Prognostic Values of Combined Ratios of White Blood Cells in Glioblastoma: A Retrospective Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Clinical Assessment
2.3. Blood Cells and Inflammatory Variables
2.4. Statistical Analysis
3. Results
3.1. Study Population
3.2. Blood Cells and Inflammatory Variables
4. Discussion
5. Conclusions
6. Limitations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chang, K.; Zhang, B.; Guo, X.; Zong, M.; Rahman, R.; Sanchez, D.; Winder, N.; Reardon, D.A.; Zhao, B.; Wen, P.Y.; et al. Multimodal imaging patterns predict survival in recurrent glioblastoma patients treated with bevacizumab. Neuro. Oncol. 2016, 18, 1680–1687. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Louis, D.N.; Perry, A.; Reifenberger, G.; von Deimling, A.; Figarella-Branger, D.; Cavenee, W.K.; Ohgaki, H.; Wiestler, O.D.; Kleihues, P.; Ellison, D.W. The 2016 World Health Organization classification of tumors of the central nervous system: A summary. Acta Neuropathol. 2016, 131, 803–820. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Louis, D.N.; Perry, A.; Weaselling, P.; Brat, D.J.; Cree, I.A.; Figarella-Branger, D.; Hawkins, C.; Ng, H.K.; Pfister, S.M.; Reifenberger, G.; et al. The 2021 WHO classification of tumors of the central nervous system: A summary. Neur. Oncol. 2021, 2, 1231–1251. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.; Wen, H.-B.; Zhao, Y.-H.; Huang, W.-H.; Wang, Z.-F.; Li, Z.-Q. Systemic inflammatory indicators as prognosticators in glioblastoma patients: A comprehensive meta-analysis. Front Neurol. 2020, 7, 580101. [Google Scholar] [CrossRef]
- Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: The next generation. Cell 2011, 4, 646–674. [Google Scholar] [CrossRef] [Green Version]
- Basheer, A.S.; Abas, F.; Othman, I.; Naidu, R. Role of inflammatory mediators, macrophages, and neutrophils in glioma maintenance and progression: Mechanistic understanding and potential therapeutic applications. Cancers 2021, 23, 4226. [Google Scholar] [CrossRef]
- Massara, M.; Persico, P.; Bonavita, O.; Poeta, V.M.; Locati, M.; Simonelli, M.; Bonecchi, R. Neutrophils in gliomas. Front Immunol. 2017, 26, 1349. [Google Scholar] [CrossRef] [Green Version]
- Defort, P.; Retkowska-Tomaszewska, N.; Kot, M.; Jarmużek, P.; Tylutka, A.; Zembroń-Lacny, A. Inflammatory predictors of prognosis in patients with traumatic cerebral haemorrhage: Retrospective study. J. Clin. Med. 2022, 28, 705. [Google Scholar] [CrossRef]
- Kim, E.Y.; Lee, J.W.; Yoo, H.M. The platelet-to-lymphocyte ratio versus neutrophil-to-lymphocyte ratio: Which is better as a prognostic factor in gastric cancer? Ann. Surg. Oncol. 2015, 22, 4363–4370. [Google Scholar]
- Li, J.; Zhou, X.; Xiang, Y.; Zhang, S.; Feng, W.; Yuan, Y.; Liu, Y.; Yin, S. Clinical significance of preoperative fibrinogen to albumin ratio in patients with glioblastoma: A Singe Center Experience. Cancer Manag. Res. 2021, 14, 3259–3269. [Google Scholar] [CrossRef]
- Sahin, F.; Yildiz, P. Serum platelet, MPV, PCT and PDW values, neutrophil to lymphocyte and platelet to lymphocyte ratios in lung cancer diagnosis. Eur. Respir. J. 2015, 46, PA4279. [Google Scholar]
- Sun, P.; Chen, C.; Xia, Y.; Bi, X.; Liu, P.; Zhang, F.; Yang, H.; An, X.; Jiang, W.; Wang, F. The ratio of c-reactive protein/albumin is a novel inflammatory predictor of overall survival in cisplatin-based treated patients with metastatic nasopharyngeal carcinoma. Dis. Markers 2017, 2017, 6570808. [Google Scholar] [CrossRef] [Green Version]
- Tang, J.-N.; Goyal, H.; Yu, S.; Luo, H. Prognostic value of systemic immune-inflammation index (SII) in cancers: A systematic review and meta-analysis. J. Lab. Precis. Med. 2018, 9, 3–29. [Google Scholar] [CrossRef]
