When to Achieve Complete Revascularization in Infarct-Related Cardiogenic Shock
Abstract
:1. Introduction
2. Definitions of Complete Revascularization
- -
- Anatomic complete revascularization, usually defined as successful treatment of all lesions with a diameter stenosis ≥50% or ≥70% in vessels with a reference diameter ≥1.5/2.0 mm, with slight differences in cut-off values among different studies. Other authors refer to anatomic complete revascularization when a residual SYNTAX score of 0 is achieved. This latter definition provides a more objective and standardized parameter which was linked to a better post-procedural outcome prediction [17].
- -
3. Cardiogenic Shock Complicating Acute Coronary Syndromes
4. Early Revascularization in Infarct-Related Cardiogenic Shock
5. Revascularization Strategies of Multivessel CAD in AMI–CS Patients
6. Role of MCS in AMI–CS Patients
7. Role of Shock Teams and Medical Care System Networks
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
CS | Cardiogenic shock |
AMI | acute myocardial infarction |
CAD | coronary artery disease |
STEMI | ST-segment elevation MI |
NSTEMI | non ST-segment elevation MI |
PCI | percutaneous coronary intervention |
MVD | multivessel disease |
ACS | acute coronary syndromes |
CLO | culprit lesion-only |
MCS | mechanical circulatory support |
IABP | intra-aortic balloon pump |
ECMO | extracorporeal membrane oxygenation |
AKI | acute kidney injury |
References
- Hochman, J.S.; Sleeper, L.A.; Godfrey, E.; McKinlay, S.M.; Sanborn, T.; Col, J.; LeJemtel, T. Should We Emergently Revascularize Occluded Coronaries for Cardiogenic ShocK: An international randomized trial of emergency PTCA/CABG—Trial design. Am. Heart J. 1999, 137, 313–321. [Google Scholar] [CrossRef]
- Babaev, A.; Frederick, P.D.; Pasta, D.J.; Every, N.; Sichrovsky, T.; Hochman, J.S. Trends in Management and Outcomes of Patients with Acute Myocardial Infarction Complicated by Cardiogenic Shock. JAMA 2005, 294, 448. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Awad, H.H.; Anderson, F.A.; Gore, J.M.; Goodman, S.G.; Goldberg, R.J. Cardiogenic shock complicating acute coronary syndromes: Insights from the Global Registry of Acute Coronary Events. Am. Heart J. 2012, 163, 963–971. [Google Scholar] [CrossRef] [PubMed]
- Hochman, J.S.; Sleeper, L.A.; Webb, J.G.; Sanborn, T.A.; White, H.D.; Talley, J.D.; Christopher, E.B.; Jacobs, A.K.; Slater, J.N.; Col, J.; et al. Early Revascularization in Acute Myocardial Infarction Complicated by Cardiogenic Shock. N. Engl. J. Med. 1999, 341, 625–634. [Google Scholar] [CrossRef] [Green Version]
- Goldberg, R.J.; Spencer, F.A.; Gore, J.M.; Lessard, D.; Yarzebski, J. Thirty-Year Trends (1975 to 2005) in the Magnitude of, Management of, and Hospital Death Rates Associated with Cardiogenic Shock in Patients With Acute Myocardial Infarction. Circulation 2009, 119, 1211–1219. [Google Scholar] [CrossRef] [Green Version]
- Kunadian, V.; Qiu, W.; Ludman, P.; Redwood, S.; Curzen, N.; Stables, R.; Gunn, J.; Gershlick, A. Outcomes in Patients With Cardiogenic Shock Following Percutaneous Coronary Intervention in the Contemporary Era. JACC Cardiovasc. Interv. 2014, 7, 1374–1385. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reynolds, H.R.; Hochman, J.S. Cardiogenic Shock. Circulation 2008, 117, 686–697. [Google Scholar] [CrossRef]
- Hassanin, A.; Brener, S.J.; Lansky, A.J.; Xu, K.; Stone, G.W. Prognostic impact of multivessel versus culprit vessel only percutaneous intervention for patients with multivessel coronary artery disease presenting with acute coronary syndrome. EuroIntervention 2015, 11, 293–300. [Google Scholar] [CrossRef]
- Gaba, P.; Gersh, B.J.; Ali, Z.A.; Moses, J.W.; Stone, G.W. Complete versus incomplete coronary revascularization: Definitions, assessment and outcomes. Nat. Rev. Cardiol. 2021, 18, 155–168. [Google Scholar] [CrossRef]
- Paradies, V.; Waldeyer, C.; Laforgia, P.L.; Clemmensen, P.; Smits, P.C. Completeness of revascularisation in acute coronary syndrome patients with multivessel disease. EuroIntervention 2021, 17, 193–201. [Google Scholar] [CrossRef]
