Effect of Intraoperative Magnesium Sulfate Administration on Blood Glucose Control following Total Joint Arthroplasty in Patients with Diabetes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Anesthetic Management
2.3. Study Outcomes and Data Collection
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Marchant, J.M.H.; Viens, N.A.; Cook, C.; Vail, T.P.; Bolognesi, M.P. The impact of glycemic control and diabetes mellitus on perioperative outcomes after total joint arthroplasty. J. Bone Jt. Surg. Am. 2009, 91, 1621–1629. [Google Scholar] [CrossRef] [PubMed]
- Allen, D.C.; Jedrzynski, N.A.; Michelson, J.D.; Blankstein, M.; Nelms, N.J. The Effect of Dexamethasone on Postoperative Blood Glucose in Patients With Type 2 Diabetes Mellitus Undergoing Total Joint Arthroplasty. J. Arthroplasty 2020, 35, 671–674. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stryker, L.S.; Abdel, M.P.; Morrey, M.E.; Morrow, M.M.; Kor, D.J.; Morrey, B.F. Elevated postoperative blood glucose and preoperative hemoglobin A1C are associated with increased wound complications following total joint arthroplasty. J. Bone Jt. Surg. Am. 2013, 95, 808–814. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shin, H.J.; Kim, E.Y.; Na, H.S.; Kim, T.K.; Kim, M.H.; Do, S.H. Magnesium sulphate attenuates acute postoperative pain and increased pain intensity after surgical injury in staged bilateral total knee arthroplasty: A randomized, double-blinded, placebo-controlled trial. Br. J. Anaesth. 2016, 117, 497–503. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oh, T.K.; Chung, S.H.; Park, J.; Shin, H.; Chang, C.B.; Kim, T.K.; Do, S.H. Effects of Perioperative Magnesium Sulfate Administration on Postoperative Chronic Knee Pain in Patients Undergoing Total Knee Arthroplasty: A Retrospective Evaluation. J. Clin. Med. 2019, 8, 2231. [Google Scholar] [CrossRef] [Green Version]
- Morais, J.B.S.; Severo, J.S.; de Alencar, G.R.R.; de Oliveira, A.R.S.; Cruz, K.J.C.; Marreiro, D.D.N.; Freitas, B.; de Carvalho, C.M.R.; Martins, M.; Frota, K.M.G. Effect of magnesium supplementation on insulin resistance in humans: A systematic review. Nutrition 2017, 38, 54–60. [Google Scholar] [CrossRef]
- Ozcaliskan Ilkay, H.; Sahin, H.; Tanriverdi, F.; Samur, G. Association Between Magnesium Status, Dietary Magnesium Intake, and Metabolic Control in Patients with Type 2 Diabetes Mellitus. J. Am. Coll. Nutr. 2019, 38, 31–39. [Google Scholar] [CrossRef]
- Zhao, B.; Deng, H.; Li, B.; Chen, L.; Zou, F.; Hu, L.; Wei, Y.; Zhang, W. Association of magnesium consumption with type 2 diabetes and glucose metabolism: A systematic review and pooled study with trial sequential analysis. Diabetes Metab. Res. Rev. 2020, 36, e3243. [Google Scholar] [CrossRef]
- Herroeder, S.; Schonherr, M.E.; De Hert, S.G.; Hollmann, M.W. Magnesium—Essentials for anesthesiologists. Anesthesiology 2011, 114, 971–993. [Google Scholar] [CrossRef] [Green Version]
- Guerrera, M.P.; Volpe, S.L.; Mao, J.J. Therapeutic uses of magnesium. Am. Fam. Physician 2009, 80, 157–162. [Google Scholar]
