Clinicopathological Patterns and Outcomes in Patients with Lupus Nephritis and Hyperuricemia
Abstract
:1. Introduction
2. Patients and Methods
Statistical Analysis
3. Results
3.1. Clinical and Pathological Characteristics of LN Patients with and without HUA
3.2. Comparison of the Clinical Outcomes between LN Patients with and without HUA
3.3. Risk Factors for Clinical Outcomes in Patients with LN and HUA
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rahman, A.; Isenberg, D.A. Systemic lupus erythematosus. N. Engl. J. Med. 2008, 358, 929–939. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Almaani, S.; Meara, A.; Rovin, B.H. Update on Lupus Nephritis. Clin. J. Am. Soc. Nephrol. 2017, 12, 825–835. [Google Scholar] [CrossRef] [PubMed]
- Clark, W.F.; Sontrop, J.M. What have we learned about optimal induction therapy for lupus nephritis (III through V) from randomized, controlled trials? Clin. J. Am. Soc. Nephrol. 2008, 3, 895–898. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burgos, P.I.; McGwin, G., Jr.; Pons-Estel, G.J.; Reveille, J.D.; Alarcón, G.S.; Vilá, L.M. US patients of Hispanic and African ancestry develop lupus nephritis early in the disease course: Data from LUMINA, a multiethnic US cohort (LUMINA LXXIV). Ann. Rheum. Dis. 2011, 70, 393–394. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abeles, A.M. Hyperuricemia, gout, and cardiovascular disease: An update. Curr. Rheumatol. Rep. 2015, 17, 13. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.Y.; Guevara, J.P.; Kim, K.M.; Choi, H.K.; Heitjan, D.F.; Albert, D.A. Hyperuricemia and coronary heart disease: A systematic review and meta-analysis. Arthritis Care Res. 2010, 62, 170–180. [Google Scholar] [CrossRef] [Green Version]
- Li, M.; Hou, W.; Zhang, X.; Hu, L.; Tang, Z. Hyperuricemia and risk of stroke: A systematic review and meta-analysis of prospective studies. Atherosclerosis 2014, 232, 265–270. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, A.; Kaze, A.D.; McMullan, C.J.; Isakova, T.; Waikar, S.S. Uric Acid and the Risks of Kidney Failure and Death in Individuals With CKD. Am. J. Kidney Dis. 2018, 71, 362–370. [Google Scholar] [CrossRef]
- Jeong, H.Y.; Cho, H.J.; Kim, S.H.; Kim, J.C.; Lee, M.J.; Yang, D.H.; Lee, S.Y. Association of serum uric acid level with coronary artery stenosis severity in Korean end-stage renal disease patients. Kidney Res. Clin. Pract. 2017, 36, 282–289, Erratum in Kidney Res. Clin. Pract. 2018, 37, 180. [Google Scholar] [CrossRef] [Green Version]
- Russo, E.; Drovandi, S.; Salvidio, G.; Verzola, D.; Esposito, P.; Garibotto, G.; Viazzi, F. Increased serum uric acid levels are associated to renal arteriolopathy and predict poor outcome in IgA nephropathy. Nutr. Metab. Cardiovasc. Dis. 2020, 30, 2343–2350. [Google Scholar] [CrossRef]
