Detection of Anterior Hyaloid Membrane Detachment Using Deep-Range Anterior Segment Optical Coherence Tomography
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Evaluation of Anterior Hyaloid Membrane
2.3. Examinations
2.4. Statistical Analysis
3. Results
3.1. Demographics and Background Data
3.2. Intrarater Reliability
3.3. Visibility of Anterior Hyaloid Membrane
3.4. Analysis in Eyes Undergoing Cataract Surgery
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hogan, M.J.; Alvarado, J.A.; Weddell, J.E. Vitreous. In Histology of the Human Eye: An Atlas and Textbook; Hogan, M.J., Alvarado, J.A., Weddell, J.E., Eds.; WB Saunders Co.: Philadelphia, PA, USA, 1971; pp. 607–637. [Google Scholar]
- Bron, A.J.; Tripathi, R.C.; Tripathi, B.J. The Vitreous. In Wolff’s Anatomy of the Eye and Orbit; Bron, A.J., Tripathi, R.C., Tripathi, B.J., Eds.; Chapman & Hall Medical: London, UK, 1997; pp. 443–453. [Google Scholar]
- Spencer, W.H. Vitreous. In Ophthalmic Pathology. An Atlas and Textbook, 4th ed.; Spencer, W.H., Ed.; WB Saunders Co.: Philadelphia, PA, USA, 1996; pp. 623–666. [Google Scholar]
- Tassignon, M.J.; Ní Dhubhghaill, S. Real-time intraoperative optical coherence tomography imaging confirms older concepts about the Berger space. Ophthalmic Res. 2016, 56, 222–226. [Google Scholar] [CrossRef] [PubMed]
- Mares, V.; Nehemy, M.B.; Salomão, D.R.; Goddard, S.; Tesmer, J.; Pulido, J.S. Multimodal imaging and histopathological evaluation of Berger’s space. Ocul. Oncol. Pathol. 2020, 6, 3–9. [Google Scholar] [CrossRef] [PubMed]
- Anisimova, N.S.; Arbisser, L.B.; Shilova, N.F.; Melnik, M.A.; Belodedova, A.V.; Knyazer, B.; Malyugin, B.E. Anterior vitreous detachment: Risk factor for intraoperative complications during phacoemulsification. J. Cataract. Refract. Surg. 2020, 46, 55–62. [Google Scholar] [PubMed]
- Torii, H.; Takahashi, K.; Yoshitomi, F.; Miyata, K.; Ishii, Y.; Oshika, T. Mechanical detachment of the anterior hyaloid membrane from the posterior lens capsule. Ophthalmology 2001, 108, 2182–2185. [Google Scholar] [CrossRef]
- Naumann, G.O. Photographs of intralenticular hemorrhage following blunt ocular trauma. Arch. Ophthalmol. 1999, 117, 549. [Google Scholar] [CrossRef]
- Anand, A.; Harrison, R.J. Annular pigment band on the posterior capsule following blunt ocular trauma: A case report. BMC Ophthalmol. 2005, 5, 13. [Google Scholar] [CrossRef] [Green Version]
- Lin, D.Y.; Volpicelli, M.; Singh, K. Dense pigmentation of the posterior lens capsule associated with the pigment dispersion syndrome. J. Glaucoma 2003, 12, 491–493. [Google Scholar] [CrossRef]
- Al-Mezaine, H.S. Central posterior capsule pigmentation in a patient with pigment dispersion and previous ocular trauma: A case report. Indian J Ophthalmol. 2010, 58, 336–337. [Google Scholar] [CrossRef]
- Menapace, R. Transzonular capsulo-hyaloidal hydroseparation with optional triamcinolone enhancement: A technique to detect or induce anterior hyaloid membrane detachment for primary posterior laser capsulotomy. J. Cataract. Refract. Surg. 2019, 45, 903–909. [Google Scholar] [CrossRef]