- Templeton, A.J.; McNamara, M.G.; Šeruga, B.; Vera-Badillo, F.E.; Aneja, P.; Ocaña, A.; Leibowitz-Amit, R.; Sonpavde, G.; Knox, J.J.; Tran, B.; et al. Prognostic role of neutrophil-to-lymphocyte ratio in solid tumors: A systematic review and meta-analysis. J. Natl. Cancer Inst. 2014, 29, 106. [Google Scholar] [CrossRef] [Green Version]
- Ying, H.-Q.; Deng, Q.-W.; He, B.-S.; Pan, Y.-Q.; Wang, F.; Sun, H.-L.; Chen, J.; Liu, X.; Wang, S.-K. The prognostic value of preoperative NLR, d-NLR, PLR and LMR for predicting clinical outcome in surgical colorectal cancer patients. Med. Oncol. 2014, 31, 305. [Google Scholar] [CrossRef]
- Gan, Y.; Zhou, X.; Niu, X.; Li, J.; Wang, T.; Zhang, H.; Yang, Y.; Liu, Y.; Mao, Q. Neutrophil/lymphocyte ratio is an independent prognostic factor in elderly patients with high-grade gliomas. World Neurosurg. 2019, 127, e261–e267. [Google Scholar] [CrossRef]
- Nolte, I.; Przibylla, H.; Bostel, T.; Groden, C.; Brockamnn, M.A. Tumor-platelet interactions: Glioblastoma growth is accompanied by increasing platelet counts. Clin. Neurol. Neurosurg. 2008, 110, 339–342. [Google Scholar] [CrossRef]
- Deshmukh, R.; Allega, M.F.; Tardito, S. A map of the altered glioma metabolism. Trends Mol. Med. 2021, 27, 1045–1059. [Google Scholar] [CrossRef]
- Best, M.G.; Sol, N.; Kooi, I.; Tannous, J.; Westerman, B.A.; Rustenburg, F.; Schellen, P.; Verschueren, H.; Post, E.; Koster, J.; et al. RNA-Seq of Tumor-Educated Platelets Enables Blood-Based Pan-Cancer, Multiclass, and Molecular Pathway Cancer Diagnostics. Cancer Cell 2015, 28, 666–676. [Google Scholar] [CrossRef] [Green Version]
- Pudakalakatti, S.; Audia, A.; Mukhopadhyay, A.; Enriquez, J.S.; Bourgeois, D.; Tayob, N.; Zacharias, N.M.; Millward, S.W.; Carson, D.; Farach-Carson, M.C.; et al. NMR spectroscopy-based metabolomics of platelets to analyze brain tumors. Reports 2012, 4, 32. [Google Scholar] [CrossRef]
- Lei, Y.-Y.; Li, Y.-T.; Hu, Q.-L.; Wang, J.; Sui, A.-X. Prognostic impact of neutrophil-to-lymphocyte ratio in gliomas: A systematic review and meta-analysis. World J. Surg. Oncol. 2019, 31, 152. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, D.P.; Kang, K.; Lin, Q.; Hai, J. Prognostic significance of preoperative systemic cellular inflammatory markers in gliomas: A systematic review and meta-analysis. Clin. Transl. Sci. 2020, 13, 179–188. [Google Scholar] [CrossRef] [PubMed]
- Cupp, M.A.; Cariolou, M.; Tzoulaki, I.; Aune, D.; Evangelou, E.; Berlanga-Taylor, A.J. Neutrophil to lymphocyte ratio and cancer prognosis: An umbrella review of systematic reviews and meta-analyses of observational studies. BMC Med. 2020, 20, 360. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.-J.; He, D.-S.; Tang, R.-X.; Ren, F.-H.; Chen, G. Ki-67 is a valuable prognostic factor in gliomas: Evidence from a systematic review and meta-analysis. Asian Pac. J. Cancer Prev. 2015, 16, 411–420. [Google Scholar] [CrossRef] [Green Version]
- Luo, H.; He, L.; Zhang, G.; Yu, J.; Chen, Y.; Yin, H.; Goyal, H.; Zhang, G.-M.; Xiao, Y.; Gu, C.; et al. Normal reference intervals of neutrophil-to-lymphocyte ratio, platelet-to-lymphocyte ratio, lymphocyte-to-monocyte ratio, and systemic immune inflammation index in healthy adults: A large multi-center study from Western China. Clin. Lab. 2019, 1, 65. [Google Scholar] [CrossRef]
- Qi, Q.; Zhuang, L.; Shen, Y.; Geng, Y.; Yu, S.; Chen, H.; Liu, L.; Meng, Z.; Wang, P.; Chen, Z.; et al. A novel systemic inflammation response index (SIRI) for predicting the survival of patients with pancreatic cancer after chemotherapy. Cancer 2016, 122, 2158–2167. [Google Scholar] [CrossRef] [Green Version]
- R Core Team. A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2020; Available online: https://www.R-project.org/ (accessed on 15 February 2022).