- Thiele, H.; Akin, I.; Sandri, M.; Fuernau, G.; De Waha, S.; Meyer-Saraei, R.; Nordbeck, P.; Geisler, T.; Landmesser, U.; Skurk, C.; et al. PCI Strategies in Patients with Acute Myocardial Infarction and Cardiogenic Shock. N. Engl. J. Med. 2017, 377, 2419–2432. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gerbaud, E.; Elbaz, M.; Lattuca, B. New insights into cardiogenic shock and coronary revascularization after acute myocardial infarction. Arch. Cardiovasc. Dis. 2020, 113, 276–284. [Google Scholar] [CrossRef] [PubMed]
- Tarantini, G.; Rodinò, G. The role of Impella percutaneous left ventricular assist device in the management of cardiogenic shock: A matter of where and when. Catheter. Cardiovasc. Interv. 2022, 99, 48–49. [Google Scholar] [CrossRef] [PubMed]
- Gössl, M.; Faxon, D.P.; Bell, M.R.; Holmes, D.R.; Gersh, B.J. Complete versus incomplete revascularization with coronary artery bypass graft or percutaneous intervention in stable coronary artery disease. Circ. Cardiovasc. Interv. 2012, 5, 597–604. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tonino, P.A.L.; De Bruyne, B.; Pijls, N.H.J.; Siebert, U.; Ikeno, F.; van’t Veer, M.; Klauss, V.; Manoharan, G.; Engstrøm, T.; Oldroyd, K.G.; et al. Fractional Flow Reserve versus Angiography for Guiding Percutaneous Coronary Intervention. N. Engl. J. Med. 2009, 28, 229–230. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Götberg, M.; Christiansen, E.H.; Gudmundsdottir, I.J.; Sandhall, L.; Danielewicz, M.; Jakobsen, L.; Olsson, S.-E.; Öhagen, P.; Olsson, H.; Omerovic, E.; et al. Instantaneous Wave-free Ratio versus Fractional Flow Reserve to Guide PCI. N. Engl. J. Med. 2017, 376, 1813–1823. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Généreux, P.; Palmerini, T.; Caixeta, A.; Rosner, G.; Green, P.; Dressler, O.; Xu, K.; Parise, H.; Mehran, R.; Serruys, P.W.; et al. Quantification and Impact of Untreated Coronary Artery Disease After Percutaneous Coronary Intervention. J. Am. Coll. Cardiol. 2012, 59, 2165–2174. [Google Scholar] [CrossRef] [Green Version]
- Karami, M.; den Uil, C.A.; Ouweneel, D.M.; Scholte, N.T.; Engström, A.E.; Akin, S.; Lagrand, W.K.; Vlaar, A.P.; Jewbali, L.S.; Henriques, J.P. Mechanical circulatory support in cardiogenic shock from acute myocardial infarction: Impella CP/5.0 versus ECMO. Eur. Heart J. Acute Cardiovasc. Care 2020, 9, 164–172. [Google Scholar] [CrossRef] [Green Version]
- Vahdatpour, C.; Collins, D.; Goldberg, S. Cardiogenic Shock. J. Am. Heart Assoc. 2019, 8, e011991. [Google Scholar] [CrossRef] [Green Version]
- McDonagh, T.A.; Metra, M.; Adamo, M.; Gardner, R.S.; Baumbach, A.; Böhm, M.; Burri, H.; Butler, J.; Čelutkienė, J.; Chioncel, O.; et al. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur. Heart J. 2021, 42, 3599–3726. [Google Scholar] [CrossRef]
- Freund, A.; Desch, S.; Thiele, H. Revascularization in cardiogenic shock. Herz 2020, 45, 537–541. [Google Scholar] [CrossRef] [PubMed]
- Thiele, H.; de Waha-Thiele, S.; Freund, A.; Zeymer, U.; Desch, S.; Fitzgerald, S. Management of cardiogenic shock. EuroIntervention 2021, 17, 451–465. [Google Scholar] [CrossRef] [PubMed]
- Baran, D.A.; Grines, C.L.; Bailey, S.; Burkhoff, D.; Hall, S.A.; Henry, T.D.; Hollenberg, S.M.; Kapur, N.K.; O’Neill, W.; Ornato, J.P.; et al. SCAI clinical expert consensus statement on the classification of cardiogenic shock: This document was endorsed by the American College of Cardiology (ACC), the American Heart Association (AHA), the Society of Critical Care Medicine (SCCM), and the Societ. Catheter. Cardiovasc. Interv. 2019, 94, 29–37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tehrani, B.N.; Truesdell, A.G.; Psotka, M.A.; Rosner, C.; Singh, R.; Sinha, S.S.; Damluji, A.A.; Batchelor, W.B. A Standardized and Comprehensive Approach to the Management of Cardiogenic Shock. JACC Heart Fail. 2020, 8, 879–891. [Google Scholar] [CrossRef] [PubMed]
- Aissaoui, N.; Puymirat, E.; Tabone, X.; Charbonnier, B.; Schiele, F.; Lefèvre, T.; Durand, E.; Blanchard, D.; Simon, T.; Cambou, J.-P.; et al. Improved outcome of cardiogenic shock at the acute stage of myocardial infarction: A report from the USIK 1995, USIC 2000, and FAST-MI French Nationwide Registries. Eur. Heart J. 2012, 33, 2535–2543. [Google Scholar] [CrossRef] [PubMed]
- Shah, A.H.; Puri, R.; Kalra, A. Management of cardiogenic shock complicating acute myocardial infarction: A review. Clin. Cardiol. 2019, 42, 484–493. [Google Scholar] [CrossRef] [Green Version]
