The Role of ICG in Robot-Assisted Liver Resections
Abstract
:1. Introduction
2. Material and Methods
2.1. Study Design and Study Population
2.2. ICG Application and Evaluation
2.3. Surgery
2.4. Histological Analysis
2.5. Outcome Measures
2.6. Statistical Analysis
3. Results
Total (n = 54) | ICG (n = 28) | HC (n = 26) | p-Value * | |
---|---|---|---|---|
Clinical Data | ||||
Age (years) mean ± SD | 64.0 ± 14.3 | 65.4 ± 11.1 | 62.5 ± 17.1 | 0.465 a |
Sex (males) % | 50.0 | 53.6 | 46.2 | 0.586 b |
BMI (kg/m2) mean ± SD | 27.5 ± 5.3 | 28.7 ± 7.0 | 26.8 ± 4.3 | 0.389 a |
Liver fibrosis (histopathologically proven) | 13.0 | 14.3 | 11.5 | 0.764 b |
Liver cirrhosis (histopathologically proven) | 24.1 | 17.9 | 30.8 | 0.264 b |
Previous abdominal surgery (yes) % | 44.4 | 50.0 | 38.5 | 0.394 b |
Type of previous surgery (open vs. MI) % | 38.5/61.5 | 21.4/78.6 | 58.3/41.7 | 0.054 b |
Open | 38.5 | 21.4 | 58.3 | 0.054 b |
Minimally-invasive | 30.8 | 42.9 | 16.7 | 0.149 b |
Robot-assisted | 30.8 | 35.7 | 25.0 | 0.555 b |
Previous procedure | ||||
Sigma/LAR | 22.2 | 21.4 | 23.1 | 0.918 b |
Appendectomy | 18.5 | 7.1 | 30.8 | 0.114 b |
Cholecystectomy | 11.1 | 21.4 | 0.0 | 0.077 b |
Herniotomy | 7.4 | 7.1 | 7.7 | 0.957 b |
Right nephrectomy | 7.4 | 7.1 | 7.7 | 0.957 b |
Cystoprostatectomy | 7.4 | 14.3 | 0.0 | 0.157 b |
Caesarean section | 7.4 | 0.0 | 7.7 | 0.290 b |
Gynecological surgery | 7.4 | 0.0 | 15.4 | 0.127 b |
Esophagectomy | 3.7 | 7.1 | 0.0 | 0.326 b |
Right hemicolectomy | 3.7 | 7.1 | 0.0 | 0.326 b |
Left hemicolectomy | 3.7 | 0.0 | 7.7 | 0.290 b |
Adrenalectomy | 3.7 | 7.1 | 0.0 | 0.326 b |
Total (n = 54) | ICG (n = 28) | HC (n = 26) | p-Value * | |
---|---|---|---|---|
Post-operative Data | ||||
Post-operative complications (yes) % | 16.7 | 14.3 | 19.2 | 0.636 b |
Clavien–Dindo I | 11.3 | 10.7 | 11.5 | 0.923 b |
Clavien–Dindo II | 5.7 | 3.6 | 7.7 | 0.486 b |
Clavien–Dindo III | 0.0 | 0.0 | 0.0 | na |
Clavien–Dindo IV | 1.9 | 3.6 | 0.0 | 0.331 b |
Clavien–Dindo V | 0.0 | 0.0 | 0.0 | na |
Size of tumor (mm) mean ± SD | 36.9 ± 31.8 | 27.1 ± 25.0 | 47.6 ± 35.2 | 0.021 a |
Histopathological results | ||||
Hepatocellular carcinoma | 32.1 | 29.6 | 34.6 | 0.633 b |
Hepatocellular carcinoma in cirrhosis | 18.5 | 14.3 | 23.1 | 0.406 b |
Colorectal cancer | 17.0 | 22.2 | 11.5 | 0.330 b |
Focal nodular hyperplasia | 15.1 | 11.1 | 19.2 | 0.379 b |
Cholanciocellular carcinoma | 7.3 | 0.0 | 15.3 | 0.015 b |
Haemangioma | 5.7 | 0.0 | 11.5 | 0.135 b |
Breast cancer | 3.8 | 7.4 | 0.0 | 0.165 b |
Neuroendocrine tumor | 3.8 | 7.4 | 0.0 | 0.165 b |
Gastrointestinal stroma tumor | 1.9 | 0.0 | 3.8 | 0.295 b |
Anal cancer | 1.9 | 0.0 | 3.8 | 0.295 b |
Choroid coat melanoma | 1.9 | 3.7 | 0.0 | 0.331 b |
Non-small cell lung cancer | 1.9 | 3.7 | 0.0 | 0.331 b |
Leiomyosarcoma | 1.9 | 3.7 | 0.0 | 0.331 b |
No malignancy proven | 5.7 | 11.1 | 0.0 | 0.086 b |
