Biomarkers in Primary Focal Segmental Glomerulosclerosis in Optimal Diagnostic-Therapeutic Strategy
Abstract
:1. Introduction
2. Potential Circulating Permeability Factors
2.1. Soluble Urokinase-Type Plasminogen Activator Receptor
2.2. Cardiolipin-Like-Cytokine 1
3. Biomarkers Potentially Contributed to Podocyte Injury or Cell Signaling in the Pathogenesis of FSGS
3.1. Angiotensin II Type 1 Receptor
3.2. Metalloproteinases and Tissue Inhibitors of Metalloproteinases
3.3. Dystroglycans
3.4. MicroRNAs (miR-192, miR205, and miR-186)
3.5. Plasminogen Activator Inhibitor Type-1
3.6. Forkhead Box P3
3.7. Poly ADP-Ribose Polymerase-1
4. Biomarkers of Kidney Injury Progression
4.1. Transforming Growth Factor-Beta
4.2. Human Neutrophil Gelatinase-Associated Lipocalin
4.3. Malondialdehyde
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kim, J.S.; Han, B.G.; Choi, S.O.; Cha, S.K. Secondary focal segmental glomerulosclerosis: From podocyte injury to glomerulosclerosis. Biomed. Res. Int. 2016, 2016, 1630365. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beaudreuil, S.; Lorenzo, H.K.; Elias, M.; Obada, E.N.; Charpentier, B.; Durrbach, A. Optimal management of primary focal segmental glomerulosclerosis in adults. Int. J. Nephrol. Renovasc. Dis. 2017, 10, 97–107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fogo, A.B. Causes and pathogenesis of focal segmental glomerulosclerosis. Nat. Rev. Nephrol. 2015, 11, 76–87. [Google Scholar] [CrossRef] [PubMed]
- Perkowska-Ptasinska, A.; Bartczak, A.; Wagrowska-Danilewicz, M.; Halon, A.; Okon, K.; Wozniak, A.; Danilewicz, M.; Karkoszka, H.; Marszałek, A.; Kowalewska, J.; et al. Clinicopathologic correlations of renal pathology in the adult population of Poland. Nephrol. Dial. Transplant. 2017, 32, ii209–ii218. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schena, F.P. Survey of the Italian Registry of Renal Biopsies. Frequency of the renal diseases for 7 consecutive years. Nephrol. Dial. Transplant. 1997, 12, 418–426. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rivera, F.; López-Gómez, J.M.; Pérez-García, R. Clinicopathologic correlations of renal pathology in Spain. Kidney Int. 2004, 66, 898–904. [Google Scholar] [CrossRef] [Green Version]
- Maixnerova, D.; Jancova, E.; Skibova, J.; Rysava, R.; Rychlik, I.; Viklicky, O.; Merta, M.; Kolsky, A.; Reiterova, J.; Neprasova, M.; et al. Nationwide biopsy survey of renal diseases in the Czech Republic during the years 1994–2011. J. Nephrol. 2015, 28, 39–49. [Google Scholar] [CrossRef]
- Schenk, H.; Müller-Deile, J.; Schmitt, R.; Bräsen, J.H.; Haller, H.; Schiffer, M. Removal of focal segmental glomerulosclerosis (FSGS) factor suPAR using CytoSorb. J. Clin. Apher. 2017, 32, 444–452. [Google Scholar] [CrossRef]
- Kdigo—Kidney Disease|Improving Global Outcomes. Available online: https://www.kidney-international.org/article/S0085-2538 (accessed on 17 April 2022).
- Wen, Y.; Shah, S.; Campbell, K.N.; Campbell, K.N. Molecular Mechanisms of Proteinuria in Focal Segmental Glomerulosclerosis. Front. Med. 2018, 5, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Wharram, B.L.; Goyal, M.; Wiggins, J.E.; Sanden, S.K.; Hussain, S.; Filipiak, W.E.; Saunders, T.L.; Dysko, R.C.; Kohno, K.; Holzman, L.B.; et al. Podocyte Depletion Causes Glomerulosclerosis: Diphtheria Toxin—Induced Podocyte Depletion in Rats Expressing Human Diphtheria Toxin Receptor Transgene. J. Am. Soc. Nephrol. 2005, 16, 2941–2952. [Google Scholar] [CrossRef]
- Kriz, W. The pathogenesis of “classic” focal segmental glomerulosclerosis—Lessons from rat models. Nephrol. Dial. Transplant. 2003, 18, 39–44. [Google Scholar] [CrossRef] [PubMed]
- De Vriese, A.S.; Sethi, S.; Nath, K.A.; Glassock, R.J.; Fervenza, F.C. Differentiating primary, genetic, and secondary FSGS in adults: A clinicopathologic approach. J. Am. Soc. Nephrol. 2018, 29, 759–774. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shabaka, A.; Ribera, A.T.; Fernández-Juárez, G. Focal Segmental Glomerulosclerosis: State-of-the-Art and Clinical Perspective. Nephron 2020, 144, 413–427. [Google Scholar] [CrossRef] [PubMed]
- Kitzler, T.M.; Kachurina, N.; Bitzan, M.M.; Torban, E.; Goodyer, P.R. Use of genomic and functional analysis to characterize patients with steroid-resistant nephrotic syndrome. Pediatr. Nephrol. 2018, 33, 1741–1750. [Google Scholar] [CrossRef] [PubMed]
- Wei, C.; Hindi, S.E.; Li, J.; Fornoni, A.; Goes, N.; Sageshima, J.; Maiguel, D.; Karumanchi, S.A.; Yap, H.; Saleem, M.; et al. Circulating urokinase receptor as a cause of focal segmental glomerulosclerosis. Nat. Med. 2011, 17, 952–960. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harel, E.; Shoji, J.; Abraham, V.; Miller, L.; Laszik, Z.G.; King, A.; Dobi, D.; Szabo, G.; Hann, B.; Sarwal, M.M.; et al. Further Evidence That the Soluble Urokinase Plasminogen Activator Receptor Does Not Directly Injure Mice or Human Podocytes. Transplantation 2020, 104, 54–60. [Google Scholar] [CrossRef]
- Spinale, J.M.; Mariani, L.H.; Kapoor, S.; Zhang, J.; Weyant, R.; Song, P.X.; Wong, H.N.; Troost, J.P.; Gadegbeku, C.A.; Gipson, D.S.; et al. A reassessment of soluble urokinase-type plasminogen activator receptor in glomerular disease. Kidney Int. 2015, 87, 564–574. [Google Scholar] [CrossRef] [Green Version]
- Harel, E.; Shoji, J.; Abraham, V.; Miller, L.; Laszik, Z.; Thurison, T.; King, A.; Olshen, A.; Leung, J.; Szabo, G.; et al. Identifying a potential biomarker for primary focal segmental glomerulosclerosis and its association with recurrence after transplantation. Clin. Transplant. 2019, 33, e13487. [Google Scholar] [CrossRef]
- Huang, J.; Liu, G.; Zhang, Y.M.; Cui, Z.; Wang, F.; Liu, X.J.; Chu, R.; Chen, Y.; Zhao, M.H. Plasma soluble urokinase receptor levels are increased but do not distinguish primary from secondary focal segmental glomerulosclerosis. Kidney Int. 2013, 84, 366–372. [Google Scholar] [CrossRef] [Green Version]