- Hasdai, D.; Topol, E.J.; Califf, R.M.; Berger, P.B.; Holmes, D.R. Cardiogenic shock complicating acute coronary syndromes. Lancet 2000, 356, 749–756. [Google Scholar] [CrossRef]
- Anderson, M.L.; Peterson, E.D.; Peng, S.A.; Wang, T.Y.; Ohman, E.M.; Bhatt, D.L.; Saucedo, J.F.; Roe, M.T. Differences in the profile, treatment, and prognosis of patients with cardiogenic shock by myocardial infarction classification a report from NCDR. Circ. Cardiovasc. Qual. Outcomes 2013, 6, 708–715. [Google Scholar] [CrossRef] [Green Version]
- Holmes, D.R., Jr.; Berger, P.B.; Hochman, J.; Granger, C.B.; Thompson, T.D.; Califf, R.M.; Vahanian, A.; Bates, E.R.; Topol, E.J. Cardiogenic shock in patients with acute ischemic syndromes with and without ST-segment elevation. Circulation 1999, 100, 2067–2073. [Google Scholar] [CrossRef] [Green Version]
- Zeitouni, M.; Akin, I.; Desch, S.; Barthélémy, O.; Brugier, D.; Collet, J.-P.; de Waha-Thiele, S.; Greenwood, J.P.; Guedeney, P.; Hage, G.; et al. Clinical Outcomes According to ECG Presentations in Infarct-Related Cardiogenic Shock in the Culprit Lesion Only PCI vs Multivessel PCI in Cardiogenic Shock Trial. Chest 2021, 159, 1415–1425. [Google Scholar] [CrossRef]
- Samsky, M.D.; Morrow, D.A.; Proudfoot, A.G.; Hochman, J.S.; Thiele, H.; Rao, S.V. Cardiogenic Shock After Acute Myocardial Infarction. JAMA 2021, 326, 1840. [Google Scholar] [CrossRef]
- Hasdai, D.; Califf, R.M.; Thompson, T.D.; Hochman, J.S.; Ohman, E.; Pfisterer, M.; Bates, E.R.; Vahanian, A.; Armstrong, P.W.; Criger, D.A.; et al. Predictors of cardiogenic shock after thrombolytic therapy for acute myocardial infarction. J. Am. Coll. Cardiol. 2000, 35, 136–143. [Google Scholar] [CrossRef] [Green Version]
- Hochman, J.S.; Sleeper, L.A.; Webb, J.G.; Dzavik, V.; Buller, C.E.; Aylward, P.; Col, J.; White, H.D. Early Revascularization and Long-term Survival in Cardiogenic Shock Complicating Acute Myocardial Infarction. JAMA 2006, 295, 2511. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dzavik, V. Early revascularization is associated with improved survival in elderly patients with acute myocardial infarction complicated by cardiogenic shock: A report from the SHOCK Trial Registry. Eur. Heart J. 2003, 24, 828–837. [Google Scholar] [CrossRef] [Green Version]
- Jeger, R.V.; Harkness, S.M.; Ramanathan, K.; Buller, C.E.; Pfisterer, M.E.; Sleeper, L.A.; Hochman, J.S. Emergency revascularization in patients with cardiogenic shock on admission: A report from the SHOCK trial and registry. Eur. Heart J. 2006, 27, 664–670. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zeymer, U.; Vogt, A.; Zahn, R.; Weber, M.A.; Tebbe, U.; Gottwik, M.G.; Bonzel, T.; Senges, J.; Neuhaus, K.-L. Predictors of in-hospital mortality in 1333 patients with acute myocardial infarction complicated by cardiogenic shock treated with primary percutaneous coronary intervention (PCI); Results of the primary PCI registry of the Arbeitsgemeinschaft Leitende Kardiologische Krankenhausärzte (ALKK). Eur. Heart J. 2004, 25, 322–328. [Google Scholar] [CrossRef] [Green Version]
- Neumann, F.J.; Sousa-Uva, M.; Ahlsson, A.; Alfonso, F.; Banning, A.P.; Benedetto, U.; Byrne, R.A.; Collet, J.P.; Falk, V.; Head, S.J.; et al. 2018 ESC/EACTS Guidelines on myocardial revascularization. Eur. Heart J. 2019, 40, 87–165. [Google Scholar] [CrossRef]
- Thiele, H.; Allam, B.; Chatellier, G.; Schuler, G.; Lafont, A. Shock in acute myocardial infarction: The Cape Horn for trials? Eur. Heart J. 2010, 31, 1828–1835. [Google Scholar] [CrossRef]
- van Diepen, S.; Katz, J.N.; Albert, N.M.; Henry, T.D.; Jacobs, A.K.; Kapur, N.K.; Kilic, A.; Menon, V.; Ohman, E.M.; Sweitzer, N.K.; et al. Contemporary Management of Cardiogenic Shock: A Scientific Statement from the American Heart Association. Circulation 2017, 136, e232–e268. [Google Scholar] [CrossRef]
- Shah, R.U.; de Lemos, J.A.; Wang, T.Y.; Chen, A.Y.; Thomas, L.; Sutton, N.; Fang, J.C.; Scirica, B.M.; Henry, T.D.; Granger, C.B. Post-Hospital Outcomes of Patients With Acute Myocardial Infarction With Cardiogenic Shock: Findings From the NCDR. J. Am. Coll. Cardiol. 2016, 67, 739–747. [Google Scholar] [CrossRef]