Distance to resection margin (mm) mean ± SD | 7.8 ± 12.1 | 5.8 ± 10.9 | 10.2 ± 13.4 | 0.200 a |
Resection margin positive-resections (yes) % | 11.3 | 3.7 | 19.2 | 0.075 b |
Length of hospital stay (days) mean ± SD | 6.4 ± 4.0 | 5.9 ± 5.0 | 6.9 ± 2.7 | 0.383 a |
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Becker, F.; Morgül, H.; Katou, S.; Juratli, M.; Hölzen, J.P.; Pascher, A.; Struecker, B. Robotic Liver Surgery-Current Standards and Future Perspectives. Z. Für Gastroenterol. 2020, 59, 56–62. [Google Scholar] [CrossRef] [PubMed]
- Cipriani, F.F.G.; Magistri, P.; Fontani, A.; Menonna, F.; Annecchiarico, M.; Lauterio, A.; De Carlis, L.; Coratti, A.; Boggi, U.; Ceccarelli, G.; et al. Pure laparoscopic versus robotic liver resections: Multicentric propensity score-based analysis with stratification according to difficulty scores. J. Hepato-Biliary-Pancreat. Sci. 2021, 1–16. [Google Scholar] [CrossRef]
- Hajibandeh, S.H.S.; Dosis, A.; Qayum, M.K.; Hassan, K.; Kausar, A.; Satyadas, T. Level 2a evidence comparing robotic versus laparoscopic left lateral hepatic sectionectomy: A meta-analysis. Langenbeck’s Arch. Surg. 2021, 407, 479–489. [Google Scholar] [CrossRef] [PubMed]
- Lim, C.G.C.; Salloum, C.; Tudisco, A.; Napoli, N.; Boggi, U.; Azoulay, D.; Scatton, O. Outcomes after 3D laparoscopic and robotic liver resection for hepatocellular carcinoma: A multicenter comparative study. Surg. Endosc. 2020, 37, 3258–3266. [Google Scholar] [CrossRef]
- Lin, C.M.; Huang, H.L.; Chu, F.Y.; Fan, H.C.; Chen, H.A.; Chu, D.M.; Wu, L.W.; Wang, C.C.; Chen, W.L.; Ho, S.Y.; et al. Association between Gastroenterological Malignancy and Diabetes Mellitus and Anti-Diabetic Therapy: A Nationwide, Population-Based Cohort Study. PLoS ONE 2015, 10, e0125421. [Google Scholar] [CrossRef]
- Duong, L.M.C.H.; Shrubsole, M.J.; Bailey, C.D.; Idrees, K.; Shu, X.O. Outcomes of Robotic-Assisted Liver Surgery Versus Laparoscopic Liver Surgery for Treatment of Stage I Hepatocellular Carcinoma. Cancer 2022, 128, 762–769. [Google Scholar] [CrossRef]
- Broering, D.S.M.; Zidan, A. Robotic donor hepatectomy: A major breakthrough in living donor liver transplantation. Am. J. Transplant. 2021, 22, 14–23. [Google Scholar] [CrossRef]
- Mehdorn, A.S.B.J.; Braun, F.; Becker, T.; Egberts, J.H. Usability of Indocyanine Green in Robot-Assisted Hepatic Surgery. J. Clin. Med. 2021, 10, 456. [Google Scholar] [CrossRef]
- Kokudo, N.T.N.; Ito, K.; Mihara, F. The history of liver surgery: Acheivements over the past 50 years. J. Am. Coll. Surg. 2019, 193, 210–222. [Google Scholar] [CrossRef]
- Marino, M.V.P.M.; Fernandez, C.C.; Ruiz, M.G.; Fleitas, M.G. The application of indocyanine green-fluorescence imaging during robotic-assisted liver resection for malignant tumors: A single-arm feasibility cohort study. HPB 2019, 22, 422–431. [Google Scholar] [CrossRef]