- Wei, C.; Trachtman, H.; Li, J.; Dong, C.; Friedman, A.L.; Gassman, J.J.; Mcmahan, J.L.; Radeva, M.; Heil, K.M.; Trautmann, A.; et al. Circulating suPAR in Two Cohorts of Primary FSGS. JASN 2012, 23, 2051–2059. [Google Scholar] [CrossRef] [Green Version]
- Hladunewich, M.A.; Cattran, D.; Sethi, S.M.; Hayek, S.S.; Li, J.; Wei, C.; Mullin, S.I.; Reich, H.N.; Reiser, J.; Fervenza, F.C. Efficacy of Rituximab in Treatment-Resistant Focal Segmental Glomerulosclerosis with Elevated Soluble Urokinase-Type Plasminogen Activator Receptor and Activation of Podocyte β3 Integrin. Kidney Int. Rep. 2021, 7, 68–77. [Google Scholar] [CrossRef] [PubMed]
- Winnicki, W.; Sunder-Plassmann, G.; Sengölge, G.; Handisurya, A.; Herkner, H.; Kornauth, C.; Bielesz, B.; Wagner, L.; Kikić, Ž.; Pajenda, S.; et al. Diagnostic and Prognostic Value of Soluble Urokinase-type Plasminogen Activator Receptor (suPAR) in Focal Segmental Glomerulosclerosis and Impact of Detection Method. Sci. Rep. 2019, 9, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, P.; Yu, L.; Huang, J.; Wang, S.; Zou, W.; Yang, L.; Liu, G. Soluble Urokinase Receptor Levels in Secondary Focal Segmental Glomerulosclerosis. Kidney Dis. 2019, 5, 239–246. [Google Scholar] [CrossRef] [PubMed]
- Meijers, B.; Maas, R.J.H.; Sprangers, B.; Claes, K.; Poesen, R.; Bammens, B.; Naesens, M.; Deegens, J.K.J.; Dietrich, R.; Storr, M.; et al. The soluble urokinase receptor is not a clinical marker for focal segmental glomerulosclerosis. Kidney Int. 2014, 85, 636–640. [Google Scholar] [CrossRef] [Green Version]
- Wada, T.; Nangaku, M.; Maruyama, S.; Imai, E.; Shoji, K.; Kato, S.; Endo, T.; Muso, E.; Kamata, K.; Yokoyama, H.; et al. A multicenter cross-sectional study of circulating soluble urokinase receptor in Japanese patients with glomerular disease. Kidney Int. 2014, 85, 641–648. [Google Scholar] [CrossRef] [Green Version]
- Franco Palacios, C.R.; Lieske, J.C.; Wadei, H.M.; Rule, A.D.; Fervenza, F.C.; Voskoboev, N.; Garovic, V.D.; Zand, L.; Stegall, M.D.; Cosio, F.G.; et al. Urine but not serum soluble urokinase receptor (suPAR) may identify cases of recurrent FSGS in kidney transplant candidates. Transplantation 2013, 96, 394–399. [Google Scholar] [CrossRef] [Green Version]
- Sharma, M.; Zhou, J.; Gauchat, J.F.; Sharma, R.; McCarthy, E.T.; Srivastava, T.; Savin, V.J. Janus kinase 2/signal transducer and activator of transcription 3 inhibitors attenuate the effect of cardiotrophin-like cytokine factor 1 and human focal segmental glomerulosclerosis serum on glomerular filtration barrier. Transl. Res. 2015, 166, 384–398. [Google Scholar] [CrossRef] [Green Version]
- Nijenhuis, T.; Sloan, A.J.; Hoenderop, J.G.J.; Flesche, J.; Van Goor, H.; Kistler, A.D.; Bakker, M.; Bindels, R.J.M.; De Boer, R.A.; Möller, C.C.; et al. Angiotensin II contributes to podocyte injury by increasing TRPC6 expression via an NFAT-mediated positive feedback signaling pathway. Am. J. Pathol. 2011, 179, 1719–1732. [Google Scholar] [CrossRef]
- Zhou, C.C. Eclampsia in Pregnant Mice. Nat. Med. 2012, 14, 855–862. [Google Scholar] [CrossRef] [Green Version]
- Sas, A.; Donizy, P.; Kościelska-Kasprzak, K.; Kamińska, D.; Mazanowska, O.; Krajewska, M.; Chudoba, P.; Korta, K.; Hałoń, A.; Klinger, M.; et al. Histopathological Relevance of Angiotensin II Type 1 Receptor in Renal Transplant Biopsy. Transplant. Proc. 2018, 50, 1847–1849. [Google Scholar] [CrossRef]
- Sas-Strózik, A.; Donizy, P.; Kościelska-Kasprzak, K.; Kamińska, D.; Gawlik, K.; Mazanowska, O.; Madziarska, K.; Hałoń, A.; Krajewska, M.; Banasik, M. Angiotensin II Type 1 Receptor Expression in Renal Transplant Biopsies and Anti-AT1R Antibodies in Serum Indicates the Risk of Transplant Loss. Transplant. Proc. 2020, 52, 2299–2304. [Google Scholar] [CrossRef] [PubMed]
- Mujtaba, M.A.; Sharfuddin, A.A.; Book, B.L.; Goggins, W.C.; Khalil, A.A.; Mishler, D.P.; Fridell, J.A.; Yaqub, M.S.; Taber, T.E. Pre-transplant angiotensin receptor II type 1 antibodies and risk of post-transplant focal segmental glomerulosclerosis recurrence. Clin. Transplant. 2015, 29, 606–611. [Google Scholar] [CrossRef] [PubMed]
- Abuzeineh, M.; Aala, A.; Alasfar, S.; Alachkar, N. Angiotensin II receptor 1 antibodies associate with post-transplant focal segmental glomerulosclerosis and proteinuria. BMC Nephrol. 2020, 21, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Frishberg, Y.; Becker-cohen, R.; Halle, D.; Feigin, E.; Eisenstein, B.; Halevy, R.; Lotan, D.; Juabeh, I.; Ish-shalom, N.; Magen, D.; et al. Genetic polymorphisms of the renin-angiotensin system and the outcome of focal segmental glomerulosclerosis in children. Kidney Int. 1998, 54, 1843–1849. [Google Scholar] [CrossRef] [Green Version]
- Keeling, J.; Herrera, G.A. Human matrix metalloproteinases: Characteristics and pathologic role in altering mesangial homeostasis. Microsc. Res. Tech. 2008, 71, 371–379. [Google Scholar] [CrossRef]
- Tallant, C.; Marrero, A.; Gomis-Rüth, F.X. Matrix metalloproteinases: Fold and function of their catalytic domains. Biochim. Biophys. Acta Mol. Cell Res. 2010, 1803, 20–28. [Google Scholar] [CrossRef]
- Bauvois, B.; Mothu, N.; Nguyen, J.; Nguyen-Khoa, T.; Nöel, L.H.; Jungers, P. Specific changes in plasma concentrations of matrix metalloproteinase-2 and -9, TIMP-1 and TGF-β1 in patients with distinct types of primary glomerulonephritis. Nephrol. Dial. Transplant. 2007, 22, 1115–1122. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.; Li, Y.; Zhao, H.; Chen, D.; Huang, Q.; Wang, S.; Zou, W.; Zhang, Y.; Li, X.; Huang, H. Increase in extracellular cross-linking by tissue transglutaminase and reduction in expression of MMP-9 contribute differentially to focal segmental glomerulosclerosis in rats. Mol. Cell. Biochem. 2006, 284, 9–17. [Google Scholar] [CrossRef]