- Kim, N.; Yoo, Y.C.; Lee, S.K.; Kim, H.; Ju, H.M.; Min, K.T. Comparison of the efficacy and safety of sedation between dexmedetomidine-remifentanil and propofol-remifentanil during endoscopic submucosal dissection. World J. Gastroenterol. 2015, 21, 3671–3678. [Google Scholar] [CrossRef] [PubMed]
- Yoo, S.; Lee, H.J.; Lee, H.; Ryu, H.G. Association Between Perioperative Hyperglycemia or Glucose Variability and Postoperative Acute Kidney Injury After Liver Transplantation: A Retrospective Observational Study. Anesth Analg. 2017, 124, 35–41. [Google Scholar] [CrossRef] [PubMed]
- Palermo, N.E.; Gianchandani, R.Y.; McDonnell, M.E.; Alexanian, S.M. Stress Hyperglycemia During Surgery and Anesthesia: Pathogenesis and Clinical Implications. Curr. Diab. Rep. 2016, 16, 33. [Google Scholar] [CrossRef] [PubMed]
- Davis, G.; Fayfman, M.; Reyes-Umpierrez, D.; Hafeez, S.; Pasquel, F.J.; Vellanki, P.; Haw, J.S.; Peng, L.; Jacobs, S.; Umpierrez, G.E. Stress hyperglycemia in general surgery: Why should we care? J. Diabetes Complicat. 2018, 32, 305–309. [Google Scholar] [CrossRef]
- Ljungqvist, O.; Nygren, J.; Thorell, A. Insulin resistance and elective surgery. Surgery 2000, 128, 757–760. [Google Scholar] [CrossRef]
- Gianotti, L.; Biffi, R.; Sandini, M.; Marrelli, D.; Vignali, A.; Caccialanza, R.; Vigano, J.; Sabbatini, A.; Di Mare, G.; Alessiani, M.; et al. Preoperative Oral Carbohydrate Load Versus Placebo in Major Elective Abdominal Surgery (PROCY): A Randomized, Placebo-controlled, Multicenter, Phase III Trial. Ann. Surg. 2018, 267, 623–630. [Google Scholar] [CrossRef]
- Nygren, J. The metabolic effects of fasting and surgery. Best Pract. Res. Clin. Anaesthesiol. 2006, 20, 429–438. [Google Scholar] [CrossRef]
- Moorthy, V.; Sim, M.A.; Liu, W.; Chew, S.T.H.; Ti, L.K. Risk factors and impact of postoperative hyperglycemia in nondiabetic patients after cardiac surgery: A prospective study. Medicine 2019, 98, e15911. [Google Scholar] [CrossRef]
- Jamsen, E.; Nevalainen, P.I.; Eskelinen, A.; Kalliovalkama, J.; Moilanen, T. Risk factors for perioperative hyperglycemia in primary hip and knee replacements. Acta Orthop. 2015, 86, 175–182. [Google Scholar] [CrossRef]
- Evans, M.D.; Barton, K.; Pritchard, G.A.; Williams, E.J.; Karandikar, S.S. Plasma magnesium should be monitored perioperatively in patients undergoing colorectal resection. Colorectal. Dis. 2009, 11, 613–618. [Google Scholar] [CrossRef]
- Dube, L.; Granry, J.C. The therapeutic use of magnesium in anesthesiology, intensive care and emergency medicine: A review. Can. J. Anaesth. 2003, 50, 732–746. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Simental-Mendia, L.E.; Sahebkar, A.; Rodriguez-Moran, M.; Guerrero-Romero, F. A systematic review and meta-analysis of randomized controlled trials on the effects of magnesium supplementation on insulin sensitivity and glucose control. Pharmacol. Res. 2016, 111, 272–282. [Google Scholar] [CrossRef] [PubMed]
- Dasgupta, A.; Sarma, D.; Saikia, U.K. Hypomagnesemia in type 2 diabetes mellitus. Indian J. Endocrinol. Metab. 2012, 16, 1000–1003. [Google Scholar] [CrossRef] [PubMed]
- Limaye, C.S.; Londhey, V.A.; Nadkart, M.Y.; Borges, N.E. Hypomagnesemia in critically ill medical patients. J. Assoc. Physicians India 2011, 59, 19–22. [Google Scholar] [PubMed]
