, E.; Cheng, Q.; Adams, L.; Torii, S.; Gai, J.; Torguson, R.; Hellinga, D.M.; Westman, P.C.; et al. Comparison of acute thrombogenicity for metallic and polymer bioabsorbable scaffolds; Magmaris versus Absorb in a porcine arteriovenous shant model. Circ. Cardiovsc. Interv. 2017, 10, e004762. [Google Scholar] [CrossRef]
- Onuma, Y.; Serruys, P.W. Rather tick, yet antithrombogenic: Is the Magmarius scaffold a new hope for bioresorbable coronary scaffold? Circ. Cardiovsc. Interv. 2017, 10, e005663. [Google Scholar] [CrossRef]
- Ibanez, B.; James, S.; Agewall, S.; Antunes, M.J.; Bucciarelli-Ducci, C.; Bueno, H.; Caforio, A.L.; Crea, F.; Goudevenos, J.A.; Halvorsen, S.; et al. ESC Scientific Document Group. 2017 ESC Guidelines for the management of acute myocardial infarction in patients presenting with ST-segment elevation: The Task Force for the management of acute myocardial infarction in patients presenting with ST-segment elevation of the European Society of Cardiology (ESC). Eur. Heart J. 2018, 39, 119–177. [Google Scholar] [PubMed] [Green Version]
- Cutlip, D.E.; Windecker, S.; Mehran, R.; Boam, A.; Cohen, D.J.; van Es, G.A.; Gabriel Steg, P.; Morel, M.A.; Mauri, L.; Vranckx, P.; et al. Clinical end points in coronary artery trials; a case for standardized definitions. Circulation 2007, 115, 2344–2351. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ellis, S.G.; Kereiakes, D.J.; Metzger, D.C.; Caputo, R.P.; Rizik, D.G.; Teirstein, P.S.; Litt, M.R.; Kini, A.; Kabour, A.; Marx, S.O.; et al. Everolimus-eluting bioresorbable scaffolds for coronary artery disease. N. Engl. J. Med. 2015, 373, 1905–1915. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stone, G.W.; Gao, R.; Kimura, T.; Kereiakes, D.J.; Ellis, S.G.; Onuma, Y.; Cheong, W.F.; Jones-McMeans, J.; Su, X.; Zhang, Z.; et al. 1-year outcomes with the Absorb bioresorbable scaffolds in patients with coronary artery disease: A patient-level, pooled meta-analysis. Lancet 2016, 387, 1277–1289. [Google Scholar] [CrossRef]
- Wykrzykowska, J.J.; Kraak, R.P.; Hofma, S.H.; van der Schaaf, R.J.; Arkenbout, E.K.; IJsselmuiden, A.J.; Elias, J.; van Dongen, I.M.; Tijssen, R.Y.; Koch, K.T.; et al. Bioresorbable scaffolds versus metallic stents in routine PCI. N. Engl. J. Med. 2017, 376, 2319–2328. [Google Scholar] [CrossRef]
- Serruys, P.W.; Chevalier, B.; Sotomi, Y.; Cequier, A.; Carrié, D.; Piek, J.J.; van Boven, A.J.; Dominici, M.; Dudek, D.; McClean, D.; et al. Comparison of an everolimus-eluting bioresorbable scaffold with an everolimus-eluting metallic stent for the treatment of coronary artery stenosis (ABSORB II): A 3-year, randomized, controlled, single-blind, multicenter clinical trial. Lancet 2016, 388, 2479–2491. [Google Scholar] [CrossRef]
- Puricel, S.; Cuculi, F.; Weissner, M.; Schmermund, A.; Jamshidi, P.; Nyffenegger, T.; Binder, H.; Eggebrecht, H.; Münzel, T.; Cook, S.; et al. Bioresorbable coronary scaffold thrombosis: Multicenter comprehensive analysis of clinical presentation, mechanisms, and predictors. J. Am. Coll. Cardiol. 2016, 67, 921–931. [Google Scholar] [CrossRef]
- Ali, Z.A.; Serruys, P.W.; Kimura, T.; Gao, R.; Ellis, S.G.; Kereiakes, D.J.; Onuma, Y.; Simonton, C.; Zhang, Z.; Stone, G.W. 2-year outcome with the Absorb bioresorbable scaffold for treatment of coronary artery disease: A systematic review and meta-analysis of seven randomized trials with an individual patient data substudy. Lancet 2017, 390, 760–772. [Google Scholar] [CrossRef]