- Chang, H.R.; Kuo, W.H.; Hsieh, Y.S.; Yang, S.F.; Lin, C.C.; Lee, M.L.; Lian, J.D.; Chu, S.C. Circulating matrix metalloproteinase-2 is associated with cystatin C level, posttransplant duration, and diabetes mellitus in kidney transplant recipients. Transl. Res. 2008, 151, 217–223. [Google Scholar] [CrossRef]
- Czech, K.A.; Bennett, M.; Devarajan, P. Distinct metalloproteinase excretion patterns in focal segmental glomerulosclerosis. Pediatr. Nephrol. 2011, 26, 2179–2184. [Google Scholar] [CrossRef]
- Gee, S.H.; Montanaro, F.; Lindenbaum, M.H.; Carbonetto, S. Dystroglycan-α, a dystrophin-associated glycoprotein, is a functional agrin receptor. Cell 1994, 77, 675–686. [Google Scholar] [CrossRef]
- Timpl, R.; Tisi, D.; Talts, J.F.; Andac, Z.; Sasaki, T.; Hohenester, E. Structure and function of laminin LG modules. Matrix Biol. 2000, 19, 309–317. [Google Scholar] [CrossRef]
- Regele, H.M.; Fillipovic, E.; Langer, B.; Poczewki, H.; Kraxberger, I.; Bittner, R.E.; Kerjaschki, D. Glomerular expression of dystroglycans is reduced in minimal change nephrosis but not in focal segmental glomerulosclerosis. J. Am. Soc. Nephrol. 2000, 11, 403–412. [Google Scholar] [CrossRef] [PubMed]
- Shankar, P.B.; Nada, R.; Joshi, K.; Kumar, A.; Rayat, C.S.; Sakhuja, V. Podocin and Beta Dystroglycan expression to study Podocyte-Podocyte and basement membrane matrix connections in adult protienuric states. Diagn. Pathol. 2014, 9, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Wilflingseder, J.; Reindl-schwaighofer, R.; Sunzenauer, J. Europe PMC Funders Group microRNAs in Kidney Transplantation. Nephrol. Dial. Transplant. 2015, 30, 910–917. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q.; Jiang, C.; Tang, T.; Wang, H.; Xia, Y.; Shao, Q.; Zhang, M. Author’ s Accepted Manuscript. Am. J. Med. Sci. 2017. [Google Scholar] [CrossRef]
- Gebeshuber, C.A.; Kornauth, C.; Dong, L.; Sierig, R.; Seibler, J.; Reiss, M.; Tauber, S.; Bilban, M.; Wang, S.; Kain, R.; et al. Focal segmental glomerulosclerosis is induced by microRNA-193a and its downregulation of WT1. Nat. Med. 2013, 19, 481–487. [Google Scholar] [CrossRef]
- Iranzad, R.; Motavalli, R.; Ghassabi, A.; Pourakbari, R.; Etemadi, J.; Yousefi, M. Roles of microRNAs in renal disorders related to primary podocyte dysfunction. Life Sci. 2021, 277, 119463. [Google Scholar] [CrossRef]
- Flevaris, P.; Vaughan, D. The Role of Plasminogen Activator Inhibitor Type-1 in Fibrosis. Semin. Thromb. Hemost. 2017, 43, 169–177. [Google Scholar] [CrossRef]
- Hamano, K.; Iwano, M.; Akai, Y.; Sato, H.; Kubo, A.; Nishitani, Y.; Uyama, H.; Yoshida, Y.; Miyazaki, M.; Shiiki, H.; et al. Expression of glomerular plasminogen activator inhibitor type 1 in glomerulonephritis. Am. J. Kidney Dis. 2002, 39, 695–705. [Google Scholar] [CrossRef]
- Lee, J.H.; Oh, M.H.; Park, J.S.; Na, G.J.; Gil, H.W.; Yang, J.O.; Lee, E.Y.; Hong, S.Y. Urokinase, urokinase receptor, and plasminogen activator inhibitor-1 expression on podocytes in immunoglobulin A glomerulonephritis. Korean J. Intern. Med. 2014, 29, 176–182. [Google Scholar] [CrossRef] [PubMed]
- Pan, C.; Zhou, C.; Shan, A.; Chen, N. Expression and clinical significance of thrombospondin-1 and plasminogen activator inhibitor-1 in patients with mesangial proliferative glomerulonephritis. Ann. Cardiothorac. Surg. 2020, 9, 3187–3193. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Haraguchi, M.; Lawrence, D.A.; Border, W.A.; Yu, L.; Noble, N.A. A mutant, noninhibitory plasminogen activator inhibitor type 1 decreases matrix accumulation in experimental glomerulonephritis. J. Clin. Investig. 2003, 112, 379–388. [Google Scholar] [CrossRef] [PubMed]
- Paust, H.J.; Ostmann, A.; Erhardt, A.; Turner, J.E.; Velden, J.; Mittrücker, H.W.; Sparwasser, T.; Panzer, U.; Tiegs, G. Regulatory T cells control the Th1 immune response in murine crescentic glomerulonephritis. Kidney Int. 2011, 80, 154–164. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barabadi, M.; Shahbaz, S.K.; Foroughi, F.; Hosseinzadeh, M.; Nafar, M.; Yekaninejad, M.S.; Amirzargar, A. High expression of FOXP3 mRNA in blood and urine as a predictive marker in kidney transplantation. Prog. Transplant. 2018, 28, 134–141. [Google Scholar] [CrossRef]
- Koch, A.; Voigt, S.; Kruschinski, C.; Sanson, E.; Dückers, H.; Horn, A.; Yagmur, E.; Zimmermann, H.; Trautwein, C.; Tacke, F. Circulating soluble urokinase plasminogen activator receptor is stably elevated during the first week of treatment in the intensive care unit and predicts mortality in critically ill patients. Crit. Care 2011, 15, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Yin, J.; Tu, J.; Lin, H.; Shi, F.; Liu, R.; Zhao, C.; Stephen, W.; Kuniyoshi, S.; Shi, J. Centrally Administered Pertussis Toxin Inhibits Microglia Migration to the Spinal Cord and Prevents Dissemination of Disease in an EAE Mouse Model. PLoS ONE 2010, 5, e12400. [Google Scholar] [CrossRef]
- Becker, L.E.; Koleganova, N.; Piecha, G.; Noronha, I.L.; Zeier, M.; Geldyyev, A.; Kökeny, G.; Ritz, E.; Gross, M.L. Effect of paricalcitol and calcitriol on aortic wall remodeling in uninephrectomized ApoE knockout mice. Am. J. Physiol. Ren. Physiol. 2011, 300, 772–782. [Google Scholar] [CrossRef] [Green Version]
- Nakamaki, S.; Satoh, H.; Kudoh, A.; Hayashi, Y.; Hirai, H.; Watanabe, T. Adiponectin reduces proteinuria in streptozotocin-induced diabetic wistar rats. Exp. Biol. Med. 2011, 236, 614–620. [Google Scholar] [CrossRef]
- Marwitz, S.; Abdullah, M.; Vock, C.; Fine, J.S.; Visvanathan, S.; Gaede, K.I.; Hauber, H.P.; Zabel, P.; Goldmann, T. HOPE-BAL: Improved molecular diagnostics by application of a novel technique for fixation and paraffin embedding. J. Histochem. Cytochem. 2011, 59, 601–614. [Google Scholar] [CrossRef] [Green Version]