- Hwang, J.Y.; Na, H.S.; Jeon, Y.T.; Ro, Y.J.; Kim, C.S.; Do, S.H.I.V. infusion of magnesium sulphate during spinal anaesthesia improves postoperative analgesia. Br. J. Anaesth. 2010, 104, 89–93. [Google Scholar] [CrossRef] [Green Version]
- Na, H.S.; Lee, J.H.; Hwang, J.Y.; Ryu, J.H.; Han, S.H.; Jeon, Y.T.; Do, S.H. Effects of magnesium sulphate on intraoperative neuromuscular blocking agent requirements and postoperative analgesia in children with cerebral palsy. Br. J. Anaesth. 2010, 104, 344–350. [Google Scholar] [CrossRef] [Green Version]
- Na, H.S.; Chung, Y.H.; Hwang, J.W.; Do, S.H. Effects of magnesium sulphate on postoperative coagulation, measured by rotational thromboelastometry (ROTEM((R))). Anaesthesia 2012, 67, 862–869. [Google Scholar] [CrossRef]
- Na, H.S.; Shin, H.J.; Kang, S.B.; Hwang, J.W.; Do, S.H. Effects of magnesium sulphate on coagulation after laparoscopic colorectal cancer surgery, measured by rotational thromboelastometry (ROTEM(R)). Anaesthesia 2014, 69, 1314–1321. [Google Scholar] [CrossRef]
- Hwang, J.S.; Kim, S.J.; Bamne, A.B.; Na, Y.G.; Kim, T.K. Do glycemic markers predict occurrence of complications after total knee arthroplasty in patients with diabetes? Clin. Orthop. Relat. Res. 2015, 473, 1726–1731. [Google Scholar] [CrossRef] [Green Version]
- Jones, C.E.; Graham, L.A.; Morris, M.S.; Richman, J.S.; Hollis, R.H.; Wahl, T.S.; Copeland, L.A.; Burns, E.A.; Itani, K.M.F.; Hawn, M.T. Association Between Preoperative Hemoglobin A1c Levels, Postoperative Hyperglycemia, and Readmissions Following Gastrointestinal Surgery. JAMA Surg. 2017, 152, 1031–1038. [Google Scholar] [CrossRef]
- Hamarshih, M.; Hamshari, S.; Nazzal, Z.; Snobar, F.A.; Mletat, R.; Mazen, O.A.; Maraqa, B. Hypomagnesemia and Poor Glycemic Control Among Palestinian Type 2 Diabetic Patients: A Cross-Sectional Study. 2021. Available online: https://www.researchsquare.com/article/rs-1066121/v1 (accessed on 10 February 2022).
- Sevuk, U.; Cakil, N.; Altindag, R.; Baysal, E.; Altintas, B.; Yaylak, B.; Adiyaman, M.S.; Bahadir, M.V. Relationship between Nadir Hematocrit during Cardiopulmonary Bypass and Postoperative Hyperglycemia in Nondiabetic Patients. Heart Surg. Forum. 2014, 17, E302–E307. [Google Scholar] [CrossRef] [PubMed]
- Kutlesic, M.S.; Kutlesic, R.M.; Mostic-Ilic, T. Magnesium in obstetric anesthesia and intensive care. J. Anesth. 2017, 31, 127–139. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.Y.; Lee, S.Y.; Lee, H.S.; Jun, B.K.; Choi, J.B.; Kim, J.E. Beneficial Effects of Intravenous Magnesium Administration During Robotic Radical Prostatectomy: A Randomized Controlled Trial. Adv. Ther. 2021, 38, 1701–1712. [Google Scholar] [CrossRef]
- Shin, H.J.; Na, H.S.; Do, S.H. Magnesium and Pain. Nutrients 2020, 12, 2184. [Google Scholar] [CrossRef] [PubMed]