- Kolte, D.; Khera, S.; Aronow, W.S.; Mujib, M.; Palaniswamy, C.; Sule, S.; Jain, D.; Gotsis, W.; Ahmed, A.; Frishman, W.H.; et al. Trends in incidence, management, and outcomes of cardiogenic shock complicating ST-elevation myocardial infarction in the United States. J. Am. Heart Assoc. 2014, 3, e000590. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sanborn, T.A.; Sleeper, L.A.; Webb, J.G.; French, J.K.; Bergman, G.; Parikh, M.; Wong, S.; Boland, J.; Pfisterer, M.; Slater, J.N.; et al. Correlates of one-year survival inpatients with cardiogenic shock complicating acute myocardial infarction: Angiographic findings from the SHOCK trial. J. Am. Coll. Cardiol. 2003, 42, 1373–1379. [Google Scholar] [CrossRef] [Green Version]
- Thiele, H.; Ohman, E.M.; Desch, S.; Eitel, I.; de Waha, S. Management of cardiogenic shock. Eur. Heart J. 2015, 36, 1223–1230. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kohsaka, S.; Menon, V.; Lowe, A.M.; Lange, M.; Dzavik, V.; Sleeper, L.A.; Hochman, J. Systemic Inflammatory Response Syndrome After Acute Myocardial Infarction Complicated by Cardiogenic Shock. Arch. Intern. Med. 2005, 165, 1643–1650. [Google Scholar] [CrossRef]
- Collet, J.-P.; Thiele, H.; Barbato, E.; Barthélémy, O.; Bauersachs, J.; Bhatt, D.L.; Dendale, P.; Dorobantu, M.; Edvardsen, T.; Folliguet, T.; et al. 2020 ESC Guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation. Eur. Heart J. 2021, 42, 1289–1367. [Google Scholar] [CrossRef]
- Mehta, S.R.; Wood, D.A.; Storey, R.F.; Mehran, R.; Bainey, K.R.; Nguyen, H.; Meeks, B.; Di Pasquale, G.; López-Sendón, J.; Faxon, D.P.; et al. Complete Revascularization with Multivessel PCI for Myocardial Infarction. N. Engl. J. Med. 2019, 381, 1411–1421. [Google Scholar] [CrossRef] [Green Version]
- Wald, D.S.; Morris, J.; Wald, N.J.; Chase, A.J.; Edwards, R.J.; Hughes, L.O.; Berry, C.; Oldroyd, K.G. Randomized Trial of Preventive Angioplasty in Myocardial Infarction. N. Engl. J. Med. 2013, 369, 1115–1123. [Google Scholar] [CrossRef] [Green Version]
- Gershlick, A.H.; Khan, J.N.; Kelly, D.J.; Greenwood, J.P.; Sasikaran, T.; Curzen, N.; Blackman, D.J.; Dalby, M.; Fairbrother, K.L.; Banya, W.; et al. Randomized Trial of Complete Versus Lesion-Only Revascularization in Patients Undergoing Primary Percutaneous Coronary Intervention for STEMI and Multivessel Disease: The CvLPRIT Trial. J. Am. Coll. Cardiol. 2015, 65, 963. [Google Scholar] [CrossRef] [Green Version]
- Engstrøm, T.; Kelbæk, H.; Helqvist, S.; Høfsten, D.E.; Kløvgaard, L.; Holmvang, L.; Jørgensen, E.; Pedersen, F.; Saunamaki, K.; Clemmensen, P.; et al. Complete revascularisation versus treatment of the culprit lesion only in patients with ST-segment elevation myocardial infarction and multivessel disease (DANAMI-3—PRIMULTI): An open-label, randomised controlled trial. Lancet 2015, 386, 665–671. [Google Scholar] [CrossRef]
- Sardella, G.; Lucisano, L.; Garbo, R.; Pennacchi, M.; Cavallo, E.; Stio, R.E.; Calcagno, S.; Ugo, F.; Boccuzzi, G.; Fedele, F.; et al. Single-Staged Compared with Multi-Staged PCI in Multivessel NSTEMI Patients: The SMILE Trial. J. Am. Coll. Cardiol. 2016, 67, 264–272. [Google Scholar] [CrossRef] [Green Version]
- Smits, P.C.; Abdel-Wahab, M.; Neumann, F.-J.; Klerk, B.M.B.-D.; Lunde, K.; Schotborgh, C.E.; Piroth, Z.; Horak, D.; Wlodarczak, A.; Ong, P.J.; et al. Fractional Flow Reserve–Guided Multivessel Angioplasty in Myocardial Infarction. N. Engl. J. Med. 2017, 376, 1234–1244. [Google Scholar] [CrossRef]
- Barbarawi, M.; Kheiri, B.; Zayed, Y.; Gakhal, I.; Barbarawi, O.; Rashdan, L.; Osman, M.; Bachuwa, G.; Alkotob, M.L.; Bhatt, D.L. Meta-analysis of Percutaneous Coronary Intervention Versus Medical Therapy in the Treatment of Coronary Chronic Total Occlusion. Am. J. Cardiol. 2019, 123, 2060–2062. [Google Scholar] [CrossRef] [PubMed]
- Guedeney, P.; Barthélémy, O.; Zeitouni, M.; Hauguel-Moreau, M.; Hage, G.; Kerneis, M.; Lattuca, B.; Overtchouk, P.; Rouanet, S.; Fuernau, G.; et al. Prognostic Value of SYNTAX Score in Patients with Infarct-Related Cardiogenic Shock. JACC Cardiovasc. Interv. 2020, 13, 1198–1206. [Google Scholar] [CrossRef] [PubMed]
- Saito, Y.; Kobayashi, Y. Percutaneous coronary intervention strategies in patients with acute myocardial infarction and multivessel disease: Completeness, timing, lesion assessment, and patient status. J. Cardiol. 2019, 74, 95–101. [Google Scholar] [CrossRef] [PubMed]