- Vieira, V.J.; D’Acampora, A.J.; Marcos, A.B.W.; Di Giunta, G.; De Vasconcellos, Z.A.A.; Bins-Ely, J.; D’Eça Neves, R.; Figueiredo, C.P. Vascular endothelial growth factor overexpression positively modulates the characteristics of periprosthetic tissue of polyurethane-coated silicone breast implant in rats. Plast. Reconstr. Surg. 2010, 126, 1899–1910. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, T.; Noble, N.A.; Cohen, A.H.; Nast, C.C.; Hishida, A.M.I.; Gold, L.I.; Border, W.A. Expression of transforming growth factor-n isoforms in human glomerular diseases. Kidney Int. 1996, 49, 461–469. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, D.T.; Bitzer, M.; Ju, W.; Mundel, P.; Bo, E.P. Profiles of Growth Arrest/Differentiation and Apoptosis in Podocytes. JASN 2005, 16, 3211–3221. [Google Scholar] [CrossRef] [PubMed]
- Mozes, M.M.; Böttinger, E.P.; Jacot, T.A.; Kopp, J.B. Renal expression of fibrotic matrix proteins and of transforming growth factor-β (TGF-β) isoforms in TGF-β transgenic mice. J. Am. Soc. Nephrol. 1999, 10, 271–280. [Google Scholar] [CrossRef] [PubMed]
- Strehlau, J.; Schachter, A.D.; Pavlakis, M.; Singh, A.; Tejani, A.; Strom, T.B. Activated intrarenal transcription of CTL-effectors and TGF-ß1 in children with focal segmental glomerulosclerosis. Kidney Int. 2002, 61, 90–95. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Donizy, P.; Wu, C.L.; Mull, J.; Fujimoto, M.; Chłopik, A.; Peng, Y.; Shalin, S.C.; Selim, M.A.; Puig, S.; Fernandez-Figueras, M.T.; et al. Up-Regulation of PARP1 Expression Significantly Correlated with Poor Survival in Mucosal Melanomas. Cells 2020, 9, 1135. [Google Scholar] [CrossRef]
- Flower, D.R. The lipocalin protein family: Structure and function. Biochem. J. 1996, 318, 1–14. [Google Scholar] [CrossRef]
- Kulvichit, W.; Kellum, J.A.; Srisawat, N. Biomarkers in Acute Kidney Injury. Crit. Care Clin. 2021, 37, 385–398. [Google Scholar] [CrossRef]
- Bennett, M.; Dent, C.L.; Ma, Q.; Dastrala, S.; Grenier, F.; Workman, R.; Syed, H.; Ali, S.; Barasch, J.; Devarajan, P. Urine NGAL predicts severity of acute kidney injury after cardiac surgery: A prospective study. Clin. J. Am. Soc. Nephrol. 2008, 3, 665–673. [Google Scholar] [CrossRef] [Green Version]
- Tryggvason, K.; Pettersson, E. Causes and consequences of proteinuria: The kidney filtration barrier and progressive renal failure. J. Intern. Med. 2003, 254, 216–224. [Google Scholar] [CrossRef] [Green Version]
- Ece, A.; Kelekçi, S.; Kocamaz, H.; Hekimoǧlu, A.; Balik, H.; Yolbaş, I.; Erel, O. Antioxidant enzyme activities, lipid peroxidation, and total antioxidant status in children with Henoch-Schönlein purpura. Clin. Rheumatol. 2008, 27, 163–169. [Google Scholar] [CrossRef] [PubMed]
- Wager MGT and JFS. 基因的改变NIH Public Access. Bone 2008, 23, 1–7. [Google Scholar] [CrossRef]
- Chen, B.Y.; Lin, D.P.C.; Wu, C.Y.; Teng, M.C.; Sun, C.Y.; Tsai, Y.T.; Su, K.C.; Wang, S.R.; Chang, H.H. Dietary zerumbone prevents mouse cornea from UVB-induced photokeratitis through inhibition of NF-κB, iNOS, and TNF-α expression and reduction of MDA accumulation. Mol. Vis. 2011, 17, 854–863. [Google Scholar] [PubMed]
- DeNicola, G.M.; Karreth, F.A.; Humpton, T.J.; Gopinathan, A.; Wei, C.; Frese, K.; Mangal, D.; Yu, K.H.; Yeo, C.J.; Eric, S.; et al. HHS Public Access Author manuscript Nature. Nature 2012, 475, 106–109. [Google Scholar] [CrossRef] [PubMed]
- Kuo, H.T.; Kuo, M.C.; Chiu, Y.W.; Chang, J.M.; Guh, J.Y.; Chen, H.C. Increased glomerular and extracellular malondialdehyde levels in patients and rats with focal segmental glomerulosclerosis. Eur. J. Clin. Investig. 2005, 35, 245–250. [Google Scholar] [CrossRef]
- Da Silva, C.A.; Araújo, L.S.; Dos Reis Monteiro, M.L.G.; De Morais Pereira, L.H.; Da Silva, M.V.; Castellano, L.R.C.; Corrêa, R.R.M.; Dos Reis, M.A.; Machado, J.R. Evaluation of the diagnostic potential of UPAR as a biomarker in renal biopsies of patients with FSGS. Dis. Markers 2019, 2019, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Wei, C.; Möller, C.C.; Altintas, M.M.; Li, J.; Schwarz, K.; Zacchigna, S.; Xie, L.; Henger, A.; Schmid, H.; Rastaldi, M.P.; et al. Modification of kidney barrier function by the urokinase receptor. Nat. Med. 2008, 14, 55–63. [Google Scholar] [CrossRef] [Green Version]
- Kong, X.; Zhang, Y.; Wu, H.B.; Li, F.X.; Zhang, D.Y.; Su, Q. Combination therapy with losartan and pioglitazone additively reduces renal oxidative and nitrative stress induced by chronic high fat, sucrose, and sodium intake. Oxid. Med. Cell. Longev. 2012, 2012, 856085. [Google Scholar] [CrossRef] [Green Version]
- McCarthy, E.T.; Sharma, M.; Savin, V.J. Circulating permeability factors in idiopathic nephrotic syndrome and focal segmental glomerulosclerosis. Clin. J. Am. Soc. Nephrol. 2010, 5, 2115–2121. [Google Scholar] [CrossRef] [Green Version]
- Elson, G.C.; Graber, P.; Losberger, C.; Herren, S.; Gretener, D.; Menoud, L.N.; Wells, T.N.; Kosco-Vilbois, M.H.; Gauchat, J.F. Cytokine-like factor-1, a novel soluble protein, shares homology with members of the cytokine type I receptor family. J. Immunol. 1998, 161, 1371–1379. [Google Scholar]
- Bazan, J.F. Neuropoietic cytokines in the hematopoietic fold. Neuron 1991, 7, 197–208. [Google Scholar] [CrossRef]
- Derouet, D.; Rousseau, F.; Alfonsi, F.; Froger, J.; Hermann, J.; Barbier, F.; Perret, D.; Diveu, C.; Guillet, C.; Preisser, L.; et al. Neuropoietin, a new IL-6-related cytokine signaling through the ciliary neurotrophic factor receptor. Proc. Natl. Acad. Sci. USA 2004, 101, 4827–4832. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stefanovic, L.; Stefanovic, B. Role of cytokine receptor-like factor 1 in hepatic stellate cells and fibrosis. World J. Hepatol. 2012, 4, 356–364. [Google Scholar] [CrossRef]
