Remodeling of Retinal Arterioles and Carotid Arteries in Heart Failure Development—A Preliminary Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Retinal Arteriolar Structural Assessment
2.3. Carotid Artery Ultrasound
2.4. 24 h Ambulatory Blood Pressure Monitoring
2.5. Transthoracic Echocardiography
2.6. Other Clinical Covariates
2.7. Statistical Analysis
3. Results
4. Discussion
4.1. Large Artery Remodeling and Heart Failure
4.2. Small Artery Remodeling and Heart Failure
4.3. Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pfeffer, M.A.; Shah, A.M.; Borlaug, B.A. Heart Failure with Preserved Ejection Fraction in Perspective. Circ. Res. 2019, 124, 1598–1617. [Google Scholar] [CrossRef] [PubMed]
- ALLHAT Officers and Coordinators for the ALLHAT Collaborative Research Group; The Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial. Major Outcomes in High-Risk Hypertensive Patients Randomized to Angiotensin-Converting Enzyme Inhibitor or Calcium Channel Blocker vs Diuretic. JAMA J. Am. Med. Assoc. 2002, 288, 2981–2997. [Google Scholar] [CrossRef] [PubMed]
- Antonios, T.F. Microvascular rarefaction in hypertension–reversal or overcorrection by treatment? Am. J. Hypertens. 2006, 19, 484–485. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rosenbaum, D.; Alessandro, M.; Koch, E.; Rossant, F.; Gallo, A.; Kachenoura, N.; Paques, M.; Redheuil, A.; Girerd, X. Effects of age, blood pressure and antihypertensive treatments on retinal arterioles remodeling assessed by adaptive optics. J. Hypertens. 2016, 34, 1115–1122. [Google Scholar] [CrossRef]
- Levy, B.I.; Ambrosio, G.; Pries, A.R.; Struijker-Boudier, H.A. Microcirculation in hypertension: A new target for treatment? Circulation 2001, 104, 735–740. Available online: http://queens.ezp1.qub.ac.uk/login?url=http://ovidsp.ovid.com/ovidweb.cgi?T=JS&CSC=Y&NEWS=N&PAGE=fulltext&D=med4&AN=11489784,%5Cnhttp://linksource.ebsco.com/ls.941a0f3a-fc44-412f-81a4-365a06658f2f.false/linking.aspx?&sid=OVID:medline&id=pmid:11489784&id=d (accessed on 22 April 2022). [CrossRef] [Green Version]
- Izzard, A.S.; Rizzoni, D.; Agabiti-Rosei, E.; Heagerty, A.M. Small artery structure and hypertension: Adaptive changes and target organ damage. J. Hypertens. 2005, 23, 247–250. [Google Scholar] [CrossRef] [Green Version]
- Harazny, J.M.; Ritt, M.; Baleanu, D.; Ott, C.; Heckmann, J.; Schlaich, M.P.; Michelson, G.; Schmieder, R.E. Increased wall: Lumen ratio of retinal arterioles in male patients with a history of a cerebrovascular event. Hypertension 2007, 50, 623–629. [Google Scholar] [CrossRef] [Green Version]
- Ritt, M.; Schmieder, R.E. Wall-to-lumen ratio of retinal arterioles as a tool to assess vascular changes. Hypertension 2009, 54, 384–387. [Google Scholar] [CrossRef]
- Koch, E.; Rosenbaum, D.; Brolly, A.; Sahel, J.A.; Chaumet-Riffaud, P.; Girerd, X.; Rossant, F.; Paques, M. Morphometric analysis of small arteries in the human retina using adaptive optics imaging: Relationship with blood pressure and focal vascular changes. J. Hypertens. 2014, 32, 890–898. [Google Scholar] [CrossRef] [Green Version]
- Lakka, T.A.; Salonen, R.; Kaplan, G.A.; Salonen, J.T. Blood pressure and the progression of carotid atherosclerosis in middle-aged men. Hypertension 1999, 34, 51–56. [Google Scholar] [CrossRef] [Green Version]