- Thakkar, J.P.; Dolecek, T.A.; Horbinski, C.; Ostrom, Q.T.; Lightner, D.D.; Barnholtz-Sloan, J.S.; Villano, J.L. Epidemiologic and molecular prognostic review of glioblastoma. Cancer Epidemiol. Biomark. Prev. 2014, 23, 1985–1996. [Google Scholar] [CrossRef] [Green Version]
- Tylutka, A.; Morawin, B.; Gramacki, A.; Zembron-Lacny, A. Pre-Existing hypertension is related with disproportions in t-lymphocytes in older age. J. Clin. Med. 2022, 6, 291. [Google Scholar] [CrossRef]
- Hong, H.; Wang, Q.; Li, J.; Liu, H.; Meng, X.; Zhang, H. Aging, cancer and immunity. J. Cancer 2019, 10, 3021–3027. [Google Scholar] [CrossRef] [Green Version]
- Chao, B.; Ju, X.; Zhang, L.; Xu, X.; Zhao, Y. A novel prognostic marker systemic inflammation response index (SIRI) for operable cervical cancer patients. Front Oncol. 2020, 13, 766. [Google Scholar]
- Granot, Z.; Jablonska, J. Distinct Functions of Neutrophil in cancer and its regulation. Mediat. Inflamm. 2015, 2015, 701067. [Google Scholar] [CrossRef] [Green Version]
- De Larco, J.E.; Wuertz, B.R.K.; Furcht, L.T. The potential role of neutrophils in promoting the metastatic phenotype of tumors releasing interleukin-8. Clin. Cancer Res. 2004, 1, 4895–4900. [Google Scholar] [CrossRef] [Green Version]
- Ardi, V.C.; Kupriyanova, T.A.; Deryugina, E.I.; Quigley, J.P. Human neutrophils uniquely release TIMP-free MMP-9 to provide a potent catalytic stimulator of angiogenesis. Proc. Natl. Acad. Sci. USA 2007, 18, 20262–20267. [Google Scholar] [CrossRef] [Green Version]
- Jablonska, E.; Puzewska, W.; Grabowska, Z.; Jablonski, J.; Talarek, Ł. VEGF, IL-18 and NO production by neutrophils and their serum levels in patients with oral cavity cancer. Cytokine 2005, 7, 93–99. [Google Scholar] [CrossRef]
- Weng, W.; Chen, X.; Gong, S.; Guo, L.; Zhang, X. Preoperative neutrophil-lymphocyte ratio correlated with glioma grading and glioblastoma survival. Neurol. Res. 2018, 40, 917–922. [Google Scholar] [CrossRef]
- Ray-Coquard, I.; Cropet, C.; Van Glabbeke, M.; Sebban, C.; Le Cesne, A.; Judson, I.; Tredan, O.; Verweij, J.; Biron, P.; Labidi, I.; et al. European Organization for Research and Treatment of Cancer Soft Tissue and Bone Sarcoma Group: Lymphopenia as a prognostic factor for overall survival in advanced carcinomas, sarcomas, and lymphomas. Cancer Res. 2009, 69, 5383–5391. [Google Scholar] [CrossRef] [Green Version]
- Galon, J.; Costes, A.; Sanchez-Cabo, F.; Kirilovsky, A.; Mlecnik, B.; Lagorce-Pagès, C.; Tosolini, M.; Camus, M.; Berger, A.; Wind, P.; et al. Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science 2006, 29, 1960–1964. [Google Scholar] [CrossRef] [Green Version]
- Ding, P.-R.; An, X.; Zhang, R.-X.; Fang, Y.-J.; Li, L.-R.; Chen, G.; Wu, X.-J.; Lu, Z.-H.; Lin, J.-Z.; Kong, L.-H.; et al. Elevated preoperative neutrophil to lymphocyte ratio predicts risk of recurrence following curative resection for stage IIA colon cancer. Int. J. Colorectal. Dis. 2010, 25, 1427–1433. [Google Scholar] [CrossRef]