- Savin, V.J.; McCarthy, E.T.; Sharma, R.; Charba, D.; Sharma, M. Galactose binds to focal segmental glomerulosclerosis permeability factor and inhibits its activity. Transl. Res. 2008, 151, 288–292. [Google Scholar] [CrossRef] [PubMed]
- Sgambat, K.; Banks, M.; Moudgil, A. Effect of galactose on glomerular permeability and proteinuria in steroid-resistant nephrotic syndrome. Pediatr. Nephrol. 2013, 28, 2131–2135. [Google Scholar] [CrossRef] [PubMed]
- Wada, T.; Nangaku, M. A circulating permeability factor in focal segmental glomerulosclerosis: The hunt continues. Clin. Kidney J. 2015, 8, 708–715. [Google Scholar] [CrossRef] [PubMed]
- Trachtman, H.; Vento, S.; Herreshoff, E.; Radeva, M.; Gassman, J.; Stein, D.T.; Savin, V.J.; Sharma, M.; Reiser, J.; Wei, C.; et al. Efficacy of galactose and adalimumab in patients with resistant focal segmental glomerulosclerosis: Report of the font clinical trial group Clinical Research. BMC Nephrol. 2015, 16, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Suzuki, K.; Gi, D.H.; Miyauchi, N.; Hashimoto, T.; Nakatsue, T.; Fujioka, Y.; Koike, H.; Shimizu, F.; Kawachi, H. Angiotensin II type 1 and type 2 receptors play opposite roles in regulating the barrier function of kidney glomerular capillary wall. Am. J. Pathol. 2007, 170, 1841–1853. [Google Scholar] [CrossRef] [Green Version]
- Dragun, D.; Müller, D.N.; Bräsen, J.H.; Fritsche, L.; Nieminen-Kelhä, M.; Dechend, R.; Kintscher, U.; Rudolph, B.; Hoebeke, J.; Eckert, D.; et al. Angiotensin II Type 1–Receptor Activating Antibodies in Renal-Allograft Rejection. N. Engl. J. Med. 2005, 352, 558–569. [Google Scholar] [CrossRef] [Green Version]
- Haessler, S.; Granowitz, E.V. Norovirus Gastroenteritis in Immunocompromised Patients. N. Engl. J. Med. 2013, 368, 971. [Google Scholar] [CrossRef] [Green Version]
- Berdeli, A.; Serdaro, E. Effects of Genetic Polymorphisms of the Renin-Angiotensin System in Children with Nephrotic Syndrome. J. Renin. Angiotensin. Aldosterone Syst . 2005, 6, 138–144. [Google Scholar] [CrossRef] [Green Version]
- Urushihara, M.; Kagami, S.; Kuhara, T.; Tamaki, T.; Kuroda, Y. Glomerular distribution and gelatinolytic activity of matrix metalloproteinases in human glomerulonephritis. Nephrol. Dial. Transplant. 2002, 17, 1189–1196. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Catania, J.M.; Chen, G.; Parrish, A.R. Role of matrix metalloproteinases in renal pathophysiologies. Am. J. Physiol. Ren. Physiol. 2007, 292, F905–F911. [Google Scholar] [CrossRef] [PubMed]
- Ahuja, T.S.; Gopalani, A.; Davies, P.; Ahuja, H. Matrix metalloproteinase-9 expression in renal biopsies of patients with HIV-associated nephropathy. Nephron. Clin. Pract. 2003, 95, c100-4. [Google Scholar] [CrossRef]
- Korzeniecka-Kozerska, A.; Wasilewska, A.; Tenderenda, E.; Sulik, A.; Cybulski, K. Urinary MMP-9/NGAL ratio as a potential marker of FSGS in nephrotic children. Dis. Markers 2013, 34, 357–362. [Google Scholar] [CrossRef]
- Eton & Lepore 基因的改变NIH Public Access. Bone 2008, 23, 1–7. [CrossRef] [Green Version]
- Mazanowska, O.; Zabińska, M.; Kościelska-Kasprzak, K.; Kamińska, D.; Krajewska, M.; Banasik, M.; Madziarska, K.; Zmonarski, S.C.; Chudoba, P.; Biecek, P.; et al. Increased plasma matrix metalloproteinase-2 (MMP-2), tissue inhibitor of proteinase-1 (TIMP-1), TIMP-2, and urine MMP-2 concentrations correlate with proteinuria in renal transplant recipients. Transplant. Proc. 2014, 46, 2636–2639. [Google Scholar] [CrossRef]
- Tong, J.; Jin, Y.; Weng, Q.; Yu, S.; Jafar Hussain, H.M.; Ren, H.; Xu, J.; Zhang, W.; Li, X.; Wang, W.; et al. Glomerular Transcriptome Profiles in Focal Glomerulosclerosis: New Genes and Pathways for Steroid Resistance. Am. J. Nephrol. 2020, 51, 442–452. [Google Scholar] [CrossRef]
- Raats, C.J.I.; van den Born, J.; Bakker, M.A.H.; Oppers-Walgreen, B.; Pisa, B.J.M.; Dijkman, H.B.P.M.; Assmann, K.J.M.; Berden, J.H.M. Expression of agrin, dystroglycan, and utrophin in normal renal tissue and in experimental glomerulopathies. Am. J. Pathol. 2000, 156, 1749–1765. [Google Scholar] [CrossRef] [Green Version]
- Shimojima, M.; Stroher, U.; Ebihara, H.; Feldmann, H.; Kawaoka, Y. Identification of Cell Surface Molecules Involved in Dystroglycan-Independent Lassa Virus Cell Entry. J. Virol. 2012, 86, 2067–2078. [Google Scholar] [CrossRef] [Green Version]
- Takawira, D.; Budinger, G.R.S.; Hopkinson, S.B.; Jones, J.C.R. A dystroglycan/plectin scaffold mediates mechanical pathway bifurcation in lung epithelial cells. J. Biol. Chem. 2011, 286, 6301–6310. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muscle degeneration in neuraminidase 1-deficient mice results from infiltration of the muscle fibers by expanded connective tissue. Biochim. Et Biophys. Acta (BBA) Mol. Basis Dis. 2011, 1802, 659–672. [CrossRef]
- Khouzami, L.; Bourin, M.C.; Christov, C.; Damy, T.; Escoubet, B.; Caramelle, P.; Perier, M.; Wahbi, K.; Meune, C.; Pavoine, C.; et al. Delayed cardiomyopathy in dystrophin deficient mdx mice relies on intrinsic glutathione resource. Am. J. Pathol. 2010, 177, 1356–1364. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ribeiro-Resende, V.T.; Ribeiro-Guimarães, M.L.; Rodrigues Lemes, R.M.; Nascimento, Í.C.; Alves, L.; Mendez-Otero, R.; Vidal Pessolani, M.C.; Lara, F.A. Involvement of 9-O-acetyl GD3 ganglioside in Mycobacterium leprae infection of schwann cells. J. Biol. Chem. 2010, 285, 34086–34096. [Google Scholar] [CrossRef] [Green Version]
- Ilsley, J.L.; Sudol, M.; Winder, S.J. The WW domain: Linking cell signalling to the membrane cytoskeleton. Cell. Signal. 2002, 14, 183–189. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, P.; Hu, H. LARGE Expression Augments the Glycosylation of Glycoproteins in Addition to a -Dystroglycan Conferring Laminin Binding. PLoS ONE 2011, 6, e19080. [Google Scholar] [CrossRef] [Green Version]