- Alfano, M.S.M.S.; Benedicenti, S.; Molteni, S.; Porsio, P.; Arici, E.; Gheza, F.; Botticini, M.; Portolani, N.; Baiocchi, G.L. Intraoperative ICG-based imaging of liver neoplasms: A simple yet powerful tool. Preliminary results. Surg. Endosc. 2019, 33, 126–134. [Google Scholar] [CrossRef] [PubMed]
- Rossi, G.T.A.; Baiocchi, G.; de’Angelis, G.L.; Gaiani, F.; Di Mario, F.; Catena, F.; Dalla Valle, R. Fluorescence guided surgery in liver tumors: Applications and advantages. Acta Biomed. 2018, 89, 135–140. [Google Scholar]
- Wang, X.T.C.; Ishizawa, T.; Aoki, T.; Cavallucci, D.; Lee, S.Y.; Panganiban, K.M.; Perini, M.V.; Shah, S.R.; Wang, H.; Xu, Y.; et al. Consensus Guidelines for the Use of Fluoresecence Imaging in Hepatobiliary Surgery. Ann. Surg. 2021, 274, 97–107. [Google Scholar] [CrossRef] [PubMed]
- Wakabayashi, T.C.A.; Abe, Y.; Bona, E.D.; Nicolini, D.; Mocchegiani, F.; Kabeshima, Y.; Vivarelli, M.; Wakabayashi, G.; Kitagawa, Y. Indocyanine green fluorescence navigation in liver surgery: A systematic review on dose and timing of administration. Ann. Surg. 2022, 275, 1025–1034. [Google Scholar] [CrossRef] [PubMed]
- Ishizawa, I.F.N.; Shibahara, J.; Masuda, K.; Tamura, S.; Aoki, T.; Hasegawa, K.; Beck, Y.; Fukayama, M.; Kokudo, N. Real-Time Identification of Liver Cancers by Using Indocyanine Green Fluorescent Imaging. Cancer 2009, 115, 2491–2505. [Google Scholar] [CrossRef] [PubMed]
- Kaneko, J.K.G.; Inagaki, Y.; Hasegawa, K. Innovative treatment for hepatocellular carcinoma HCC. Transl. Gastroenterol. Hepatol. 2018, 3, 78. [Google Scholar] [CrossRef] [PubMed]
- Franz, M.A.J.; Wolff, S.; Perrakis, A.; Rahimli, M.; Negrini, V.N.; Stockheim, J.; Lorenz, E.; Croner, R. Tumor visualization and fluorescence angiography with indocyanine green ICG in laparoscopic and robotic hepatobiliary surgery-valuation of early adopters from Germany. Innov. Surg. Sci. 2021, 6, 59–66. [Google Scholar] [CrossRef]
- Achterberg, F.B.M.B.; Meijer, R.P.J.; Bonsing, B.A.; Hartgrink, H.H.; Mieog, J.S.D.; Zlitni, A.; Park, S.M.; Sarasqueta, A.F.; Vahrmeijer, A.L.; Swijnenburg, R.J. Real-time surgical margin assessment using ICG-fluorescence during laparoscopic and robot-assisted resections of colorectal liver metastases. Ann. Transl. Med. 2020, 8, 1448. [Google Scholar] [CrossRef]
- van der Vorst, J.R.S.B.; Hutteman, M.; Verbeek, F.P.R.; Liefers, G.J.; Hartgrink, H.H.; Smit, V.T.H.M.B.; Löwik, C.W.G.M.; van de Velde, C.J.H.; Frangioni, J.V.; Vahrmeijer, A.L. Near-infrared fluorescence-guided resection of colorectal liver metastases. Cancer 2013, 119, 3411–3418. [Google Scholar] [CrossRef]
- Ishizawa, T.S.A.; Kokudo, N. Clinical application of indocyanine green-fluorescence imaging during hepatectomy. Hepatobiliary Surg. Nutr. 2015, 5, 322–328. [Google Scholar] [CrossRef] [Green Version]