- Pavasini, R.; Biscaglia, S.; Barbato, E.; Tebaldi, M.; Dudek, D.; Escaned, J.; Casella, G.; Santarelli, A.; Guiducci, V.; Gutierrez-Ibanes, E.; et al. Complete revascularization reduces cardiovascular death in patients with ST-segment elevation myocardial infarction and multivessel disease: Systematic review and meta-analysis of randomized clinical trials. Eur. Heart J. 2020, 41, 4103–4110. [Google Scholar] [CrossRef] [PubMed]
- Tarantini, G.; Masiero, G.; Burzotta, F.; Pazzanese, V.; Briguori, C.; Trani, C.; Piva, T.; De Marco, F.; Di Biasi, M.; Pagnotta, P.; et al. Timing of Impella implantation and outcomes in cardiogenic shock or high-risk percutaneous coronary revascularization. Catheter. Cardiovasc. Interv. 2021, 98, E222–E234. [Google Scholar] [CrossRef] [PubMed]
- Schäfer, A.; Westenfeld, R.; Sieweke, J.-T.; Zietzer, A.; Wiora, J.; Masiero, G.; Martinez, C.S.; Tarantini, G.; Werner, N. Complete Revascularisation in Impella-Supported Infarct-Related Cardiogenic Shock Patients Is Associated with Improved Mortality. Front. Cardiovasc. Med. 2021, 8, 678748. [Google Scholar] [CrossRef]
- Braga, C.G.; Cid-Alvarez, A.B.; Diéguez, A.R.; Alvarez, B.A.; Otero, D.L.; Sánchez, R.O.; Pena, X.S.; Salvado, V.G.; Trillo-Nouche, R.; González-Juanatey, J.R. Prognostic impact of residual SYNTAX score in patients with ST-elevation myocardial infarction and multivessel disease: Analysis of an 8-year all-comers registry. Int. J. Cardiol. 2017, 243, 21–26. [Google Scholar] [CrossRef]
- Kochar, A.; Varshney, A.S.; Wang, D.E. Residual SYNTAX Score After Revascularization in Cardiogenic Shock. J. Am. Coll. Cardiol. 2021, 77, 156–158. [Google Scholar] [CrossRef]
- Barthélémy, O.; Rouanet, S.; Brugier, D.; Vignolles, N.; Bertin, B.; Zeitouni, M.; Guedeney, P.; Hauguel-Moreau, M.; Hage, G.; Overtchouk, P.; et al. Predictive Value of the Residual SYNTAX Score in Patients with Cardiogenic Shock. J. Am. Coll. Cardiol. 2021, 77, 144–155. [Google Scholar] [CrossRef]
- McNeice, A.; Nadra, I.J.; Robinson, S.D.; Fretz, E.; Ding, L.; Fung, A.; Aymong, E.; Chan, A.W.; Hodge, S.; Webb, J.; et al. The prognostic impact of revascularization strategy in acute myocardial infarction and cardiogenic shock: Insights from the British Columbia Cardiac Registry. Catheter. Cardiovasc. Interv. 2018, 92, E356–E367. [Google Scholar] [CrossRef] [PubMed]
- Khera, R.; Secemsky, E.A.; Wang, Y.; Desai, N.R.; Krumholz, H.M.; Maddox, T.M.; Shunk, K.A.; Virani, S.S.; Bhatt, D.L.; Curtis, J.; et al. Revascularization Practices and Outcomes in Patients with Multivessel Coronary Artery Disease Who Presented With Acute Myocardial Infarction and Cardiogenic Shock in the US, 2009–2018. JAMA Intern. Med. 2020, 180, 1317. [Google Scholar] [CrossRef] [PubMed]
- Gąsior, M.; Desperak, P.; Dudek, D.; Witkowski, A.; Buszman, P.; Trzeciak, P.; Hawranek, M.; Gierlotka, M.; Bartuś, S.; Grygier, M.; et al. Multivessel Intervention in Myocardial Infarction with Cardiogenic Shock: CULPRIT-SHOCK Trial Outcomes in the PL-ACS Registry. J. Clin. Med. 2021, 10, 1832. [Google Scholar] [CrossRef]
- Lee, J.M.; Rhee, T.-M.; Hahn, J.-Y.; Kim, H.K.; Park, J.; Hwang, D.; Choi, K.H.; Kim, J.; Park, T.K.; Yang, J.H.; et al. Multivessel Percutaneous Coronary Intervention in Patients With ST-Segment Elevation Myocardial Infarction with Cardiogenic Shock. J. Am. Coll. Cardiol. 2018, 71, 844–856. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.M.; Rhee, T.; Kim, H.K.; Hwang, D.; Lee, S.H.; Choi, K.H.; Kim, J.; Park, T.K.; Yang, J.H.; Bin Song, Y.; et al. Comparison of Long-Term Clinical Outcome Between Multivessel Percutaneous Coronary Intervention Versus Infarct-Related Artery–Only Revascularization for Patients With ST-Segment–Elevation Myocardial Infarction with Cardiogenic Shock. J. Am. Heart Assoc. 2019, 8, e013870. [Google Scholar] [CrossRef] [PubMed]
- Rathod, K.S.; Koganti, S.; Jain, A.K.; Rakhit, R.; Dalby, M.; Lockie, T.; Kalra, S.; Malik, I.S.; Knight, C.J.; Whitbread, M.; et al. Complete Versus Culprit only Revascularisation in Patients with Cardiogenic Shock Complicating Acute Myocardial Infarction: Incidence and Outcomes from the London Heart Attack Group. Cardiovasc Revasc. Med. 2020, 21, 350–358. [Google Scholar] [CrossRef]
- Basir, M.B.; Schreiber, T.L.; Grines, C.L.; Dixon, S.R.; Moses, J.W.; Maini, B.S.; Khandelwal, A.K.; Ohman, E.M.; O’Neill, W.W. Effect of Early Initiation of Mechanical Circulatory Support on Survival in Cardiogenic Shock. Am. J. Cardiol. 2017, 119, 845–851. [Google Scholar] [CrossRef]