- Kojima, K.; Kerjaschki, D. Is podocyte shape controlled by the dystroglycan complex? Nephrol. Dial. Transplant. 2002, 17, 23–24. [Google Scholar] [CrossRef] [Green Version]
- Giannico, G.; Yang, H.; Neilson, E.G.; Fogo, A.B. Dystroglycan in the diagnosis of FSGS. Clin. J. Am. Soc. Nephrol. 2009, 4, 1747–1753. [Google Scholar] [CrossRef] [Green Version]
- Cortez, M.A.; Calin, G.A. MicroRNA identification in plasma and serum: A new tool to diagnose and monitor diseases. Expert Opin. Biol. Ther. 2009, 9, 703–711. [Google Scholar] [CrossRef]
- Mitchell, P.S.; Parkin, R.K.; Kroh, E.M.; Fritz, B.R.; Wyman, S.K.; Pogosova-Agadjanyan, E.L.; Peterson, A.; Noteboom, J.; O’Briant, K.C.; Allen, A.; et al. Circulating microRNAs as stable blood-based markers for cancer detection. Proc. Natl. Acad. Sci. USA 2008, 105, 10513–10518. [Google Scholar] [CrossRef] [Green Version]
- Nalewajska, M.; Gurazda, K.; Styczyńska-Kowalska, E.; Marchelek-Myśliwiec, M.; Pawlik, A.; Dziedziejko, V. The role of microRNAs in selected forms of glomerulonephritis. Int. J. Mol. Sci. 2019, 20, 5050. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Wei, X.; He, J.; Tian, X.; Yuan, S.; Sun, L. Plasminogen activator inhibitor-1 in cancer research. Biomed. Pharmacother. 2018, 105, 83–94. [Google Scholar] [CrossRef] [PubMed]
- Lu, L.; Barbi, J.; Pan, F. The regulation of immune tolerance by FOXP3. Nat. Rev. Immunol. 2017, 17, 703–717. [Google Scholar] [CrossRef] [PubMed]
- Bunnag, S.; Allanach, K.; Jhangri, G.S.; Sis, B.; Einecke, G.; Mengel, M.; Mueller, T.F.; Halloran, P.F. FOXP3 expression in human kidney transplant biopsies is associated with rejection and time post transplant but not with favorable outcomes. Am. J. Transplant. 2008, 8, 1423–1433. [Google Scholar] [CrossRef] [PubMed]
- Iwase, H.; Kobayashi, T.; Kodera, Y.; Miwa, Y.; Kuzuya, T.; Iwasaki, K.; Haneda, M.; Katayama, A.; Takeda, A.; Morozumi, K.; et al. Clinical significance of regulatory T-cell-related gene expression in peripheral blood after renal transplantation. Transplantation 2011, 91, 191–198. [Google Scholar] [CrossRef]
- Aparecida Da Silva, C.; Molinar Mauad Cintra, M.; De Castro Côbo, E.; Vinícius Da Silva, M.; Bichuette Custódio, F.; Rosa Miranda Corrêa, R.; Roberto Castellano, L.; Antônia Dos Reis, M.; Reis Machado, J. Renal biopsy: Use of biomarkers as a tool for the diagnosis of focal segmental glomerulosclerosis. Dis. Markers 2014, 2014, 192836. [Google Scholar] [CrossRef]
- Donizy, P.; Halon, A.; Surowiak, P.; Pietrzyk, G.; Kozyra, C.; Matkowski, R. Correlation between PARP-1 immunoreactivity and cytomorphological features of parthanatos, a specific cellular death in breast cancer cells. Eur. J. Histochem. 2013, 57, 237–240. [Google Scholar] [CrossRef] [Green Version]
- Donizy, P.; Pietrzyk, G.; Halon, A.; Kozyra, C.; Gansukh, T.; Lage, H.; Surowiak, P.; Matkowski, R. Nuclear-cytoplasmic PARP-1 expression as an unfavorable prognostic marker in lymph node-negative early breast cancer: 15-year follow-up. Oncol. Rep. 2014, 31, 1777–1787. [Google Scholar] [CrossRef] [Green Version]
- Mukhopadhyay, P.; Horváth, B.; Kechrid, M.; Tanchian, G.; Rajesh, M.; Naura, A.S.; Boulares, A.H.; Pacher, P. Poly(ADP-ribose) polymerase-1 is a key mediator of cisplatin-induced kidney inflammation and injury. Free Radic. Biol. Med. 2011, 51, 1774–1788. [Google Scholar] [CrossRef] [Green Version]
- Salech, F.; Ponce, D.P.; Paula-Lima, A.C.; SanMartin, C.D.; Behrens, M.I. Nicotinamide, a Poly [ADP-Ribose] Polymerase 1 (PARP-1) Inhibitor, as an Adjunctive Therapy for the Treatment of Alzheimer’s Disease. Front. Aging Neurosci. 2020, 12, 1–10. [Google Scholar] [CrossRef]
- Pacher, P.; Szabó, C. Role of poly(ADP-ribose) polymerase 1 (PARP-1) in cardiovascular diseases: The therapeutic potential of PARP inhibitors. Cardiovasc. Drug Rev. 2007, 25, 235–260. [Google Scholar] [CrossRef] [Green Version]
- O’Valle, F.; Del Moral, R.G.M.; del Carmén Benítez, M.; Martín-Oliva, D.; Gómez-Morales, M.; Aguilar, D.; Aneiros-Fernández, J.; Hernández-Cortés, P.; Osuna, A.; Moreso, F.; et al. Poly[ADP-ribose] polymerase-1 expression is related to cold ischemia, acute tubular necrosis, and delayed renal function in kidney transplantation. PLoS ONE 2009, 4, e7138. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pil, S.; Jinu, Y. Poly (ADP-ribose) polymerase 1 activation links ischemic acute kidney injury to interstitial fibrosis. J. Physiol. Sci. 2015, 65, 105–111. [Google Scholar] [CrossRef]
- Zheng, J.; Devalaraja-narashimha, K.; Singaravelu, K.; Padanilam, B.J.; Devalaraja-narashimha, K.; Sin-, K.; Adp-ribose, B.J.P.P. Poly (ADP-ribose) polymerase-1 gene ablation protects mice from ischemic renal injury. Am. J. Physiol. -Ren. Physiol. 2005, 288, F387–F398. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Slominska, E.M.; Kowalik, K.; Smolenski, R.T.; Szolkiewiez, M.; Rutkowski, P.; Rutkowski, B.; Swierczynski, J. Accumulation of poly(ADP-ribose) polymerase inhibitors in children with chronic renal failure. Pediatr. Nephrol. 2006, 21, 800–806. [Google Scholar] [CrossRef]
- Li, Y.; Kang, Y.S.; Dai, C.; Kiss, L.P.; Wen, X.; Liu, Y. Epithelial-to-mesenchymal transition is a potential pathway leading to podocyte dysfunction and proteinuria. Am. J. Pathol. 2008, 172, 299–308. [Google Scholar] [CrossRef] [Green Version]
- Kamińska, D.; Kościelska-Kasprzak, K.; Chudoba, P.; Mazanowska, O.; Banasik, M.; Zabinska, M.; Boratyńska, M.; Lepiesza, A.; Gomółkiewicz, A.; Dziȩgiel, P.; et al. Pretransplant immune- and apoptosis-related gene expression is associated with kidney allograft function. Mediators Inflamm. 2016, 2016, 8970291. [Google Scholar] [CrossRef] [Green Version]