- Bergua, A.; Küchle, M. Visualization of the hyalo-capsular ligament in the living eye. Graefes. Arch. Clin. Exp. Ophthalmol. 2002, 240, 503–505. [Google Scholar] [CrossRef]
- Shoji, T.; Kato, N.; Ishikawa, S.; Ibuki, H.; Yamada, N.; Kimura, I.; Shinoda, K. Association between axial length and in vivo human crystalline lens biometry during accommodation: A swept-source optical coherence tomography study. Jpn. J. Ophthalmol. 2020, 64, 93–101. [Google Scholar] [CrossRef] [PubMed]
- Fukuda, S.; Ueno, Y.; Fujita, A.; Mori, H.; Tasaki, K.; Murakami, T.; Beheregaray, S.; Oshika, T. Comparison of anterior segment and lens biometric measurements in patients with cataract. Graefes. Arch. Clin. Exp. Ophthalmol. 2020, 25, 137–146. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Chen, X.; Tang, Y.; Wang, J.; Chen, Y.; Sun, X. Morphologic features of crystalline lens in patients with primary angle closure disease observed by CASIA 2 optical coherence tomography. Investig. Ophthalmol. Vis. Sci. 2020, 61, 40. [Google Scholar] [CrossRef] [PubMed]
- Mak, H.K.; Yau, K.K.; Chan, B.P. Prevalence-adjusted bias-adjusted kappa values as additional indicators to measure observer agreement. Radiology 2004, 232, 302–303. [Google Scholar] [CrossRef]
- Altman, D.G. Practical Statistics for Medical Research; Chapman and Hall: London, UK, 1991. [Google Scholar]
- Chylack, L.T., Jr.; Wolfe, J.K.; Singer, D.M.; Leske, M.C.; Bullimore, M.A.; Bailey, I.L.; Friend, J.; McCarthy, D.; Wu, S.Y. The lens opacities classification system III. The longitudinal study of cataract study group. Arch. Ophthalmol. 1993, 111, 831–836. [Google Scholar] [CrossRef]
- Santos-Bueso, E. Berger’s space. Arch. Soc. Esp. Oftalmol. 2019, 94, 471–477, (In English, Spanish). [Google Scholar] [CrossRef]
- Morita, H.; Funata, M.; Tokoro, T. A clinical study of the development of posterior vitreous detachment in high myopia. Retina 1995, 15, 117–124. [Google Scholar] [CrossRef]
- Le Goff, M.M.; Bishop, P.N. Adult vitreous structure and postnatal changes. Eye 2008, 22, 1214–1222. [Google Scholar] [CrossRef] [Green Version]
- Johnson, M.W. Posterior vitreous detachment: Evolution and complications of its early stages. Am. J. Ophthalmol. 2010, 149, 371–382.e1. [Google Scholar] [CrossRef]
- Gella, L.; Raman, R.; Kulothungan, V.; Sharma, T. Prevalence of posterior vitreous detachment in the population with type II diabetes mellitus and its effect on diabetic retinopathy: Sankara Nethralaya Diabetic Retinopathy Epidemiology and Molecular Genetic Study SN-DREAMS report no. 23. Jpn. J. Ophthalmol. 2012, 56, 262–267. [Google Scholar] [CrossRef]
- Sebag, J. Age-related differences in the human vitreoretinal interface. Arch. Ophthalmol. 1991, 109, 966–971. [Google Scholar] [CrossRef] [PubMed]
- Sebag, J. Anomalous posterior vitreous detachment: A unifying concept in vitreo-retinal disease. Graefes. Arch. Clin. Exp. Ophthalmol. 2004, 242, 690–698. [Google Scholar] [CrossRef] [PubMed]