- Lemor, A.; Dehkordi, S.H.H.; Basir, M.B.; Villablanca, P.A.; Jain, T.; Koenig, G.C.; Alaswad, K.; Moses, J.W.; Kapur, N.K.; O’Neill, W. Impella Versus Extracorporeal Membrane Oxygenation for Acute Myocardial Infarction Cardiogenic Shock. Cardiovasc. Revasc. Med. 2020, 21, 1465–1471. [Google Scholar] [CrossRef]
- Muller, G.; Flecher, E.; Lebreton, G.; Luyt, C.-E.; Trouillet, J.-L.; Bréchot, N.; Schmidt, M.; Mastroianni, C.; Chastre, J.; Leprince, P.; et al. The ENCOURAGE mortality risk score and analysis of long-term outcomes after VA-ECMO for acute myocardial infarction with cardiogenic shock. Intensive Care Med. 2016, 42, 370–378. [Google Scholar] [CrossRef]
- Patel, M.R.; Smalling, R.W.; Thiele, H.; Barnhart, H.X.; Zhou, Y.; Chandra, P.; Chew, D.; Cohen, M.; French, J.; Perera, D.; et al. Intra-aortic Balloon Counterpulsation and Infarct Size in Patients with Acute Anterior Myocardial Infarction Without Shock: The CRISP AMI Randomized Trial. JAMA 2011, 306, 1329–1337. [Google Scholar] [CrossRef] [Green Version]
- Thiele, H.; Schuler, G.; Neumann, F.-J.; Hausleiter, J.; Olbrich, H.-G.; Schwarz, B.; Hennersdorf, M.; Empen, K.; Fuernau, G.; Desch, S.; et al. Intraaortic balloon counterpulsation in acute myocardial infarction complicated by cardiogenic shock: Design and rationale of the Intraaortic Balloon Pump in Cardiogenic Shock II (IABP-SHOCK II) trial. Am. Heart J. 2012, 163, 938–945. [Google Scholar] [CrossRef] [PubMed]
- Thiele, H.; Zeymer, U.; Thelemann, N.; Neumann, F.-J.; Hausleiter, J.; Abdel-Wahab, M.; Meyer-Saraei, R.; Fuernau, G.; Eitel, I.; Hambrecht, R.; et al. Intraaortic Balloon Pump in Cardiogenic Shock Complicating Acute Myocardial Infarction: Long-Term 6-Year Outcome of the Randomized IABP-SHOCK II Trial. Circulation 2019, 139, 395–403. [Google Scholar] [CrossRef] [PubMed]
- Thiele, H.; Zeymer, U.; Neumann, F.-J.; Ferenc, M.; Olbrich, H.-G.; Hausleiter, J.; de Waha, A.; Richardt, G.; Hennersdorf, M.; Empen, K.; et al. Intra-aortic balloon counterpulsation in acute myocardial infarction complicated by cardiogenic shock (IABP-SHOCK II): Fi nal 12 month results of a randomised, open-label trial. Lancet 2013, 382, 1638–1645. [Google Scholar] [CrossRef]
- O’Gara, P.T.; Kushner, F.G.; Ascheim, D.D.; Casey, D.E.; Chung, M.K.; de Lemos, J.A. 2013 ACCF/AHA Guideline for the Management of ST-Elevation Myocardial Infarction. J. Am. Coll. Cardiol. 2013, 61, 78–140. [Google Scholar] [CrossRef] [Green Version]
- Griffith, B.P.; Anderson, M.B.; Samuels, L.E.; Pae, W.E.; Naka, Y.; Frazier, O.H. The RECOVER I: A multicenter prospective study of Impella 5.0/LD for postcardiotomy circulatory support. J. Thorac. Cardiovasc. Surg. 2012, 145, 548–554. [Google Scholar] [CrossRef] [Green Version]
- O’Neill, W.W.; Schreiber, T.; Wohns, D.H.W.; Rihal, C.; Naidu, S.S.; Civitello, A.; Dixon, S.R.; Massaro, J.M.; Maini, B.; Ohman, E.M. The current use of impella 2.5 in acute myocardial infarction complicated by cardiogenic shock: Results from the USpella Registry. J. Interv. Cardiol. 2014, 27, 1–11. [Google Scholar] [CrossRef]
- Tehrani, B.N.; Damluji, A.A.; Batchelor, W.B. Acute myocardial infarction and cardiogenic shock Interventional approach to management in the cardiac catheterization laboratories. Curr. Cardiol. Rev. 2021, 17, 15–30. [Google Scholar] [CrossRef]
- Ouweneel, D.M.; Eriksen, E.; Sjauw, K.D.; van Dongen, I.M.; Hirsch, A.; Packer, E.J.; Vis, M.M.; Wykrzykowska, J.; Koch, K.T.; Baan, J.; et al. Percutaneous Mechanical Circulatory Support Versus Intra-Aortic Balloon Pump in Cardiogenic Shock After Acute Myocardial Infarction. J. Am. Coll. Cardiol. 2017, 69, 278–287. [Google Scholar] [CrossRef]
- Yancy, C.W.; Jessup, M.; Bozkurt, B.; Butler, J.; Casey, D.E., Jr.; Colvin, M.M.; Drazner, M.H.; Filippatos, G.S.; Fonarow, G.C.; Givertz, M.M.; et al. 2017 ACC/AHA/HFSA Focused Update of the 2013 ACCF/AHA Guideline for the Management of Heart Failure. J. Am. Coll. Cardiol. 2017, 70, 776–803. [Google Scholar] [CrossRef]
- Chieffo, A.; Dudek, D.; Hassager, C.; Combes, A.; Gramegna, M.; Halvorsen, S.; Huber, K.; Kunadian, V.; Maly, J.; Møller, J.E.; et al. Joint EAPCI/ACVC expert consensus document on percutaneous ventricular assist devices. EuroIntervention 2021, 17, e274–e286. [Google Scholar] [CrossRef]