- Speich, R.S.B.; Hoffmann, U.; Neftel, K.A.; Reichen, J. Anaphylactoid reactions after indocyanine-green administration. Ann. Intern. Med. 1988, 109, 345–346. [Google Scholar] [CrossRef] [PubMed]
- Aselmann, H.; Möller, T.; Kersebaum, J.N.; Egberts, J.H.; Croner, R.; Brunner, M.; Grützmann, R.; Becker, T. Roboterassistierte Leberresektion. Der Chir. 2017, 88, 476–483. [Google Scholar] [CrossRef] [PubMed]
- Nagtegaal, I.D.O.R.; Klimstra, D.; Paradis, V.; Rugge, M.; Schirmacher, P.; Washington, K.M.; Carneiro, F.; Cree, I.A.; WHO Classification of Tumours Editorial Board. The 2019 WHO classification of tumours of the digestive system. Histopathology 2020, 76, 182–188. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marino, M.V.; Di Saverio, S.; Podda, M.; Gomez Ruiz, M.; Gomez Fleitas, M. The Application of Indocyanine Green Fluorescence Imaging during Robotic Liver Resection: A Case-Match-Study. World J. Surg. 2019, 43, 2595–2606. [Google Scholar] [CrossRef] [PubMed]
- Hilal, M.A.; Aldrighetti, L.; Dagher, I.; Edwin, B.; Troisi, R.I.; Alikhanov, R.; Cherqui, D. The Southampton Consensus Guidelines for Laparoscopic Liver Surgery: From Indication to Imple-mentation. Ann. Surg. 2018, 268, 11–18. [Google Scholar] [CrossRef] [Green Version]
- Feldbrügge, L.; Ortiz Galindo, S.A.; Frisch, O.; Benzing, C.; Krenzien, F.; Riddermann Kästner, A.; Nevermann, N.F.; Malinka, T.; Schöning, W.; Pratschke, J.; et al. Safety and feasibility of robotic liver resection after previous abdominal surgeries. Surg. Endosc. 2021, 36, 2842–2849. [Google Scholar] [CrossRef]
- Zwart, M.J.; Görgec, B.; Arabiyat, A.; Nota, C.L.M.; van der Poel, M.J.; Fichtinger, R.S.; Berrevoet, F.; van Dam, R.M.; Aldrighetti, L.; Fuks, D.; et al. Pan-European survey on the implementation of robotic and laparoscopic minimally invasive liver surgery. HPB 2022, 24, 322–331. [Google Scholar] [CrossRef]
- Giulianotti, P.C.; Bianco, F.M.; Daskalaki, D.; Gonzalez-Ciccarelli, L.F.; Kim, J.; Benedetti, E. Robotic liver surgery: Technical aspects and review of the literature. Hepatobiliary Surg. Nutr. 2016, 5, 311–321. [Google Scholar] [CrossRef] [Green Version]
- Giulianotti, P.C.; Coratti, A.; Angelini, M.; Sbrana, F.; Cecconi, S.; Balestracci, T.; Caravaglios, G. Robotics in general surgery: Personal experience in a large community hospital. Arch. Surg. 2003, 138, 777–784. [Google Scholar] [CrossRef] [Green Version]
- Stoffels, B.G.T.; von Websky, M.M.; Kalff, J.C.; Vilz, T.O. Robertassistierte Operationen in der Viszeralchirurgie. Der Chir. 2020, 91, 190–194. [Google Scholar] [CrossRef]
- Sucandy, I.G.A.; Ross, S.; Rosemurgy, A. Institutional First 100 Case Experience and Outcomes of Robotic Hepatectomy for Liver Tumors. Am. Surg. 2020, 86, 200–207. [Google Scholar] [CrossRef] [PubMed]