- Sheikh, M.; Movassaghi, S.; Khaledi, M.; Moghaddassi, M. Hyperuricemia in systemic lupus erythematosus: Is it associated with the neuropsychiatric manifestations of the disease? Rev. Bras. Reumatol. 2015, 56, 471–477. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, K.J.; Baek, I.W.; Park, Y.J.; Yoon, C.H.; Kim, W.U.; Cho, C.S. High levels of uric acid in systemic lupus erythematosus is associated with pulmonary hypertension. Int. J. Rheum. Dis. 2015, 18, 524–532. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, S.; Gong, Y.; Ren, H.; Zhang, W.; Chen, X.; Zhou, T.; Li, X.; Chen, N. The prevalence, subtypes and associated factors of hyperuricemia in lupus nephritis patients at chronic kidney disease stages 1–3. Oncotarget 2017, 8, 57099–57108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oh, T.R.; Choi, H.S.; Kim, C.S.; Ryu, D.R.; Park, S.H.; Ahn, S.Y.; Kim, S.W.; Bae, E.H.; Ma, S.K. Serum Uric Acid is Associated with Renal Prognosis of Lupus Nephritis in Women but not in Men. J. Clin. Med. 2020, 9, 773. [Google Scholar] [CrossRef] [Green Version]
- Elnady, B.; Almalki, A.; Abdel-Fattah, M.M.; Desouky, D.E.; Attar, M. Serum uric acid as a sensitive concordant marker with lupus nephritis and new onset of renal damage: A prospective cohort study. Clin. Rheumatol. 2021, 40, 1827–1834. [Google Scholar] [CrossRef] [PubMed]
- National Kidney Foundation. K/DOQI clinical practice guidelines for chronic kidney disease: Evaluation, classification, and stratification. Am. J. Kidney Dis. 2002, 39, S1–S266. [Google Scholar]
- KDIGO Working Group. Section 2: AKI Definition. Kidney Int. Suppl. 2012, 2, 19–36. [Google Scholar] [CrossRef] [Green Version]
- Gladman, D.D.; Ibañez, D.; Urowitz, M.B. Systemic lupus erythematosus disease activity index 2000. J. Rheumatol. 2002, 29, 288–291. [Google Scholar]
- Churg, J.; Bernstein, J.; Glassock, R. Renal Disease: Classification and Atlas of Glomerular Disease; Igaku-Shoin: Tokyo, Japan, 1995; pp. 151–179. [Google Scholar]
- Weening, J.J.; D’Agati, V.D.; Schwartz, M.M.; Seshan, S.V.; Alpers, C.E.; Appel, G.B.; Balow, J.E.; Bruijn, J.A.N.A.; Cook, T.; Ferrario, F.; et al. The classification of glomerulonephritis in systemic lupus erythematosus revisited. J. Am. Soc. Nephrol. 2004, 15, 241–250. [Google Scholar] [CrossRef]
- Tsumuraya, Y.; Hirayama, T.; Tozuka, E.; Furuta, W.; Utsugi, S.; Tsuchiya, A.; Hishida, A.; Kumagai, H. Impact of hyperuricaemia on the chronic kidney disease-associated risk factors in a community-based population. Nephrology 2015, 20, 399–404. [Google Scholar] [CrossRef]
- Zhu, Y.; Pandya, B.J.; Choi, H.K. Prevalence of gout and hyperuricemia in the US general population: The National Health and Nutrition Examination Survey 2007–2008. Arthritis Rheum. 2011, 63, 3136–3141. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.; Han, C.; Wu, D.; Xia, X.; Gu, J.; Guan, H.; Shan, Z.; Teng, W. Prevalence of Hyperuricemia and Gout in Mainland China from 2000 to 2014: A Systematic Review and Meta-Analysis. BioMed Res. Int. 2015, 2015, 762820. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Serikova, S.; Kozlovskaia, N.L.; Shilov, E.M. Lupus nephritis as a factor of atherosclerosis risk in patients with systemic lupus erythematosus. Ter. Arkhiv 2008, 80, 52–58. [Google Scholar]