- Kim, Y.; Shapero, K.; Ahn, S.S.; Goldsweig, A.M.; Desai, N.; Altin, S.E. Outcomes of mechanical circulatory support for acute myocardial infarction complicated by cardiogenic shock. Catheter. Cardiovasc. Interv. 2021, 99, 658–663. [Google Scholar] [CrossRef]
- Vallabhajosyula, S.; Prasad, A.; Sandhu, G.S.; Bell, M.R.; Gulati, R.; Eleid, M.F.; Best, P.J.; Gersh, B.J.; Singh, M.; Lerman, A.; et al. Ten-year trends, predictors and outcomes of mechanical circulatory support in percutaneous coronary intervention for acute myocardial infarction with cardiogenic shock. EuroIntervention 2021, 16, e1254–e1261. [Google Scholar] [CrossRef] [PubMed]
- Chieffo, A.; Ancona, M.B.; Burzotta, F.; Pazzanese, V.; Briguori, C.; Trani, C.; Piva, T.; De Marco, F.; Di Biasi, M.; Pagnotta, P.; et al. Observational multicentre registry of patients treated with IMPella mechanical circulatory support device in Italy: The IMP-IT registry. EuroIntervention 2020, 15, e1343–e1350. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Neill, W.W.; Grines, C.; Schreiber, T.; Moses, J.; Maini, B.; Dixon, S.R.; Ohman, E.M. Analysis of outcomes for 15,259 US patients with acute myocardial infarction cardiogenic shock (AMICS) supported with the Impella device. Am. Heart J. 2018, 202, 33–38. [Google Scholar] [CrossRef] [PubMed]
- Meraj, P.M.; Doshi, R.; Schreiber, T.; Maini, B.; O’Neill, W.W. Impella 2.5 initiated prior to unprotected left main PCI in acute myocardial infarction complicated by cardiogenic shock improves early survival. J. Interv. Cardiol. 2017, 30, 256–263. [Google Scholar] [CrossRef] [PubMed]
- Schäfer, A.; Werner, N.; Burkhoff, D.; Sieweke, J.-T.; Zietzer, A.; Masyuk, M.; Udesen, N.L.J.; Westenfeld, R.; Møller, J.E. Influence of Timing and Predicted Risk on Mortality in Impella-Treated Infarct-Related Cardiogenic Shock Patients. Front. Cardiovasc. Med. 2020, 7, 74. [Google Scholar] [CrossRef] [PubMed]
- Aurigemma, C.; Burzotta, F.; Chieffo, A.; Briguori, C.; Piva, T.; De Marco, F.; Di Biasi, M.; Pagnotta, P.; Casu, G.; Garbo, R.; et al. Clinical Impact of Revascularization Extent in Patients Undergoing Impella-Protected PCI Enrolled in a Nationwide Registry. JACC Cardiovasc. Interv. 2021, 14, 717–719. [Google Scholar] [CrossRef] [PubMed]
- Lemor, A.; Basir, M.B.; Patel, K.; Kolski, B.; Kaki, A.; Kapur, N.K.; Riley, R.; Finley, J.; Goldsweig, A.; Aronow, H.D.; et al. Multivessel Versus Culprit-Vessel Percutaneous Coronary Intervention in Cardiogenic Shock. JACC Cardiovasc. Interv. 2020, 13, 1171–1178. [Google Scholar] [CrossRef]
- Bangalore, S.; Gupta, N.; Guo, Y.; Lala, A.; Balsam, L.; Roswell, R.O.; Reyentovich, A.; Hochman, J.S. Outcomes with Invasive vs Conservative Management of Cardiogenic Shock Complicating Acute Myocardial Infarction. Am. J. Med. 2015, 128, 601–608. [Google Scholar] [CrossRef]
- Papolos, A.I.; Kenigsberg, B.B.; Berg, D.D.; Alviar, C.L.; Bohula, E.; Burke, J.A.; Carnicelli, A.P.; Chaudhry, S.-P.; Drakos, S.; Gerber, D.A.; et al. Management and Outcomes of Cardiogenic Shock in Cardiac ICUs With Versus Without Shock Teams. J. Am. Coll. Cardiol. 2021, 78, 1309–1317. [Google Scholar] [CrossRef]
- Kim, D.H. Mechanical Circulatory Support in Cardiogenic Shock: Shock Team or Bust? Can. J. Cardiol. 2020, 36, 197–204. [Google Scholar] [CrossRef] [PubMed]
Stage A (At Risk) | At risk for cardiogenic shock (no signs or symptoms). |
Stage B (Beginning) | Clinical evidence of relative hypotension or tachycardia without hypoperfusion (pre-shock). |
Stage C (Classic) | Hypoperfusion with normal blood pressure or hypotension requiring intervention beyond volume resuscitation (inotropes, vasopressors, or mechanical support). |
Stage D (Deteriorating) | Extreme hypoperfusion with hypotension or inotropes/vasopressors, failing to respond to initial interventions (similar to stage C and worsening). |
Stage E (Extremis) | End-stage hypoperfusion with hypotension despite multiple interventions (inotropes/vasopressors/mechanical support). |
Trial Name/First Author | Clinical Characteristcs | Sample Size | Arms | Definition of NCL | Endpoints (Mace/Macce Rates) |
---|---|---|---|---|---|
PRAMI [47] 2013 | STEMI | 465 | CVO PCI vs. MV primary PCI | %DS ≥ 50% | 22.9% vs. 9.0% (p < 0.001) a at 23 months |
CvLPRIT [48] 2015 | STEMI | 296 | CVO PCI vs. MV primary or staged PCI | %DS > 70% in 1 view or >50% in 2 views | 21.2% vs. 10.0% (p = 0.009) b at 12 months |