- Hedblad, B.; Wikstrand, J.; Janzon, L.; Wedel, H.; Berglund, G. Low-dose metoprolol CR/XL and fluvastatin slow progression of carotid intima-media thickness: Main results from the β-blocker cholesterol-lowering asymptomatic plaque study (BCAPS). Circulation 2001, 103, 1721–1726. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Simon, A.; Gariépy, J.; Moyse, D.; Levenson, J. Differential effects of nifedipine and co-amilozide on the progression of early carotid wall changes. Circulation 2001, 103, 2949–2954. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Puato, M.; Boschetti, G.; Rattazzi, M.; Zanon, M.; Pesavento, R.; Faggin, E.; Fania, C.; Benetti, E.; Palatini, P.; Pauletto, P. Intima-media thickness remodelling in hypertensive subjects with long-term well-controlled blood pressure levels. Blood Press 2017, 26, 48–53. [Google Scholar] [CrossRef]
- Levy, D.; Garrison, R.J.; Savage, D.D.; Kannel, W.B.; Castelli, W.P. Prognostic implications of echocardiographically determined left ventricular mass in the framingham heart study. N. Engl. J. Med. 1990, 322, 1561–1566. [Google Scholar] [CrossRef] [PubMed]
- Aladin, A.I.; Soliman, E.Z.; Kitzman, D.W.; Dardari, Z.; Rasool, S.H.; Yeboah, J.; Budoff, M.J.; Psaty, B.M.; Ouyang, P.; Polak, J.F.; et al. Comparison of the Relation of Carotid Intima-Media Thickness with Incident Heart Failure with Reduced versus Preserved Ejection Fraction (from the Multi-Ethnic Study of Atherosclerosis [MESA]). Am. J. Cardiol. 2021, 148, 102–109. [Google Scholar] [CrossRef] [PubMed]
- Weerts, J.; Mourmans, S.G.J.; Aizpurua, A.B.; Schroen, B.L.M.; Knackstedt, C.; Eringa, E.; Houben, A.; van Empel, V.P.M. The Role of Systemic Microvascular Dysfunction in Heart Failure with Preserved Ejection Fraction. Biomolecules 2022, 12, 278. [Google Scholar] [CrossRef]
- Tromp, J.; Lim, S.L.; Tay, W.T.; Teng, T.K.; Chandramouli, C.; Ouwerkerk, W.; Wander, G.S.; Sawhney, J.P.S.; Yap, J.; MacDonald, M.R.; et al. Microvascular Disease in Patients with Diabetes with Heart Failure and Reduced Ejection versus Preserved Ejection Fraction. Diabetes Care 2019, 42, 1792–1799. [Google Scholar] [CrossRef] [Green Version]
- Nägele, M.P.; Barthelmes, J.; Ludovici, V.; Cantatore, S.; von Eckardstein, A.; Enseleit, F.; Lüscher, T.F.; Ruschitzka, F.; Sudano, I.; Flammer, A.J. Retinal microvascular dysfunction in heart failure. Eur. Heart J. 2018, 39, 47–56. [Google Scholar] [CrossRef] [Green Version]
- Ponikowski, P.; Voors, A.A.; Anker, S.D.; Bueno, H.; Cleland, J.G.F.; Coats, A.J.S.; Falk, V.; González-Juanatey, J.R.; Harjola, V.P.; Jankowska, E.A.; et al. 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur. Heart J. 2016, 37, 2129–2200. [Google Scholar] [CrossRef]
- Touboul, P.-J.; Hennerici, M.G.; Meairs, S.; Adams, H.; Amarenco, P.; Desvarieux, M.; Ebrahim, S.; Fatar, M.; Hernandez, R.; Kownator, S.; et al. Mannheim intima-media thickness consensus. Cerebrovasc. Dis. 2004, 18, 346–349. [Google Scholar] [CrossRef]
- Pickering, T.G.; Shimbo, D.; Haas, D. Ambulatory blood-pressure monitoring. N. Engl. J. Med. 2006, 354, 22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Williams, B.; Mancia, G.; Spiering, W.; Agabiti Rosei, E.; Azizi, M.; Burnier, M.; Desormais, I. 2018 ESC/ESH Guidelines for themanagement of arterial hypertension. Eur. Heart J. 2018, 39, 3021–3104. [Google Scholar] [CrossRef] [PubMed]