- Aringer, M.; Costenbader, K.; Daikh, D.; Brinks, R.; Mosca, M.; Ramsey-Goldman, R.; Smolen, J.S.; Wofsy, D.; Boumpas, D.T.; Kamen, D.L.; et al. 2019 European League Against Rheumatism/American College of Rheumatology Classification Criteria for Systemic Lupus Erythematosus. Arthritis Rheumatol. 2019, 71, 1400–1412. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sammaritano, L.R. Antiphospholipid syndrome. Best Pract. Res. Clin. Rheumatol. 2020, 34, 101463. [Google Scholar] [CrossRef] [PubMed]
- Johnson, R.J.; Bakris, G.L.; Borghi, C.; Chonchol, M.B.; Feldman, D.; Lanaspa, M.A.; Merriman, T.R.; Moe, O.W.; Mount, D.B.; Lozada, L.G.S.; et al. Hyperuricemia, Acute and Chronic Kidney Disease, Hypertension, and Cardiovascular Disease: Report of a Scientific Workshop Organized by the National Kidney Foundation. Am. J. Kidney Dis. 2018, 71, 851–865. [Google Scholar] [CrossRef] [PubMed]
- Dos Santos, M.; Veronese, F.V.; Moresco, R.N. Uric acid and kidney damage in systemic lupus erythematosus. Clin. Chim. Acta 2020, 508, 197–205. [Google Scholar] [CrossRef]
- Xie, T.; Chen, M.; Tang, X.; Yin, H.; Wang, X.; Li, G.; Li, J.; Zuo, X.; Zhang, W. Hyperuricemia is an independent risk factor for renal pathological damage and poor prognosis in lupus nephritis patients. Zhong Nan Da Xue Xue Bao Yi Xue Ban 2016, 41, 1052–1057. [Google Scholar] [CrossRef]
- Shimizu, T.; Yoshihisa, A.; Kanno, Y.; Takiguchi, M.; Sato, A.; Miura, S.; Nakamura, Y.; Yamauchi, H.; Owada, T.; Abe, S.; et al. Relationship of hyperuricemia with mortality in heart failure patients with preserved ejection fraction. Am. J. Physiol. Heart Circ. Physiol. 2015, 309, H1123–H1129. [Google Scholar] [CrossRef] [Green Version]
- Rodenbach, K.E.; Schneider, M.F.; Furth, S.L.; Moxey-Mims, M.M.; Mitsnefes, M.M.; Weaver, D.J.; Warady, B.A.; Schwartz, G.J. Hyperuricemia and Progression of CKD in Children and Adolescents: The Chronic Kidney Disease in Children (CKiD) Cohort Study. Am. J. Kidney Dis. 2015, 66, 984–992. [Google Scholar] [CrossRef] [Green Version]
- Ugolini-Lopes, M.R.; Gavinier, S.S.; Leon, E.; Viana, V.T.; Borba, E.F.; Bonfá, E. Is serum uric acid a predictor of long-term renal outcome in lupus nephritis? Clin. Rheumatol. 2019, 38, 2777–2783. [Google Scholar] [CrossRef] [PubMed]
- Sato, Y.; Feig, D.I.; Stack, A.G.; Kang, D.H.; Lanaspa, M.A.; Ejaz, A.A.; Sánchez-Lozada, L.G.; Kuwabara, M.; Borghi, C.; Johnson, R.J. The case for uric acid-lowering treatment in patients with hyperuricaemia and CKD. Nat. Rev. Nephrol. 2019, 15, 767–775. [Google Scholar] [CrossRef] [PubMed]
All (n = 1297) | Hyperuricemia (n = 649, 50.04%) | Non-Hyperuricemia (n = 648, 49.96%) | p | |
---|---|---|---|---|
Age (years) | 29.0 (22.0, 39.0) | 27.0 (20.0, 37.0) | 28.0 (22.0, 38.0) | 0.525 |
Male (n, %) | 219, 16.9% | 114, 17.6% | 105, 16.2% | 0.368 |
Disease course (months) | 4 (1, 24) | 4 (1, 24) | 4 (1, 24) | 0.616 |
Systolic BP (mmHg) | 128.0 (114.0, 143.0) | 130.0 (115.0, 145.0) | 120.0 (110.0,138.3) | <0.001 |
Diastolic BP (mmHg) | 80.0 (70.0, 91.0) | 83.0 (75.0, 94.0) | 80.0 (70.0,90.0) | <0.001 |
Hemoglobin (g/L) | 95.0 (78.0, 114.0) | 93.0 (76.3, 108.0) | 108.5 (93.0, 112.0) | <0.001 |
Serum albumin (g/L) | 27.0 (22.0. 33.0) | 25.0 (20.0, 31.0) | 29.9 (24.0,35.0) | <0.001 |
Cholesterol (mmol/L) | 5.6 (4.4, 7.3) | 5.9 (4.6, 7.5) | 5.7 (4.2, 7.3) | 0.635 |