- Liao, R.; Jiang, N.; Tang, Z.-W.; Li, D.W.; Huang, P.; Luo, S.-Q.; Gong, J.-P.; Du, C.-Y. Systemic and intratumoral balances between monocytes/macrophages and lymphocytes predict prognosis in hepatocellular carcinoma patients after surgery. Oncotarget 2016, 24, 30951–30961. [Google Scholar] [CrossRef]
- Mantovani, A.; Schioppa, T.; Porta, C.; Allavena, P.; Sica, A. Role of tumor-associated macrophages in tumor progression and invasion. Cancer Metastasis Rev. 2006, 25, 315–322. [Google Scholar] [CrossRef]
- Mezouar, S.; Frère, C.; Darbousset, R.; Mege, D.; Crescence, L.; Dignat-George, F.; Panicot-Dubois, L.; Dubois, C. Role of platelets in cancer and cancer-associated thrombosis: Experimental and clinical evidences. Thromb. Res. 2016, 139, 65–76. [Google Scholar] [CrossRef] [Green Version]
- Stone, R.L.; Nick, A.M.; McNeish, I.A.; Balkwill, F.; Han, H.D.; Bottsford-Miller, J.; Rupairmoole, R.; Armaiz-Pena, R.N.; Pecot, C.V.; Coward, J.; et al. Paraneoplastic thrombocytosis in ovarian cancer. N. Engl. J. Med. 2012, 366, 610–618. [Google Scholar] [CrossRef] [Green Version]
- Woo, J.K.; Yun-Sik, D.; Chan-Young, O.; Jin, W.K.; Seung, H.C.; Soon-Tae, L.; Han, K.; Tae, M.K.; Chul-Kee, P. Clinical observation of lymphopenia in patients with newly diagnosed glioblastoma. J. Neurooncol. 2019, 143, 321–328. [Google Scholar]
- Keeratikarn, B.; Kenneth, R.H.; Jie, Y.; Lihong, L.; Qianghu, W.; Ravesanker, E.; Auia, A.; Alfaro-Munoz, K.D.; de Groot, J.F.; Bhat, K.P.; et al. A relative increase in circulating platelets following chemoradiation predicts for poor survival of patients with glioblastoma. Oncotarget 2017, 27, 90488–90495. [Google Scholar]
- Schneider, M.; Schäfer, N.; Apallas, S.; Potthoff, A.-L.; Bode, C.; Güresir, E.; Heimann, M.; Lehmann, F.; Scharnböck, E.; Schaub, C.; et al. Red blood cell distribution width to platelet ratio substantiates preoperative survival prediction in patients with newly-di.agnosed glioblastoma. J. Neurooncol. 2021, 154, 229–235. [Google Scholar] [CrossRef]
- Ya-Jui, L.; Kuo-Chen, W.; Pin-Yuan, C.; Michael, L.; Tsong-Long, H. Roles of neutrophils in glioma and brain metastases. Front Immunol. 2021, 12, 701383. [Google Scholar]
- Kaya, V.; Yıldırım, M.; Yazıcı, G.; Yalçın, A.Y.; Orhan, N.; Güzel, A. Prognostic Significance of Indicators of Systemic Inflammatory Responses in Glioblastoma Patients. Asian Pac. J. Cancer Prev. 2017, 18, 3287–3291. [Google Scholar]
- Shaul, M.E.; Fridlender, Z.G. Tumour-associated neutrophils in patients with cancer. Nat. Rev. Clin. Oncol. 2019, 16, 601–620. [Google Scholar] [CrossRef]
- Fossati, G.; Ricevuti, G.; Edwards, S.W.; Walker, C.; Dalton, A.; Rossi, M.L. Neutrophil infiltration into human gliomas. Acta Neuropathol. 1999, 98, 349–354. [Google Scholar] [CrossRef]