- Lang, R.M.; Bierig, M.; Devereux, R.B.; Flachskampf, F.A.; Foster, E.; Pellikka, P.A.; Picard, M.H.; Roman, M.J.; Seward, J.; Shanewise, J.S.; et al. Recommendations for chamber quantification: A report from the American Society of Echocardiography’s guidelines and standards committee and the Chamber Quantification Writing Group, developed in conjunction with the European Association of Echocardiograph. J. Am. Soc. Echocardiogr. 2005, 18, 1440–1463. [Google Scholar] [CrossRef] [PubMed]
- Verbraecken, J.; Van de Heyning, P.; De Backer, W.; Van Gaal, L. Body surface area in normal-weight, overweight, and obese adults. A comparison study. Metabolism 2006, 55, 515–524. [Google Scholar] [CrossRef] [PubMed]
- Levy, D.; Larson, M.G.; Vasan, R.S.; Kannel, W.B.; Ho, K.K.L. The progression from hypertension to congestive heart failure. J. Am. Med. Assoc. 1996, 275, 1557–1562. [Google Scholar] [CrossRef]
- Effoe, V.S.; Rodriguez, C.J.; Wagenknecht, L.E.; Evans, G.W.; Chang, P.P.; Mirabelli, M.C.; Bertoni, A.G. Carotid intima-media thickness is associated with incident heart failure among middle-aged whites and blacks: The Atherosclerosis Risk in Communities study. J. Am. Heart Assoc. 2014, 3, e000797. [Google Scholar] [CrossRef] [Green Version]
- Hegele, R.A. The pathogenesis of atherosclerosis. Clin. Chim. Acta 1996, 246, 21–38. [Google Scholar] [CrossRef]
- Hogg, K.; Swedberg, K.; Mcmurray, J. Heart failure with preserved left ventricular systolic function; epidemiology, clinical characteristics, and prognosis. J. Am. Coll. Cardiol. 2004, 43, 317–327. [Google Scholar] [CrossRef] [Green Version]
- Senni, M.; Redfield, M.M. Heart failure with preserved systolic function. A different natural history? J. Am. Coll. Cardiol. 2001, 38, 1277–1282. [Google Scholar] [CrossRef] [Green Version]
- Mathew, S.T.; Gottdiener, J.S.; Kitzman, D.; Aurigemma, G. Congestive heart failure in the elderly: The Cardiovascular Health Study. Am. J. Geriatr. Cardiol. 2004, 13, 61–68. [Google Scholar] [CrossRef]
- Ritt, M.; Harazny, J.M.; Ott, C.; Schlaich, M.P.; Schneider, M.P.; Michelson, G.; Schmieder, R.E. Analysis of retinal arteriolar structure in never-treated patients with essential hypertension. J. Hypertens. 2008, 26, 1427–1434. [Google Scholar] [CrossRef] [PubMed]
- Wong, T.Y.; Rosamond, W.; Chang, P.P.; Couper, D.J.; Sharrett, A.R.; Hubbard, L.D.; Folsom, A.R.; Klein, R. Retinopathy and risk of congestive heart failure. JAMA 2005, 293, 63–69. [Google Scholar] [CrossRef] [PubMed]
- Chandra, A.; Seidelmann, S.B.; Claggett, B.L.; Klein, B.; Klein, R.; Shah, A.M.; Solomon, S.D. The association of retinal vessel calibres with heart failure and long-term alterations in cardiac structure and function: The Atherosclerosis Risk in Communities (ARIC) Study. Eur. J. Heart Fail. 2019, 21, 1207–1215. [Google Scholar] [CrossRef] [PubMed]
- Yüksel, S.; Yüksel, E.; Meriç., M. Abnormal nailfold videocapillaroscopic findings in heart failure patients with preserved ejection fraction. Clin. Hemorheol. Microcirc. 2021, 77, 115–121. [Google Scholar] [CrossRef] [PubMed]
Variable | HFpEF Group n = 14 | Control Group n = 14 | p |
---|---|---|---|
Age (years) | 73 (61–77) | 69 (66–75) | 0.7 |
Men (%) | 4 (29%) | 4 (29%) | 1.0 |