- Ramovecchi, P.; Salati, C.; Zeppieri, M. Spontaneous posterior vitreous detachment: A glance at the current literature. World J. Exp. Med. 2021, 11, 30–36. [Google Scholar] [CrossRef] [PubMed]
- Kang, T.S.; Shin, Y.I.; Ryu, C.K.; Kim, J.Y. Two-year reproducibility of axial length measurements after combined phacovitrectomy for epiretinal membrane, and refractive outcomes. J. Clin. Med. 2020, 9, 3493. [Google Scholar] [CrossRef]
- Katz, G.; El Zhalka, F.; Veksler, R.; Ayalon, A.; Moisseiev, E. The role of anterior chamber depth on post-operative refractive error after phacovitrectomy. Clin. Ophthalmol. 2021, 15, 2111–2115. [Google Scholar] [CrossRef]
Demographic Data | 624 Eyes of 624 Patients |
---|---|
Age | 53.7 ± 25.1 (5 to 96) |
Male/female | 301/323 |
DCVA (logMAR) | 0.336 ± 0.386 |
Intraocular pressure (mmHg) | 15.1 ± 3.1 |
Demographic Data | 223 Eyes of 223 Patients |
---|---|
Age | 70.1 ± 10.9 years (25 to 93) |
Male/female | 96/127 |
DCVA (logMAR) | 0.308 ± 0.335 |
Intraocular pressure (mmHg) | 15.1 ± 2.8 |
Corneal power (diopter) | 44.22 ± 1.47 |
Corneal cylinder (diopter) | 0.94 ± 0.71 |
Axial length (mm) | 24.34 ± 1.90 |
LOCS III grading | |
Nuclear color (1~6) | 1/62/124/20/12/4 |
Nuclear opalescence (1~6) | 1/59/125/22/12/4 |
Cortical cataract (1~5) | 79/33/41/67/3 |
Posterior subcapsular cataract (1~5) | 149/31/17/16/10 |
Parameters | AHM Visible (18 Eyes) | AHM Invisible (205 Eyes) | p-Value |
---|---|---|---|
Surgical time (minute) | 14.9 ± 10.0 | 15.5 ± 15.5 | 0.540 |
Posterior capsule rupture | 0% | 1.5% | 0.776 |
Cystoid macular edema | 0% | 0.5% | 0.919 |
Aqueous flare intensity at 1 day postoperatively (0~3) | 0/14/4/0 | 0/158/46/1 | 0.956 |
Changes in intraocular pressure at 1 day postoperatively (mmHg) * | 5.6 ± 6.3 | 3.9 ± 5.0 | 0.147 |
Changes in intraocular pressure at 1 month postoperatively (mmHg) * | −1.6 ± 2.5 | −1.7 ± 2.7 | 0.634 |
Relative refractive error at 1 month postoperatively (diopter) | −0.048 ± 0.788 | 0.099 ± 0.636 | 0.602 |
Absolute refractive error at 1 month postoperatively (diopter) | 0.670 ± 0.384 | 0.494 ± 0.412 | 0.037 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mori, H.; Ueno, Y.; Fukuda, S.; Oshika, T. Detection of Anterior Hyaloid Membrane Detachment Using Deep-Range Anterior Segment Optical Coherence Tomography. J. Clin. Med. 2022, 11, 3057. https://doi.org/10.3390/jcm11113057
Mori H, Ueno Y, Fukuda S, Oshika T. Detection of Anterior Hyaloid Membrane Detachment Using Deep-Range Anterior Segment Optical Coherence Tomography. Journal of Clinical Medicine. 2022; 11(11):3057. https://doi.org/10.3390/jcm11113057
Chicago/Turabian StyleMori, Haruhiro, Yuta Ueno, Shinichi Fukuda, and Tetsuro Oshika. 2022. "Detection of Anterior Hyaloid Membrane Detachment Using Deep-Range Anterior Segment Optical Coherence Tomography" Journal of Clinical Medicine 11, no. 11: 3057. https://doi.org/10.3390/jcm11113057
APA StyleMori, H., Ueno, Y., Fukuda, S., & Oshika, T. (2022). Detection of Anterior Hyaloid Membrane Detachment Using Deep-Range Anterior Segment Optical Coherence Tomography. Journal of Clinical Medicine, 11(11), 3057. https://doi.org/10.3390/jcm11113057