- Boeder, N.F.; Dörr, O.; Koepp, T.; Blachutzik, F.; Achenbach, S.; Elsässer, A.; Hamm, C.W.; Nef, H.M. Acute mechanical performace of Magmaris vs. DESolve bioresorabable scaffolds ina real-world scenario. Front. Cardiovasc. Med. 2021, 8, 696287. [Google Scholar] [CrossRef]
Variable | All (n = 54) |
---|---|
Age ± SD, years | 54 ± 11 |
Gender, males (%) | 46 (85) |
Previous MI, n (%) | 12 (22) |
Previous PCI, n (%) | 8 (15) |
Previous stroke/TIA, n (%) | 1 (2) |
Hypertension, n (%) | 28 (52) |
Diabetes, n (%) | 33 (61) |
Smoking, n (%) | 29 (54) |
Hyperlipidemia, n (%) | 28 (52) |
Family history, n (%) | 2 (4) |
Heart failure, n (%) | 2 (4) |
Renal failure, n (%) | 2 (4) |
Stable angina, n (%) | 24 (44) |
Unstable angina, n (%) | 13 (24) |
NSTEMI, n (%) | 10 (19) |
STEMI, n (%) | 7 (13) |
Aspirin, n (%) | 54 (100) |
Clopidogrel, n (%) | 32 (59) |
Ticagrelor, n (%) | 22 (41) |
Number of diseased vessels per patient | |
One-vessel disease, n (%) | 26 (48) |
Two-vessel disease, n (%) | 14 (26) |
Three-vessel disease, n (%) | 14 (26) |
Number of treated lesions per patient (n = 85) | |
One treated lesion, n (%) | 31 (57) |
Two treated lesions, n (%) | 15 (28) |
Three treated lesions, n (%) | 8 (15) |
Number of implanted Magmaris per patient (n = 64) | |
One stent, n (%) | 47 (87) |
Two stents, n (%) | 5 (9) |
Three stents, n (%) | 1 (2) |
Four stents, n (%) | 1 (2) |
Number of implanted DES per patient (n = 36) | |
One stent, n (%) | 17 (31) |
Two stents, n (%) | 5 (9) |
Three stents, n (%) | 3 (6) |
Treated vessel | |
LAD/DG, n (%) | 24 (44) |
LCx/OM, n (%) | 9 (17) |
RCA, n (%) | 20 (37) |
RIM, n (%) | 1 (2) |
Bifurcation lesion, n (%) | 10 (19) |
Chronic total occlusion, n (%) | 2 (4) |
Access site | |
Transradial approach, n (%) | 52 (96) |
Transfemoral approach, n (%) | 2 (4) |
Predilatation, n (%) | 54 (100) |
Predilatation balloon size ± SD, mm | 3.12 ± 0.22 |
Predilatation balloon length ± SD, mm | 18.4 ± 3.4 |
Predilatation balloon pressure ± SD, atm | 13.8 ± 2.8 |
Magmaris diameter ± SD, mm | 3.30 ± 0.25 |
Magmaris length ± SD, mm | 21.4 ± 3.7 |
Magmaris implantation pressure ± SD, atm | 13.1 ± 2.3 |
Postdilatation, n (%) | 53 (98) |
Postdilatation balloon size ± SD, mm | 3.54 ± 0.41 |
Postdilatation balloon length ± SD, mm | 12.2 ± 5.2 |
Postdilatation balloon pressure ± SD, atm | 15.6 ± 3.7 |
Acute gain ± SD, mm | 1.23 ± 0.45 |
Angiographic success (per patient), n (%) | 53 (98) |
Procedural success (per patient), n (%) | 53 (98) |
DOCE, n (%) | 7 (13) |
Cardiac mortality, n (%) | 0 (0) |
Target-vessel myocardial infarction, n (%) | 2 (4) |
Clinically driven target lesion revascularization, n (%) | 6 (11) |
POCE, n (%) | 11 (21) |
All-cause mortality, n (%) | 0 (0) |
All myocardial infarction, n (%) | 3 (6) |
All revacularizations, n (%) | 11 (20) |
CABG, n (%) | 0 (0) |
Nontarget lesion revascularization | 6 (11) |
In-stent restenosis, n (%) | 5 (9) |
Stent thrombosis, n (%) | 2 (4) |
Acute and early stent thrombosis, n (%) | 1 (2) |
Late stent thrombosis, n (%) | 1 (2) |
Very late stent thrombosis, n (%) | 0 (0) |
Univariate Analysis | HR (95%CI for OR) | p-Value |
---|---|---|
Age ± SD, years | 1.022 (0.954–1.095) | 0.536 |
Gender, males (%) | 1.046 (0.126–8.693) | 0.967 |
Previous MI, % | 1.398 (0.271–7.213) | 0.689 |
Previous PCI, % | 4.657 (1.039–20.880) | 0.044 |
Hypertension, % | 2.392 (0.464–12.335) | 0.297 |
Diabetes, % | 3.869 (0.466–32.144) | 0.210 |
Smoking, % | 2.132 (0.414–10.991) | 0.366 |
Hyperlipidemia, % | 5.888 (0.708–48.933) | 0.101 |
Stable angina, % | 0.459 (0.127–2.538) | 0.459 |
ACS, % | 1.761 (0.394–7.871) | 0.459 |
Bifurcation lesion, % | 2.271 (0.508–10.151) | 0.283 |