Body mass index (kg/m2) | 32.8 (26.0–36.9) | 27.8 (22.2–28.7) | 0.05 |
Arterial hypertension | 13 (93%) | 12 (86%) | 0.6 |
Previous MI, PCI or CABG | 4 (29%) | 0 (0%) | 0.1 |
Atrial fibrillation | 4 (79%) | 0 (0%) | 0.1 |
Diabetes mellitus | 5 (36%) | 1 (7%) | 0.1 |
COPD | 3 (21%) | 0 (0%) | 0.2 |
Active smoker | 8 (57%) | 7 (50%) | 0.7 |
Variable | HFpEF Group n = 14 | Control Group n = 14 | Δmedian | p |
---|---|---|---|---|
Heart rate (1/min) | 61 (56–65) | 69 (58–73) | −8 | 0.1 |
Office SBP (mmHg) | 130 (122–131) | 148 (145–161) | −18 | 0.01 |
Office DBP (mmHg) | 72 (66–79) | 94 (89–100) | −22 | 0.001 |
Central SBP (mmHg) | 114 (111–123) | 135 (132–144) | −21 | 0.001 |
Central DBP (mmHg) | 73 (68−80) | 96 (89–101) | −23 | 0.001 |
24 h ambulatory blood pressure monitoring | ||||
24 h SBP (mmHg) | 109 (109–118) | 129 (124–133) | −20 | 0.01 |
24 h DBP (mmHg) | 64 (60–66) | 74 (67–78) | −10 | 0.02 |
Dip-SBP (mmHg) | 2.5 (−2.9–5.3) | 9.5 (5.0–14.8) | −7.0 | 0.02 |
Dip-DBP (mmHg) | 5.9 (0.9–2.3) | 16.7 (7.9–23.8) | −10.8 | 0.04 |
Variable | HFpEF Group n = 14 | Control Group n = 14 | Δmedian | p |
---|---|---|---|---|
Retinal arteriolar structural assessment | ||||
rWLR | 0.34 (0.31–0.37) | 0.27 (0.26–0.31) | 0.07 | 0.01 |
Carotid artery ultrasound | ||||
cIMT (cm) | 0.10 (0.09–0.11) | 0.08 (0.07–0.08) | 0.02 | 0.004 |
cL (cm) | 0.61 (0.59–0.73) | 0.67 (0.57–0.73) | −0.06 | 0.9 |
cIMTLR | 0.15 (0.13–0.18) | 0.12 (0.11–0.13) | 0.03 | 0.001 |
Transthoracic echocardiography | ||||
LADd (cm) | 4.4 (4.1–4.8) | 3.9 (3.7–4.1) | 0.5 | 0.03 |
LVDd (cm) | 5.1 (4.8–5.5) | 4.8 (4.5–5.3) | 0.3 | 0.3 |
LVRWT (cm) | 0.41 (0.38–0.44) | 0.47 (0.39–0.48) | −0.06 | 0.3 |
LVMI (g/m2) | 101.0 (89.3–110.0) | 99.3 (92.5–119.0) | 1.7 | 0.9 |
LVEF (%) | 58 (50–62) | 67 (63–71) | −9 | 0.01 |
E | 64 (49–93) | 65 (56–68) | −1 | 0.9 |
Em | 7 (6–9) | 8 (7–11) | −1 | 0.7 |
E/Em (lateral) | 8.9 (7.1–13.3) | 7.9 (6.3–8.6) | 1.0 | 0.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sadowski, J.; Targonski, R.; Cyganski, P.; Nowek, P.; Starek-Stelmaszczyk, M.; Zajac, K.; Juranek, J.; Wojtkiewicz, J.; Rynkiewicz, A. Remodeling of Retinal Arterioles and Carotid Arteries in Heart Failure Development—A Preliminary Study. J. Clin. Med. 2022, 11, 3721. https://doi.org/10.3390/jcm11133721
Sadowski J, Targonski R, Cyganski P, Nowek P, Starek-Stelmaszczyk M, Zajac K, Juranek J, Wojtkiewicz J, Rynkiewicz A. Remodeling of Retinal Arterioles and Carotid Arteries in Heart Failure Development—A Preliminary Study. Journal of Clinical Medicine. 2022; 11(13):3721. https://doi.org/10.3390/jcm11133721
Chicago/Turabian StyleSadowski, Janusz, Ryszard Targonski, Piotr Cyganski, Paulina Nowek, Magdalena Starek-Stelmaszczyk, Katarzyna Zajac, Judyta Juranek, Joanna Wojtkiewicz, and Andrzej Rynkiewicz. 2022. "Remodeling of Retinal Arterioles and Carotid Arteries in Heart Failure Development—A Preliminary Study" Journal of Clinical Medicine 11, no. 13: 3721. https://doi.org/10.3390/jcm11133721
APA StyleSadowski, J., Targonski, R., Cyganski, P., Nowek, P., Starek-Stelmaszczyk, M., Zajac, K., Juranek, J., Wojtkiewicz, J., & Rynkiewicz, A. (2022). Remodeling of Retinal Arterioles and Carotid Arteries in Heart Failure Development—A Preliminary Study. Journal of Clinical Medicine, 11(13), 3721. https://doi.org/10.3390/jcm11133721