- Kamińska, D.; Kościelska-Kasprzak, K.; Chudoba, P.; Hałoń, A.; Mazanowska, O.; Gomółkiewicz, A.; Dzięgiel, P.; Drulis-Fajdasz, D.; Myszka, M.; Lepiesza, A.; et al. The influence of warm ischemia elimination on kidney injury during transplantation—clinical and molecular study. Sci. Rep. 2016, 6, 36118. [Google Scholar] [CrossRef] [Green Version]
- Murakami, K.; Takemura, T.; Hino, S.; Yoshioka, K. Urinary transforming growth factor-β in patients with glomerular diseases. Pediatr. Nephrol. 1997, 11, 334–336. [Google Scholar] [CrossRef]
- Anderson, S.; Meyer, T.W.; Rennke, H.G.; Brenner, B.M. Control of glomerular hypertension limits glomerular injury in rats with reduced renal mass. J. Clin. Investig. 1985, 76, 612–619. [Google Scholar] [CrossRef]
- Remuzzi, A.; Puntorieri, S.; Battaglia, C.; Bertani, T.; Remuzzi, G. Angiotensin converting enzyme inhibition ameliorates glomerular filtration of macromolecules and water and lessens glomerular injury in the rat. J. Clin. Investig. 1990, 85, 541–549. [Google Scholar] [CrossRef] [Green Version]
- Le Berre, L.; Hervé, C.; Buzelen, F.; Usal, C.; Soulillou, J.P.; Dantal, J. Renal macrophage activation and Th2 polarization precedes the development of nephrotic syndrome in Buffalo/Mna rats. Kidney Int. 2005, 68, 2079–2090. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, J.H.; Kim, B.K.; Moon, K.C.; Hong, H.K.; Lee, H.S. Activation of the TGF-β/Smad signaling pathway in focal segmental glomerulosclerosis. Kidney Int. 2003, 64, 1715–1721. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wotton, D.; Massague, J. Transcriptional control by the TGF- b / Smad signaling system. EMBO J. 2000, 19, 1745–1754. [Google Scholar]
- Schiffer, M.; Bitzer, M.; Roberts, I.S.D.; Kopp, J.B.; Dijke, P.; Mundel, P.; Böttinger, E.P. Apoptosis in podocytes induced by TGF-β and Smad7. J. Clin. Investig. 2001, 108, 807–816. [Google Scholar] [CrossRef]
- Khalili, M.; Bonnefoy, A.; Genest, D.S.; Quadri, J.; Rioux, J.P.; Troyanov, S. Clinical Use of Complement, Inflammation, and Fibrosis Biomarkers in Autoimmune Glomerulonephritis. Kidney Int. Rep. 2020, 5, 1690–1699. [Google Scholar] [CrossRef]
- Youssef, D.M.; El-shal, A.S. Kidney Diseases Urinary Neutrophil Gelatinase-associated Lipocalin and Kidney Injury in Children With Focal Segmental Glomerulosclerosis. Iran. J. Kidney Dis. 2012, 6, 355–360. [Google Scholar]
- Neria, F.; Castilla, M.A.; Sanchez, R.F.; Gonzalez Pacheco, F.R.; Deudero, J.J.P.; Calabia, O.; Tejedor, A.; Manzarbeitia, F.; Ortiz, A.; Caramelo, C. Inhibition of JAK2 protects renal endothelial and epithelial cells from oxidative stress and cyclosporin A toxicity. Kidney Int. 2009, 75, 227–234. [Google Scholar] [CrossRef] [Green Version]
- Mancuso, M.; Davidzon, G.; Kurlan, R.M.; Tawil, R.; Bonilla, E.; Di Mauro, S.; Powers, J.M. Hereditary ferritinopathy: A novel mutation, its cellular pathology, and pathogenetic insights. J. Neuropathol. Exp. Neurol. 2005, 64, 280–294. [Google Scholar] [CrossRef] [Green Version]
FSGS/Variant | Inclusion Criteria | Exclusion Criteria |
---|---|---|
FSGS not otherwise specified (NOS) | At least 1 glomerulus with segmental increase in matrix obliterating the capillary lumina. There may be segmental glomerulus capillary wall collapse without overlying podocyte hyperplasia. | Exclude perihilar, cellular, tip, and collapsing variants. |
Perihilar variant | At least 1 glomerulus with perihilar hyalinosis, with or without sclerosis >50% of glomeruli with segmental lesions must have perihilar sclerosis and/or hyalinosis. | Exclude cellular, tip, and collapsing variants |
Cellular variant | At least 1 glomerulus with segmental endocapillary hypercellularity occluding lumina, with or without foam cells and karyorrhexis. | Exclude tip and collapsing variants. |
Tip variant | At least 1 segmental lesion involving the tip domain (outer 25% of tuft next to origin of proximal tubule). The tubular pole must be identified in the defining lesion. The lesion must have either an adhesion or confluence of podocytes with parietal or tubular cells at the tubular lumen or neck. The tip lesion may be cellular or sclerosing. | Exclude collapsing variant. Exclude any perihilar sclerosis |
Collapsing variant | At least 1 glomerulus with segmental or global collapse and overlying podocyte hypertrophy and hyperplasia | None |
Etiology | |||
---|---|---|---|
Primary | FSGS with diffuse process effacement and nephritic syndrome (often sudden onset amenable to therapy | ||
Secondary | Adaptive changes to glomerular hyperfiltration (normal or reduced nephron mass, segmenta foot process effacement, proteinuria without nephritic syndrome | Viral: HIV, probably: HCV, CMV, parvovirusB19 | Drug induced: mTOR inhibitors, calcineurin inhibitors, anthracyclines, heroin(adulterants), direct-acting antiviral therapy (ledipasvir, sofosbuvir, heroin (adulterants), lithium, IFN, anabolic steroids |
Genetic | Familial | Syndromic | Sporadic |
FSGS of undetermined cause | Segmental foot process effacement | Proteinuria without nephritic syndrome | No evidence of secondary cause |
Biomarkers | Analyzed Variables | Population | Results | Clinical Utility | References |
---|---|---|---|---|---|
suPAR (experimental) | The effect of suPAR on activation of podocyte β3 integrin expression in native and graft kidneys | Three mice models | Renal damage develops when suPAR activates β3 integrin | Not known | [16] |
Proteinuria/kidney pathology | A primary culture of human podocytes and two mouse models | Amiloride inhibits podocyte uPAR induction and reduces proteinuria | Identification of amiloride anti-proteinuric properties | [17] | |
Proteinuria | Mouse model | Injection of recombinant suPAR in wild-type mice did not induce proteinuria within 24 h | suPAR do not induce proteinuria | [18] | |