- Mostofa, A.G.M.; Punganuru, S.R.; Rao Madala, H.; Al-Obaide, M.; Srivenugopal, K.S. The Process and regulatory components of inflammation in brain oncogenesis. Biomolecules 2017, 27, 34. [Google Scholar] [CrossRef] [Green Version]
- Topkan, E.; Kucuk, E.; Ozdemir, Y.; Mertsoylu, H.; Besen, A.A.; Sezen, D.; Bolukbasi, Y.; Pehlivan, B.; Selek, U. Systemic inflammation response index predicts survival outcomes in glioblastoma multiforme patients treated with standard stupp protocol. J. Immunol. Res. 2020, 14, 8628540. [Google Scholar] [CrossRef] [PubMed]
- Roesler, R.; Dini, S.A.; Isolan, G.R. Neuroinflammation and immunoregulation in glioblastoma and brain metastases: Recent developments in imaging approaches. Clin. Exp. Immunol. 2021, 206, 314–324. [Google Scholar] [CrossRef] [PubMed]
Value (%) | ||
---|---|---|
Follow-up period | Mean ± SD (day) | 398 ± 575 |
Median (range) | 211 (1–3702) | |
Age at operation | Mean ± SD (year) | 59.9 ± 13.5 |
Median (range) | 62.3 (21.9–84.7) | |
Gender | Males | 195 (54.5%) |
Females | 163 (45.5%) | |
Hemisphere | Left | 176 (49.2%) |
Right | 148 (41.3%) | |
Midline or bilateral | 34 (9.5%) | |
Location | Frontal lobe | 122 (34.1%) |
Temporal lobe | 81 (22.6%) | |
Parietal lobe | 68 (19.0%) | |
Occipital lobe | 23 (6.4%) | |
Subtentorial location | 13 (3.6%) | |
Multifocal | 51 (14.2%) | |
Adjuvant therapy | Chemotherapy and radiotherapy | 116 (32.4%) |
Chemotherapy or radiotherapy | 172 (48.0%) | |
None | 70 (19.6%) | |
Ki-67 (all WHO grades) | ≥30% | 42 (33.6%) |
<30% | 83 (66.4%) | |
Ki-67 (WHO 4th grades) | ≥30% | 38 (42.7%) |
<30% | 51 (57.3%) |
Variables | Reference Values | 1st Grade n = 9 | 2nd Grade n = 32 | 3rd Grade n = 82 | 4th Grade n = 235 | p-Value | ||||
---|---|---|---|---|---|---|---|---|---|---|
Mean ± SD | Med (iqr 25–75%) | Mean ± SD | Med (iqr 25–75%) | Mean ± SD | Med (iqr 25–75%) | Mean ± SD | Med (iqr 25–75%) | |||
WBC (103/µL) | 4.0–10.2 | 9.14 ± 2.17 | 9.61 (8.15–9.78) | 8.07 ± 2.55 | 7.28 (5.85–9.88) | 7.99 ± 2.45 | 7.63 (5.96–9.93) | 8.82 ± 3.07 | 8.53 (6.33–10.99) | 0.205 |
Neutrophils (103/µL) | 2.0–6.9 | 6.30 ± 2.14 | 6.19 (5.23–6.30) | 6.78 ± 3.93 | 5.25 (4.21–8.46) | 8.31 ± 4.07 | 7.15 (5.08–11.25) | 9.84 ± 6.59 | 7.85 (6.48–11.62) | <0.001 |
Lymphocytes (103/µL) | 0.6–3.4 | 2.34 ± 0.71 | 2.34 (2.12–2.46) | 1.61 ± 0.63 | 1.45 (1.13–2.05) | 1.60 ± 0.79 | 1.47 (1.09–1.88) | 1.77 ± 1.25 | 1.52 (1.06–2.07) | 0.718 |
Monocytes (103/µL) | 0.00–0.90 | 0.59 ± 0.18 | 0.59 (0.59–0.66) | 0.61 ± 0.37 | 0.50 (0.37–0.80) | 0.65 ± 0.29 | 0.63 (0.46–0.84) | 0.71 ± 0.83 | 0.62 (0.40–0.78) | 0.715 |
Platelets (103/µL) | 140–420 | 283 ± 55 | 283 (263–310) | 262 ± 95 | 254 (183.0–32.5) | 253 ± 73 | 241 (204.8–292.0) | 256 ± 93 | 245 (197–301) | 0.555 |
Variables | Reference Values | 1st Grade n = 9 | 2nd Grade n = 32 | 3rd Grade n = 82 | 4th Grade n = 235 | p-Value | ||||