- Sucandy, I.S.E.; Crespo, K.; Syblis, C.; Przetocki, V.; Ross, S.; Rosemurgy, A. The effect of the robotic platform in hepatectomy after prior liver and non-liver abdominal operations: A comparative study of clinical outcomes. J. Robot. Surg. 2021, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Kamarajah, S.K.; Bundred, J.; Manas, D.; Jiao, L.R.; Hilal, M.A.; White, S.A. Robotic versus conventional laparoscopic liver resections: A systematic review and meta-analysis. Scand. J. Surg. 2020, 110, 290–300. [Google Scholar] [CrossRef]
- Lai, A.; Lipka, S.; Kumar, A.; Sethi, S.; Bromberg, D.; Li, N.; Shen, H.; Stefaniwsky, L.; Brady, P. Role of Esophageal Metal Stents Placement and Combination Therapy in Inoperable Esophageal Carcinoma: A Systematic Review and Meta-analysis. Dig. Dis. Sci. 2018, 63, 1025–1034. [Google Scholar] [CrossRef] [PubMed]
- Rocca, A.; Scacchi, A.; Cappuccio, M.; Avella, P.; Bugiantella, W.; De Rosa, M.; Costa, G.; Polistena, A.; Codacci-Pisanelli, M.; Amato, B.; et al. Robotic surgery for colorectal liver metastases resection: A systematic review. Int. J. Med. Robot. Comput. Assist. Surg. 2021, 17, e2330. [Google Scholar] [CrossRef]
- Efanov, M.; Alikhanov, R.; Tsvirkun, V.; Kazakov, I.; Melekhina, O.; Kim, P.; Vankovich, A.; Grendal, K.; Berelavichus, S.; Khatkov, I. Comparative analysis of learning curve in complex robot-assisted and laparoscopic liver resection. HPB 2017, 19, 818–824. [Google Scholar] [CrossRef] [Green Version]
- Zhu, P.; Liao, W.; Ding, Z.Y.; Chen, L.; Zhang, W.G.; Zhang, B.X.; Chen, X.P. Learning Curve in Robot-Assisted Laparoscopic Liver Resection. J. Gastrointest. Surg. 2019, 23, 1778–1787. [Google Scholar] [CrossRef]
- Lai, E.C.; Tang, C.N. Long-term survival analysis of robotic versus conventional laparoscopic hepatectomy for hepatocellular carcinoma: A comparative study. Surg. Laparosc. Endosc. Percutaneous Tech. 2016, 26, 162–166. [Google Scholar] [CrossRef]
- Hottenrott, S.; Schlesinger, T.; Helmer, P.; Meybohm, P.; Alkatout, I.; Kranke, P. Do Small Incisions Need Only Minimal Anesthesia?—Anesthetic Management in Laparoscopic and Robotic Surgery. J. Clin. Med. 2020, 9, 4058. [Google Scholar] [CrossRef]
- Mehdorn, A.S.; Möller, T.; Franke, F.; Richter, F.; Kersebaum, J.N.; Becker, T.; Egberts, J.H. Long-Term, Health-Related Quality of Life after Open and Robot-Assisted Ivor-Lewis Procedures-A Propensity Score-Matched Study. J. Clin. Med. 2020, 9, 3513. [Google Scholar] [CrossRef]
- Abo, T.; Nanashima, A.; Tobinaga, S.; Hidaka, S.; Taura, N.; Takagi, K.; Arai, J.; Miyaaki, H.; Shibata, H.; Nagayasu, T. Usefulness of intraoperative diagnosis of hepatic tumors located at the liver surface and hepatic segmental visualization using indocyanine green-photodynamic eye imaging. Eur. J. Surg. Oncol. 2015, 41, 257–264. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, C.G.; Zhou, Z.P.; Tan, X.L.; Wang, Z.Z.; Liu, Q.; Zhao, Z.M. Robotic resection of liver focal nodal hyperplasia guided by indocyanine green fluorescence imaging: A preliminary analysis of 23 cases. World J. Gastrointest. Oncol. 2020, 12, 1407–1415. [Google Scholar] [CrossRef] [PubMed]