Triglycerides (mmol/L) | 2.1 (1.4, 3.1) | 2.2 (1.5, 3.5) | 1.9 (1.3, 2.6) | <0.001 |
SCr (µmol/L) | 94.0 (65.0, 178.0) | 106.0 (74.3,182.3) | 72.0 (56.0, 107.5) | <0.001 |
eGFR (mL/min. 1.73 m2) | 93.8 (42.2, 126.0) | 68.0 (32.4,115.4) | 116.0 (74.9, 135.5) | <0.001 |
CKD staging (n, %) | ||||
Stage 1 | 663, 51.1% | 257, 39.6% | 406, 62.8% | <0.001 |
Stage 2 | 186, 14.3% | 99, 15.3% | 87, 13.4% | |
Stage 3 | 210, 16.2% | 140, 21.6% | 70, 10.8% | |
Stage 4 | 107, 8.2% | 75, 11.6% | 32, 4.9% | |
Stage 5 | 129, 9.9% | 77, 11.9% | 52, 8.0% | |
Urine RBC >3+ (n, %) | 259, 20.0% | 148, 22.8% | 111,17.1% | 0.004 |
Urinary protein (g/24h) | 1.67 (0.7, 3.3) | 2.0 (1.0, 3.8) | 1.3 (0.5, 2.8) | 0.001 |
SLEDAI score | 14.0 (10.0, 18.0) | 16.0 (12.0,19.0) | 14.0 (10.0, 18.0) | 0.002 |
dsDNA (positive) (n, %) | 958, 73.9% | 514, 79.2% | 444, 68.5% | 0.001 |
DNP (positive) (n, %) | 237, 18.3% | 122, 18.8% | 115, 17.7% | 0.601 |
SSA (positive) (n, %) | 543, 41.9% | 269, 41.4% | 274, 42.3% | 0.542 |
SSB (positive) (n, %) | 238, 18.4% | 120, 18.5% | 118, 18.2% | 0.841 |
SM (positive) (n, %) | 299, 23.1% | 147, 22.7% | 152, 23.5% | 0.941 |
RNP (positive) (n, %) | 382, 29.5% | 191, 29.4% | 191, 29.5% | 0.935 |
C3 (g/L) | 0.5 (0.3, 0.9) | 0.4 (0.3, 0.6) | 0.5 (0.3, 0.7) | 0.035 |
ACL-IgM (positive) (n, %) | 194, 15.0% | 119, 18.3% | 35, 12.8% | 0.036 |
ACL-IgG (positive) (n, %) | 258, 19.9% | 156, 24.0% | 75, 11.6% | 0.011 |
P-ANCA(MPO) (positive) (n, %) | 75, 5.8% | 40, 6.2% | 35, 5.4% | 0.849 |
C-ANCA(PR3) (positive) (n, %) | 31, 2.4% | 21, 3.2% | 10, 1.5% | 0.663 |
Steroids (n, %) | 1255, 96.8% | 625, 96.3% | 630, 97.2% | 0.434 |
Immunosuppressants (n, %) | 723, 55.7% | 369. 56.9% | 354, 54.6% | 0.356 |
Cyclophosphamide | 433, 33.4% | 219, 33.7% | 214, 33.0% | 0.961 |
Mycophenolate | 171, 13.2% | 86, 13.3% | 85, 13.1% | |
Cyclosporine | 26, 20.0% | 14, 2.2% | 12, 1.9% | |
Tacrolimus | 15, 1.2% | 9, 1.4% | 6, 0.9% | |
Others | 78, 6.0% | 41, 6.3% | 37, 5.7% | |
ACEI/ARB (n, %) | 654, 50.4% | 353, 54.4% | 301, 46.5% | 0.035 |
All (n = 1297) | Hyperuricemia (n = 649, 50.04%) | Non-Gyperuricemia (n = 648, 49.96%) | p | |
---|---|---|---|---|
Global glomerular sclerosis (%) | 0 (0, 11.1) | 0 (0. 14.3) | 0 (0, 27.3) | 0.082 |
Crescent (%) | 3.5 (0. 18.1) | 0 (0, 23.3) | 0 (0, 18.8) | <0.001 |
Mesangial cell and matrix proliferation (n, %) | ||||
<25% | 357, 42.9% | 145, 33.5% | 212, 53.1% | <0.001 |
25–50% | 277, 33.3% | 155, 35.8% | 122, 30.6% | |
≥50% | 198, 23.8% | 133, 30.7% | 65, 16.3% | |
Endothelial cell proliferation (n, %) | ||||
<25% | 226, 27.2% | 89, 20.6% | 137, 34.3% | <0.001 |
25–50% | 366, 44.0% | 183, 42.3% | 183, 45.9% | |
≥50% | 240, 28.8% | 161, 37.2% | 79, 19.8% | |
Leukocyte infiltration (n, %) | ||||
none | 287, 34.5% | 132, 30.7% | 155, 38.8% | <0.001 |
<25% | 339, 40.7% | 166, 38.3% | 173, 43.4% | |
25–50% | 176, 21.2% | 110, 25.4% | 66, 16.5% | |
≥50% | 30, 3.6% | 25, 5.8% | 5, 1.3% | |
Interstitial fibrosis (n, %) | ||||
0 | 200, 24.0% | 160, 37.0% | 40, 10.0% | 0.052 |
<25% | 476, 57.2% | 192, 44.3% | 284, 71.2% | |
25–50% | 102, 12.3% | 57, 13.2% | 45, 11.3% | |
50–75% | 34, 4.1% | 16, 3.7% | 18, 4.5% | |
≥75% | 19, 2.3% | 7, 1.6% | 12, 3.0% | |