- Donatelli, F.; Vavassori, A.; Bonfanti, S.; Parrella, P.; Lorini, L.; Fumagalli, R.; Carli, F. Epidural anesthesia and analgesia decrease the postoperative incidence of insulin resistance in preoperative insulin-resistant subjects only. Anesth. Analg. 2007, 104, 1587–1593, table of contents. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gupta, K.; Maggo, A.; Jain, M.; Gupta, P.K.; Rastogi, B.; Singhal, A.B. Blood glucose estimation as an indirect assessment of modulation of neuroendocrine stress response by dexmedetomidine versus fentanyl premedication during laparoscopic cholecystectomy: A clinical study. Anesth. Essays. Res. 2013, 7, 34–38. [Google Scholar] [CrossRef] [Green Version]
- Jung, S.M.; Cho, C.K. The effects of deep and light propofol anesthesia on stress response in patients undergoing open lung surgery: A randomized controlled trial. Korean J. Anesthesiol. 2015, 68, 224–231. [Google Scholar] [CrossRef] [Green Version]
- Umpierrez, G.E.; Smiley, D.; Jacobs, S.; Peng, L.; Temponi, A.; Mulligan, P.; Umpierrez, D.; Newton, C.; Olson, D.; Rizzo, M. Randomized study of basal-bolus insulin therapy in the inpatient management of patients with type 2 diabetes undergoing general surgery (RABBIT 2 surgery). Diabetes Care 2011, 34, 256–261. [Google Scholar] [CrossRef] [Green Version]
- Van Laecke, S. Hypomagnesemia and hypermagnesemia. Acta Clin. Belg. 2019, 74, 41–47. [Google Scholar] [CrossRef]
Unmatched Cohort (n = 755) | SMD | p | Matched Cohort (n = 340) | SMD | p | |||
---|---|---|---|---|---|---|---|---|
Control n = 585 | Mg n = 170 | Control n = 170 | Mg n = 170 | |||||
Age, year | 71.0 (65.0–75.0) | 70.5 (65.0–74.8) | 0.079 | 0.558 | 70.0 (65.0–76.0) | 70.5 (65.0–74.8) | 0.055 | 0.721 |
Sex | ||||||||
Male | 124 (21.2%) | 41 (24.1%) | 0.070 | 0.417 | 45 (26.5%) | 41 (24.1%) | 0.054 | 0.618 |
Female | 461 (78.8%) | 129 (75.9%) | 125 (73.5%) | 129 (75.9%) | ||||
BMI, kg m−2 | 26.9 (24.5–29.8) | 26.6 (24.3–28.9) | 0.111 | 0.185 | 26.1 (24.0–29.2) | 26.6 (24.3–28.9) | 0.018 | 0.836 |
ASA status (II/III) | ||||||||
II | 456 (77.9%) | 134 (78.8%) | 0.021 | 0.808 | 128 (75.3%) | 134 (78.8%) | 0.084 | 0.439 |
III | 129 (22.1%) | 36 (21.2%) | 42 (24.7%) | 36 (21.2%) | ||||
Hypertension | 451 (77.1%) | 126 (74.1%) | 0.069 | 0.421 | 128 (75.3%) | 126 (74.1%) | 0.027 | 0.803 |
Ischemic heart disease | 77 (13.2%) | 18 (10.6%) | 0.080 | 0.373 | 19 (11.2%) | 18 (10.6%) | 0.019 | 0.862 |
Cerebrovascular disease | 41 (7.0%) | 8 (4.7%) | 0.098 | 0.283 | 10 (5.9%) | 8 (4.7%) | 0.053 | 0.628 |
Preoperative Hematocrit, % | 39.6 (37.1–42.4) | 40.1 (37.6–42.5) | 0.144 | 0.171 | 39.9 (37.5–42.7)) | 40.1 (37.6–42.5) | 0.086 | 0.723 |
Preoperative HbA1c, % | 6.7 (6.2–7.3) | 6.6 (6.1–7.2) | 0.111 | 0.119 | 6.6 (6.2–7.3) | 6.6 (6.1–7.2) | 0.010 | 0.535 |
Preoperative blood glucose level, mg/dL | 129.0 (111.0–150.0) | 129.0 (112.3–146.0) | 0.010 | 0.963 | 132.0 (111.0–151.0) | 129.0 (112.3–146.0) | 0.056 | 0.800 |
Insulin medication | 27 (4.6%) | 5 (2.9%) | 0.088 | 0.340 | 6 (3.5%) | 5 (2.9%) | 0.033 | 0.759 |
Type of surgery | ||||||||
TKRA | 465 (79.5%) | 119 (70.0%) | 0.220 | 0.009 | 126 (74.1%) | 119 (70.0%) | 0.092 | 0.398 |
THRA | 120 (20.5%) | 51 (30.0%) | 44 (25.9%) | 51 (30.0%) | ||||
Operative characteristics | ||||||||
Operation time, min | 130.0 (105.0–150.0) | 135.0 (115.0–153.8) | 0.221 | 0.020 | 135.0 (115.0–155.0) | 135.0 (115.0–153.8) | 0.010 | 0.716 |