---|---|---|---|---|---|---|---|---|---|---|
Mean ± SD | Med (iqr 25%–75%) | Mean ± SD | Med (iqr 25%–75%) | Mean ± SD | Med (iqr 25%–75%) | Mean ± SD | Med (iqr 25%–75%) | |||
NLR (103/µL) | 0.87–4.15 | 2.96 ± 1.24 | 2.69 (2.51–3.55) | 5.37 ± 5.28 | 3.36 (2.83–5.66) | 7.26 ± 6.10 | 4.93 (2.95–10.16) | 7.68 ± 6.17 | 5.42 (3.64–10.22) | <0.001 |
PLR (103/µL) | 47–198 | 138 ± 63 | 121.0 (98–173) | 185 ± 86 | 172 (123–235) | 203 ± 133 | 168 (126–225) | 197 ± 149 | 159 (105–241) | 0.451 |
LMR (103/µL) | 2.45–8.77 | 4.42 ± 1.69 | 3.97 (3.97–5.99) | 3.36 ± 1.63 | 2.97 (2.46–3.82 | 2.86 ± 1.84 | 2.85 (1.66–3.53) | 3.34 ± 3.28 | 2.76 (1.88–3.69) | 0.025 |
SII (103/µL) | 142–808 | 895 ± 524 | 763 (513–1222) | 1273 ± 931 | 946 (599–1789) | 1829 ±1592 | 1350 (666–2366) | 1964 ± 1800 | 1319 (776–2548) | 0.032 |
SIRI (103/µL) | 0.41–1.42 | 1.80 ± 1.18 | 1.59 (0.84–1.59 | 3.34 ± 5.94 | 1.82 (1.23–3.48) | 4.27 ± 3.51 | 3.47 (1.55–6.29) | 5.64 ± 9.75 | 3.16 (1.90–5.44) | 0.001 |
Variables | AUC | Cut-Off Value | Sensitivity (%) | Specificity (%) |
---|---|---|---|---|
Age | 0.720 | 63.0 | 32.9 | 30.2 |
NLR | 0.601 | 4.56 | 38.8 | 41.9 |
PLR | 0.553 | 282 | 11.8 | 75.6 |
LMR | 0.392 | 2.48 | 78.8 | 47.7 |
SII | 0.597 | 2003 | 18.8 | 61.6 |
SIRI | 0.616 | 3.03 | 29.4 | 45.3 |
Variables | Univariate | Multivariate | ||||
---|---|---|---|---|---|---|
HR | 95% CI | p-Value | HR | 95% CI | p-Value | |
Age | 1.87 | 1.367–2.549 | <0.0001 | 1.03 | 0.967–1.019 | <0.0001 |
NLR | 1.56 | 1.145–2.127 | 0.005 | 1.11 | 0.904–1.025 | 0.011 |
SII | 1.44 | 1.030–2.024 | 0.033 | 0.99 | 0.999–1.000 | 0.074 |
SIRI | 1.50 | 1.104–2.053 | 0.0097 | 1.01 | 0.989–1.032 | 0.338 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jarmuzek, P.; Kot, M.; Defort, P.; Stawicki, J.; Komorzycka, J.; Nowak, K.; Tylutka, A.; Zembron-Lacny, A. Prognostic Values of Combined Ratios of White Blood Cells in Glioblastoma: A Retrospective Study. J. Clin. Med. 2022, 11, 3397. https://doi.org/10.3390/jcm11123397
Jarmuzek P, Kot M, Defort P, Stawicki J, Komorzycka J, Nowak K, Tylutka A, Zembron-Lacny A. Prognostic Values of Combined Ratios of White Blood Cells in Glioblastoma: A Retrospective Study. Journal of Clinical Medicine. 2022; 11(12):3397. https://doi.org/10.3390/jcm11123397
Chicago/Turabian StyleJarmuzek, Pawel, Marcin Kot, Piotr Defort, Jakub Stawicki, Julia Komorzycka, Karol Nowak, Anna Tylutka, and Agnieszka Zembron-Lacny. 2022. "Prognostic Values of Combined Ratios of White Blood Cells in Glioblastoma: A Retrospective Study" Journal of Clinical Medicine 11, no. 12: 3397. https://doi.org/10.3390/jcm11123397
APA StyleJarmuzek, P., Kot, M., Defort, P., Stawicki, J., Komorzycka, J., Nowak, K., Tylutka, A., & Zembron-Lacny, A. (2022). Prognostic Values of Combined Ratios of White Blood Cells in Glioblastoma: A Retrospective Study. Journal of Clinical Medicine, 11(12), 3397. https://doi.org/10.3390/jcm11123397