- Casciola, L.; Patriti, A.; Ceccarelli, G.; Bartoli, A.; Ceribelli, C.; Spaziani, A. Robot-assisted parenchymal-sparing liver surgery including lesions located in the posterosuperior segments. Surg. Endosc. 2011, 25, 3815–3824. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, H.; Zaidi, N.; Berber, E. An initial report on the intraoperative use of indocyanine green fluorescence imaging in the surgical management of liver tumors. J. Surg. Oncol. 2016, 114, 625–629. [Google Scholar] [CrossRef] [PubMed]
- Giannone, F.; Felli, E.; Cherkaoui, Z.; Mascagni, P.; Pessaux, P. Augmented Reality and Image-Guided Robotic Liver Surgery. Cancers 2021, 13, 6268. [Google Scholar] [CrossRef]
- Available online: https://isfgs.org/ (accessed on 16 June 2022).
- Handgraaf, H.J.; Boogerd, L.S.; Höppener, D.J.; Peloso, A.; Sibinga Mulder, B.G.; Hoogstins, C.E.S.; Hartgrink, H.H.; van de Velde, C.J.H.; Mieog, C.S.D.; Swijnenburg, R.J.; et al. Long-term follow-up after near-infrared fluorescence-guided resection of colorectal liver metastases: A retrospective multicenter analysis. Eur. J. Surg. Oncol. 2017, 43, 1463–1471. [Google Scholar] [CrossRef]
- Kobayashi, K.; Kawaguchi, Y.; Kobayashi, Y.; Matsumura, M.; Ishizawa, T.; Akamatsu, N.; Kaneko, J.; Arita, J.; Sakamoto, Y.; Kokudo, N.; et al. Identification of liver lesions using fluorescence imaging: Comparison of methods for administering indocyanine green. HPB 2021, 23, 262–269. [Google Scholar] [CrossRef]
- Liu, D.; Liang, L.; Liu, L.; Zhu, Z. Does intraoperative indocyanine green fluorescence angiography decrease the incidence of anastomotic leakage in colorectal surgery? A systematic review and meta-analysis. Int. J. Colorectal Dis. 2020, 36, 57–66. [Google Scholar] [CrossRef]
- Andreyev, J.N.; Norman, A.R.; Cunningham, D.; Oates, J.; Dix, B.R.; Iacopetta, B.J.; Young, J.; Walsh, T.; Ward, R.; Hawkins, N.; et al. Kirsten ras mutations in patients with colorectal cancer: The ‘RASCAL II’ study. Br. J. Cancer 2001, 85, 692–696. [Google Scholar] [CrossRef]
- Tomassini, F.; Giglio, M.C.; De Simone, G.; Montalti, R.; Troisi, R.I. Hepatic function assessment to predict post-hepatectomy liver failure: What can we trust? A systematic review. Updates Surg. 2020, 72, 925–938. [Google Scholar] [CrossRef]
- Oldhafer, K.; Reese, T.; Fard-Aghaie, M.; Strohmaier, A.; Makridis, G.; Kantas, A.; Wagner, K.C. Intraoperative Fluoreszenzangio- und cholangiographie mit Indocyaningrün bei hepatobiliären Eingriffen. Der Chir. 2019, 90, 880–886. [Google Scholar] [CrossRef] [PubMed]