DANAMI-3-PRIMULTI [49] 2015 | STEMI | 627 | CVO PCI vs. MV staged PCI | %DS >50% with FFR ≤0.80 | 22.0% vs. 13.0% (p = 0.004) c at 27 months |
SMILE [50] 2016 | NSTEMI | 542 | Immediate MV PCI vs. MV staged PCI | Not reported | 13.6% vs. 23.2% (p = 0.004) d at 1 year |
COMPARE-ACUTE [51] 2017 | STEMI | 885 | CVO PCI vs. MV primary or staged PCI | %DS ≥ 50% with FFR ≤0.80 | 20.5% vs. 7.8% (p < 0.001) e at 1 year. |
CULPRIT SHOCK [11] 2017 | Acute MI with cardiogenic shock | 686 | CVO PCI vs. MV primary PCI | %DS > 70% | 45.9% vs. 55.4% (p = 0.01) f at 30 days |
COMPLETE [46] | STEMI | 4041 | CVO PCI vs MV PCI either during or after the index hospitalization | %DS > 70% or DS > 50% with FFR ≤ 0.80 | 10.5% vs. 7.8% (p = 0.004) g at 3 years |
Patient’s Characteristics | Detailed Evaluation | MCS Selection |
---|---|---|
Acuity of illness | According to SCAI classification |
|
CS phenotype | Type of cardiac failure |
|
Vascular access anatomy | Ilio-femoral/axillary access suitability |
|
Timing of Impella Insertion | |||||
Study | N° of pts. | N° of centers | Impella Devices | Study Groups | Main Findings |
Tarantini et al. [56] | 147 | 17 Italian centers | 2.5/CP | Insertion before PCI (n = 55) vs. during/after PCI (n = 92) | Pre-PCI insertion was associated with higher 1-year freedom from all-cause death [HR 0.45, CI (0.21–0.99); p =0.009], lower rates of in-hospital AKI (38% vs. 61%, p = 0.02) and severe or life-threatening bleeding (7% vs. 16%, p = 0.11). |
Schäfer et al. [86] | 166 | 3 German and 1 Danish centers | 2.5/CP | Insertion pre-PCI (n = 68) vs. post-PCI (n = 98) | Pre-PCI insertion was associated with lower 30-day mortality rates (28% vs. 51%, p = 0.0039) and at multivariate regression analysis [HR 0.42, CI (0.21–0.82); p = 0.012]. |
Extent of Revascularization in pts. With Mvcad | |||||
Study | N° of pts. | N° of centers | Impella devices | Study groups | Main findings |
Aurigemma et al. [87] | 152 | 17 Italian centers | 2.5/CP | Pts with BCIS-JS RI < 0.67 vs. Pts with BCIS-JS RI ≥ 0.67 | At 1-year FU, a more extensive revascularization (RI ≥ 0.67) was associated with better survival free of the composite of death, non-fatal MI, and non-fatal stroke (p = 0.006), mainly driven by significantly lower all-cause mortality (p = 0.005) pts. EF [HR: 0.96, CI (0.93–1.0); p = 0.05] and BCIS-JS RI < 0.67 [HR: 3.15, CI (1.2–5.8); p = 0.01) were the only predictors of the composite endpoint on multivariate analysis. |
Lemor et al. [88] | 198 | 57 US centers | 2.5/CP | MV-PCI (n = 126) vs. CV-PCI (n = 72) (early MCS implantation) | In-hospital survival and rates of AKI were not significantly different between groups (69.8% MV-PCI vs. 65.3% CV-PCI; p = 0.51; and 29.9% vs. 34.2%; p = 0.64, respectively). |
Timing of Impella Insertion and Extent of Revascularization | |||||
Study | N° of pts. | N° of centers | Impella devices | Study groups | Main findings |
Schäfer et al. [57] | 202 | 3 German and 1 Italian centers | CP | CR (rSS ≤ 8; n = 130) vs. IR (rSS > 8; n = 72) | At 30-day FU, mortality was higher with post-PCI insertion (Impella post-PCI: 57%, Impella pre-PCI: 38%, p = 0.0053) and IR (rSS ≤ 8: 37%, rSS > 8: 56%, p = 0.0099). Patients with both pre-PCI Impella insertion and CR had a significantly lower mortality (33%) than those with IR and post-PCI insertion (72%, p < 0.001). |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Masiero, G.; Cardaioli, F.; Rodinò, G.; Tarantini, G. When to Achieve Complete Revascularization in Infarct-Related Cardiogenic Shock. J. Clin. Med. 2022, 11, 3116. https://doi.org/10.3390/jcm11113116
Masiero G, Cardaioli F, Rodinò G, Tarantini G. When to Achieve Complete Revascularization in Infarct-Related Cardiogenic Shock. Journal of Clinical Medicine. 2022; 11(11):3116. https://doi.org/10.3390/jcm11113116
Chicago/Turabian StyleMasiero, Giulia, Francesco Cardaioli, Giulio Rodinò, and Giuseppe Tarantini. 2022. "When to Achieve Complete Revascularization in Infarct-Related Cardiogenic Shock" Journal of Clinical Medicine 11, no. 11: 3116. https://doi.org/10.3390/jcm11113116
APA StyleMasiero, G., Cardaioli, F., Rodinò, G., & Tarantini, G. (2022). When to Achieve Complete Revascularization in Infarct-Related Cardiogenic Shock. Journal of Clinical Medicine, 11(11), 3116. https://doi.org/10.3390/jcm11113116