Tubular atrophy (n, %) | ||||
0 | 330, 39.7% | 163, 37.6% | 167, 41.9% | 0.120 |
<25% | 376, 45.2% | 183, 42.3% | 193. 48.4% | |
25-50% | 89, 10.7% | 65, 15.0% | 24, 6.0% | |
50–75% | 26, 3.1% | 15, 3.5% | 11, 2.8% | |
≥75% | 11, 1.3% | 7, 1.6% | 4, 1.0% | |
Interstitial infiltrates (n, %) | ||||
0 | 200, 24.0% | 85, 19.6% | 115, 28.8% | <0.001 |
<25% | 476, 57.2% | 243, 56.1% | 233, 58.4% | |
25–50% | 102, 12.3% | 74, 17.1% | 28, 7.0% | |
50–75% | 34, 4.1% | 20, 4.6% | 14, 3.5% | |
≥75% | 19, 2.3% | 11, 2.5% | 8, 2.0% | |
Pathological grade | ||||
Ⅰ | 5, 0.9% | 1, 0.4% | 4, 1.0% | 0.163 |
Ⅱ | 55, 10.3% | 17, 6.2% | 38, 9.5% | |
Ⅲ | 51, 9.6% | 18, 6.5% | 33, 8.3% | |
Ⅳ | 227, 42.6% | 144, 52.4% | 83, 20.8% | |
Ⅴ | 73, 13.7% | 27, 9.8% | 46, 11.5% | |
Ⅵ | 10, 1.9% | 7, 2.5% | 3, 0.8% | |
Ⅴ + Ⅲ | 47, 8.8% | 21, 7.6% | 26, 6.5% | |
Ⅴ + Ⅳ | 65, 12.2% | 40, 14.5% | 25, 6.3% |
Unadjusted | Model 1 | Model 2 | ||||
---|---|---|---|---|---|---|
HR (95%CI) | p | HR (95%CI) | p | HR (95%CI) | p | |
Death | ||||||
hyperuricemia | 1.01 (0.69, 1.48) | 0.955 | 1.06 (0.72, 1.55) | 0.763 | 0.85 (0.52, 1.39) | 0.517 |
Renal endpoint event | ||||||
hyperuricemia | 1.46 (0.96, 2.23) | 0.075 | 1.49 (0.98, 2.27) | 0.062 | 1.35 (0.80, 2.28) | 0.255 |
(a) Cox Regression for Renal Endpoint Event | |||
---|---|---|---|
Parameter | Multivariable Analysis | ||
RR | 95% CI | p | |
Age (years) | 1.011 | 0.367–2.788 | 0.983 |
Male | 1.015 | 0.987–1.044 | 0.298 |
Disease course (months) | 1.000 | 0.983–1.004 | 0.946 |
HBP | 1.462 | 0.666–3.209 | 0.344 |
Urinary protein (g/24 h) | 1.064 | 0.918–1.235 | 0.409 |
Hemoglobin (g/L) | 0.991 | 0.968–1.014 | 0.423 |
LDL-c (mmol/L) | 1.077 | 0.829–1.400 | 0.579 |
eGFR (mL/min. 1.73 m2) | 0.984 | 0.970–0.998 | 0.025 |
SLEDAI score | 0.992 | 0.911–1.079 | 0.844 |
Pathological grade | 0.998 | 0.995–1.001 | 0.285 |
Global glomerular sclerosis % | 2.089 | 0.218–20.06 | 0.523 |
Tubular atrophy % | 1.573 | 0.909–2.724 | 0.106 |
Steroids | 0.074 | 0.014–0.387 | 0.002 |
(b) Cox Regression for Death | |||
Parameter | Multivariable Analysis | ||
RR | 95% CI | p | |
Male | 1.214 | 0.515–2.858 | 0.658 |
Age (years) | 1.022 | 0.994–1.050 | 0.133 |
Disease course (months) | 0.999 | 0.989–1.010 | 0.895 |
Urinary protein (g/24 h) | 0.966 | 0.846–1.102 | 0.605 |
eGFR (mL/min. 1.73 m2) | 0.987 | 0.977–0.998 | 0.022 |
Tubular atrophy % | 0.863 | 0.515–1.447 | 0.576 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wen, Q.; Tang, X.; Zhou, Q.; Chen, W.; Yu, X. Clinicopathological Patterns and Outcomes in Patients with Lupus Nephritis and Hyperuricemia. J. Clin. Med. 2022, 11, 3075. https://doi.org/10.3390/jcm11113075
Wen Q, Tang X, Zhou Q, Chen W, Yu X. Clinicopathological Patterns and Outcomes in Patients with Lupus Nephritis and Hyperuricemia. Journal of Clinical Medicine. 2022; 11(11):3075. https://doi.org/10.3390/jcm11113075
Chicago/Turabian StyleWen, Qiong, Xueqing Tang, Qian Zhou, Wei Chen, and Xueqing Yu. 2022. "Clinicopathological Patterns and Outcomes in Patients with Lupus Nephritis and Hyperuricemia" Journal of Clinical Medicine 11, no. 11: 3075. https://doi.org/10.3390/jcm11113075