- Naldini, A.; Vizzielli, G.; Perrone, E.; Gallotta, V.; Scambia, G. Robotic video endoscopic inguinal lymphadenectomy R-VEIL for vulvar cancer with sentinel node mapping using indocyanine green and near-infrared fluorescence imaging technology. Gynecol. Oncol. 2018, 150, 203–204. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.N.; Qiu, W.W.; Liu, C.H.; Chen, Q.Y.; Zheng, C.H.; Li, P.; Wang, J.B.; Lin, J.X.; Lu, J.; Cao, L.L.; et al. Assessment of indocyanine green tracer-guided lymphadenectomy in laparoscopic gastrectomy after neoadjuvant chemotherapy for locally advanced gastric cancer: Results from a multicenter analysis based on propensity matching. Gastric Cancer 2021, 24, 1355–1364. [Google Scholar] [CrossRef] [PubMed]
- Arezzo, A.; Arolfo, S.; Mistrangelo, M.; Mussa, B.; Cassoni, P.; Morino, M. Transrectal sentinel lymph node biopsy for early rectal cancer during transanal endoscopic microsurgery. Minim. Invasive Ther. Allied Technol. 2014, 23, 17–20. [Google Scholar] [CrossRef]
Total (n = 54) |
ICG (n = 28) |
HC (n = 26) | p-Value * | |
---|---|---|---|---|
Operative Data | ||||
Type of resection | ||||
Wedge resection | 34.0 | 40.7 | 26.9 | 0.513 b |
Segment resection | 35.8 | 44.4 | 26.9 | 0.221 b |
Lobectomy | 5.7 | 0.0 | 11.5 | 0.135 b |
Left hemihepatectomy | 18.9 | 14.8 | 23.1 | 0.626 b |
Right hemihepatectomy | 5.7 | 0.0 | 11.5 | 0.031b |
Segment resected | ||||
I | 1.0 | 2.1 | 0.0 | 0.331 b |
II | 19.4 | 17.0 | 21.6 | 0.178 b |
III | 20.4 | 14.9 | 25.5 | 0.181 b |
IV | 10.2 | 6.5 | 13.7 | 0.249 b |
V | 16.3 | 17.0 | 15.7 | 0.675 b |
VI | 14.4 | 17.0 | 11.8 | 0.637 b |
VII | 5.1 | 8.5 | 2.0 | 0.186 b |
VIII | 13.3 | 17.0 | 9.8 | 0.150 b |
Length of surgery (min) mean ± SD | 192.3 ± 97.7 | 142.7 ± 61.8 | 246.4 ± 98.6 | <0.001 a |
Intra-operatively realized complications (yes) % | 5.6 | 10.7 | 0.0 | 0.086 b |
Simultaneous CHE (yes) % | 40.4 | 25.0 | 53.8 | 0.030b |
Intra-operative placement of a drain (yes) % | 75.9 | 71.4 | 80.8 | 0.422 b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mehdorn, A.-S.; Richter, F.; Hess, K.; Beckmann, J.H.; Egberts, J.-H.; Linecker, M.; Becker, T.; Braun, F. The Role of ICG in Robot-Assisted Liver Resections. J. Clin. Med. 2022, 11, 3527. https://doi.org/10.3390/jcm11123527
Mehdorn A-S, Richter F, Hess K, Beckmann JH, Egberts J-H, Linecker M, Becker T, Braun F. The Role of ICG in Robot-Assisted Liver Resections. Journal of Clinical Medicine. 2022; 11(12):3527. https://doi.org/10.3390/jcm11123527
Chicago/Turabian StyleMehdorn, Anne-Sophie, Florian Richter, Katharina Hess, Jan Henrik Beckmann, Jan-Hendrik Egberts, Michael Linecker, Thomas Becker, and Felix Braun. 2022. "The Role of ICG in Robot-Assisted Liver Resections" Journal of Clinical Medicine 11, no. 12: 3527. https://doi.org/10.3390/jcm11123527
APA StyleMehdorn, A.-S., Richter, F., Hess, K., Beckmann, J. H., Egberts, J.-H., Linecker, M., Becker, T., & Braun, F. (2022). The Role of ICG in Robot-Assisted Liver Resections. Journal of Clinical Medicine, 11(12), 3527. https://doi.org/10.3390/jcm11123527