suPAR (clinical) | suPAR serum level (ELISA) | 78 pts with FSGS, 25 pts with MCD, 7 pts with preeclampsia, 16 pts with MN, 22 healthy subject | Positive correlation between increased suPAR and decreased eGFR; suPAR elevated in 2/3 of pts with primary FSGS but not in other glomerular diseases | Identification serum suPAR as a circulating factor | [16] |
Circulating levels of individual soluble suPAR forms to assess the risk of FSGS recurrence after transplantation (ELISA, TR-FIA) | 55 pts with primary FSGS, 15 pts with non-FSGS glomerular diseases, 15 healthy subjects |
|
| [19] | |
Plasma suPAR level (ELISA) | 74 pts with primary FSGS 14 pts with secondary FSGS controls: healthy subjects, MCD, MN |
| suPAR do not differentiate primary and secondary FSGS | [20] | |
Serum suPAR level (ELISA) | 164 pts with primary FSGS (the North America–based FSGS clinical trial and PodoNet) |
| suPAR levels correlate with remission | [21] | |
Plasma suPAR level (ELISA) | 38 pts with primary FSGS | Rituximab was ineffective at producing a sustained remission | Sustained high suPAR levels are marker of disease resistance to treatment | [22] | |
Plasma suPAR level (ELISA) | 7 pts with primary FSGS, 21 pts with secondary FSGS 6 pts with recurrence of FSGS after KTx, 32 healthy subjects, 60 pts with GN |
| Higher suPAR predictive for progression to ESRD | [23] | |
Plasma and urinary suPAR levels (ELISA) | 52 pts with secondary FSGS, 8 pts with Alport-FSGS, 20 pts with obesity-related FSGS, 24 pts with diabetic nephropathy | Plasma and urinary suPAR levels in secondary FSGS group were significantly higher than in healthy controls
| suPAR might be a useful marker of FSGS-associated podocytopathy but not necessarily a circulating permeability factor | [24] | |
Plasma and urinary suPAR levels (ELISA) | 241 pts with GN (Neptun cohort) |
| Results do not support a pathological role for suPAR in FSGS | [18] | |
Serum suPAR level (ELISA) | 476 non-FSGS CKD, 44 FSGS active disease, 10 FSGS remission |
| Results do not support a pathological role for suPAR in FSGS | [25] | |
Serum suPAR level (ELISA) | 69 Japanese pts with biopsy-proven glomerular diseases in a cross-sectional manner |
| suPAR do not differentiate primary FSGS from the other GN | [26] | |
Plasma and urinary pretransplant suPAR levels (ELISA) | 86 kidney transplant recipients, 10 healthy controls |
| Results do not support a pathological role for suPAR in FSGS | [27] | |
CLC-1 (experimental) | Isolated rat glomeruli using an in vitro assay of albumin permeability (P(alb)) | Rat model | The downregulation of JAK2/STAT3 signaling could relate to the circulating permeability factor by inhibiting CLC-1 | Monomeric CLCF1 increases P(alb), the heterodimer CLCF1-CRLF1 may protect the glomerular filtration barrier | [28] |
Biomarker | Pathophysiologic Mechanism | Clinical Utility | References |
---|---|---|---|
Angiotensin II type 1 receptors (AT1R) |
| Prognostic factor of post-transplant FSGS prognostic factor of graft loss prognostic factor of in ESRD | [29,30,31,32,33,34,35] |
Metalloproteinases (MMP)/ tissue inhibitors of metalloproteinases (TIMPs) |
| Differentiation FSGS with other glomerulopathies | [36,37,38,39,40,41] |
Dystroglycans (DG) |
| Differentiation FSGS with other glomerulopathies | [42,43,44,45] |
MicroRNAs (miR-192 and miR205, miR-186) |
| Prognostic factor of delayed graft function differentiation FSGS with other glomerulopathies | [46,47,48,49] |
Plasminogen activator inhibitor type-1 (PAI-1) |
| Potential role in the development of GN | [50,51,52,53,54] |
Forkheadbox P3 (FOXP3) |
| Identification of recipients at high risk for acute rejection; predictive marker kidney allograft outcome. | [55,56] |
Transforming growth factor-beta (TGF-β) | Promotion of podocyte apoptosis, proliferation and matrix deposition; glomerular hypertrophy, extracellular matrix accumulation in tubulointerstitium and interstitial fibrosis | Predictive marker of renal failure in FSGS; predictive marker of response to steroid treatment | [57,58,59,60,61,62,63,64,65,66] |
Human neutrophil gelatinase-associated lipocalin (NGAL) |
| Prognostic factor of AKI and ESRD prognostic factor of graft loss biomarker of tubulointerstitial lesions in FSGS pts | [16,47,67,68,69,70,71,72,73,74,75] |
Malondialdehyde (MDA) |
| Prognostic factor of glomerulosclerosis in FSGS | [73,76] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Musiała, A.; Donizy, P.; Augustyniak-Bartosik, H.; Jakuszko, K.; Banasik, M.; Kościelska-Kasprzak, K.; Krajewska, M.; Kamińska, D. Biomarkers in Primary Focal Segmental Glomerulosclerosis in Optimal Diagnostic-Therapeutic Strategy. J. Clin. Med. 2022, 11, 3292. https://doi.org/10.3390/jcm11123292
Musiała A, Donizy P, Augustyniak-Bartosik H, Jakuszko K, Banasik M, Kościelska-Kasprzak K, Krajewska M, Kamińska D. Biomarkers in Primary Focal Segmental Glomerulosclerosis in Optimal Diagnostic-Therapeutic Strategy. Journal of Clinical Medicine. 2022; 11(12):3292. https://doi.org/10.3390/jcm11123292
Chicago/Turabian StyleMusiała, Aleksandra, Piotr Donizy, Hanna Augustyniak-Bartosik, Katarzyna Jakuszko, Mirosław Banasik, Katarzyna Kościelska-Kasprzak, Magdalena Krajewska, and Dorota Kamińska. 2022. "Biomarkers in Primary Focal Segmental Glomerulosclerosis in Optimal Diagnostic-Therapeutic Strategy" Journal of Clinical Medicine 11, no. 12: 3292. https://doi.org/10.3390/jcm11123292
APA StyleMusiała, A., Donizy, P., Augustyniak-Bartosik, H., Jakuszko, K., Banasik, M., Kościelska-Kasprzak, K., Krajewska, M., & Kamińska, D. (2022). Biomarkers in Primary Focal Segmental Glomerulosclerosis in Optimal Diagnostic-Therapeutic Strategy. Journal of Clinical Medicine, 11(12), 3292. https://doi.org/10.3390/jcm11123292