IVUS and/or OCT, % | 0.440 (0.053–3.658) | 0.448 |
LAD/DG, % | 0.468 (0.091–2.414) | 0.364 |
LCx/OM, % | 2.352 (0.456–12.133) | 0.307 |
RCA, % | 1.256 (0.281–5.613) | 0.766 |
Lesion type A, % | 0.189 (0.023–1.567) | 0.123 |
Lesion type B1, % | 0.956 (0.115–7.940) | 0.967 |
Lesion type B2/C, % | 4.037 (0.783–20.811) | 0.095 |
Multivessel PCI, % | 0.956 (0.214–4.272) | 0.953 |
Magmaris ≥ 2, % | 5.442 (1.211–24.456) | 0.027 |
Magmaris plus DES/BVS, % | 1.382 (0.309–6.175) | 0.672 |
Total length of Magmaris ≥ 40 mm, % | 6.399 (1.419–28.855) | 0.016 |
Model 1. Multivariate analysis (forward method) with Magmaris ≥ 2 | HR (95%CI for OR) | p-value |
Magmaris ≥ 2, % | 5.442 (1.211–24.456) | 0.027 |
Model 2. Multivariate analysis (forward method) with Total length of Magmaris≥ 40 mm | ||
Total length of Magmaris ≥ 40 mm, % | 6.399 (1.419–28.855) | 0.016 |
Univariate Analysis | HR (95%CI for OR) | p-Value |
---|---|---|
Age ± SD, years | 1.024 (0.970–1.081) | 0.388 |
Gender, males (%) | 1.810 (0.232–14.145) | 0.552 |
Previous MI, % | 2.235 (0.654–7.637) | 0.200 |
Previous PCI, % | 6.168 (1.863–20.421) | 0.003 |
Hypertension, % | 1.159 (0.354–3.801) | 0.807 |
Diabetes, % | 1.036 (0.303–3.541) | 0.955 |
Smoking, % | 1.485 (0.435–5.076) | 0.528 |
Hyperlipidemia, % | 2.654 (0.704–10.015) | 0.150 |
Stable angina, % | 0.896 (0.273–2.936) | 0.856 |
ACS, % | 1.116 (0.341–3.658) | 0.856 |
Bifurcation lesion, % | 2.552 (0.778–8.375) | 0.122 |
IVUS and/or OCT, % | 0.566 (0.122–2.619) | 0.466 |
LAD/DG, % | 1.003 (0.306–3.288) | 0.996 |
LCx/OM, % | 1.242 (0.268–5.750) | 0.782 |
RCA, % | 0.959 (0.281–3.275) | 0.946 |
Lesion type A, % | 0.430 (0.114–1.623) | 0.213 |
Lesion type B1, % | 1.810 (0.232–14.145) | 0.572 |
Lesion type B2/C, % | 2.843 (0.832–9.717) | 0.096 |
Multivessel PCI, % | 1.028 (0.314–3.371) | 0.963 |
Magmaris ≥ 2, % | 2.567 (0.679–9.699) | 0.165 |
Magmaris plus DES, % | 1.888 (0.552–6.452) | 0.311 |
Total length of Magmaris ≥ 40 mm, % | 3.002 (0.793–11.360) | 0.105 |
Multivariate analysis (forward method) | HR (95%CI for OR) | p-value |
Previous PCI, % | 7.385 (2.216–24.613) | 0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al Nooryani, A.; Aboushokka, W.; AlBaba, B.; Kerfes, J.; Abudaqa, L.; Bhatia, A.; Mansoor, A.; Nageeb, R.; Aleksandric, S.; Beleslin, B. Long-Term Performance of the Magmaris Drug-Eluting Bioresorbable Metallic Scaffold in All-Comers Patients’ Population. J. Clin. Med. 2022, 11, 3726. https://doi.org/10.3390/jcm11133726
Al Nooryani A, Aboushokka W, AlBaba B, Kerfes J, Abudaqa L, Bhatia A, Mansoor A, Nageeb R, Aleksandric S, Beleslin B. Long-Term Performance of the Magmaris Drug-Eluting Bioresorbable Metallic Scaffold in All-Comers Patients’ Population. Journal of Clinical Medicine. 2022; 11(13):3726. https://doi.org/10.3390/jcm11133726
Chicago/Turabian StyleAl Nooryani, Arif, Wael Aboushokka, Bassam AlBaba, Jalal Kerfes, Loai Abudaqa, Amit Bhatia, Anoop Mansoor, Ruwaide Nageeb, Srdjan Aleksandric, and Branko Beleslin. 2022. "Long-Term Performance of the Magmaris Drug-Eluting Bioresorbable Metallic Scaffold in All-Comers Patients’ Population" Journal of Clinical Medicine 11, no. 13: 3726. https://doi.org/10.3390/jcm11133726
APA StyleAl Nooryani, A., Aboushokka, W., AlBaba, B., Kerfes, J., Abudaqa, L., Bhatia, A., Mansoor, A., Nageeb, R., Aleksandric, S., & Beleslin, B. (2022). Long-Term Performance of the Magmaris Drug-Eluting Bioresorbable Metallic Scaffold in All-Comers Patients’ Population. Journal of Clinical Medicine, 11(13), 3726. https://doi.org/10.3390/jcm11133726