Estimated blood loss, mL | 100.0 (70.0–250.0) | 150.0 (70.0–550.0) | 0.284 | < 0.001 | 115.0 (70.0–350.0) | 150.0 (70.0–550.0) | 0.049 | 0.177 |
Intravenous fluid, mL | 450.0 (300.0–700.0) | 500.0 (300.0–950.0) | 0.208 | 0.087 | 500.0 (350.0–800.0) | 500.0 (300.0–950.0) | 0.064 | 0.776 |
MBP, mmHg | 74.5 (70.1–80.8) | 73.2 (68.1–80.7) | 0.110 | 0.141 | 74.5 (69.5–81.6) | 73.2 (68.1–80.7) | 0.097 | 0.338 |
Sedation | ||||||||
None | 249 (42.6%) | 84 (49.4%) | 0.999 | < 0.001 | 85 (50.0%) | 84 (49.4%) | 0.077 | 0.777 |
Dexmedetomidine | 96 (16.4%) | 76 (44.7%) | 72 (42.4%) | 76 (44.7%) | ||||
Propofol | 240 (41.0%) | 10 (5.9%) | 13 (7.6%) | 10 (5.9%) | ||||
Years at surgery | ||||||||
2016–2018.6 | 316 (54.0%) | 73 (42.9%) | 0.223 | 0.011 | 66 (38.8%) | 73 (42.9%) | 0.084 | 0.440 |
2018.7–2020 | 269 (46.0%) | 97 (57.1%) | 104 (61.2%) | 97 (57.1%) | ||||
Premedication | ||||||||
Midazolam, mg | 2.0 (0.5–3.0) | 1.5 (0.5–3.0) | 0.125 | 0.098 | 1.5 (0.5–3.0) | 1.5 (0.5–3.0) | 0.032 | 0.779 |
Control | Mg | Odds Ratio (95% CI) | p | |
---|---|---|---|---|
Before matching | ||||
Blood glucose level | ||||
Mean | 183.0 (157.8–210.7) | 176.8 (153.1–198.8) | 0.022 | |
Mean > 200 mg/dL | 195/585 (33.3%) | 40/170 (23.5%) | 0.62 (0.42–0.91) | 0.015 |
Postoperative insulin requirement | 392/585 (67.0%) | 98/170 (57.6%) | 0.67 (0.47–0.95) | 0.024 |
MEC, mg | 140.0 (99.5–188.0) | 123.5 (83.5–175.5) | 0.004 | |
After matching | ||||
Blood glucose level | ||||
Mean | 184.2 (157.6–213.8) | 176.8 (153.1–198.8) | 0.040 | |
Mean > 200 mg/dL | 61/170 (35.9%) | 40/170 (23.5%) | 0.55 (0.34–0.88) | 0.013 |
Postoperative insulin requirement | 116/170 (68.2%) | 98/170 (57.6%) | 0.63 (0.41–0.99) | 0.043 |
MEC, mg | 140.0 (94.0–198.0) | 123.5 (83.5–175.5) | 0.003 |
Odds Ratio (95% CI) | p | |
---|---|---|
Magnesium continuous infusion | 0.64 (0.41–0.99) | 0.047 |
ASA | ||
II | 1 | |
III | 1.04 (0.67–1.62) | 0.857 |
HTN | 1.21 (0.78–1.87) | 0.393 |
CVD | 1.38 (0.67–2.85) | 0.379 |
Preoperative hematocrit | 0.91 (0.88–0.96) | <0.001 |
Preoperative HbA1c | 2.45 (1.95–3.07) | <0.001 |
Preoperative blood glucose level | 1.02 (1.02–1.03) | <0.001 |
Insulin medication | 0.91 (0.38–2.16) | 0.823 |
Estimated blood loss | 1.00 (1.00–1.00) | 0.758 |
Intravenous fluid | 1.00 (1.00–1.00) | 0.890 |
Sedation | ||
None | 1 | |
Dexmedetomidine | 1.02 (0.64–1.63) | 0.928 |
Propofol | 0.71 (0.46–1.08) | 0.105 |
Control (n = 16) | Mg (n = 13) | Odds Ratio (95% CI) | p | |
---|---|---|---|---|
Blood glucose level | ||||
Mean | 243.8 (208.5–265.8) | 185.4 (175.5–221.8) | 0.022 | |
Mean > 200 mg/dL | 12 (75%) | 5 (38.5%) | 0.21 (0.04–1.02) | 0.047 |
Postoperative insulin requirement | 16 (100%) | 12 (92.3%) | 0.448 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, J.-W.; Kim, E.-K.; Lee, J.; Chung, S.H.; Boo, G.; Do, S.-H. Effect of Intraoperative Magnesium Sulfate Administration on Blood Glucose Control following Total Joint Arthroplasty in Patients with Diabetes. J. Clin. Med. 2022, 11, 3040. https://doi.org/10.3390/jcm11113040
Park J-W, Kim E-K, Lee J, Chung SH, Boo G, Do S-H. Effect of Intraoperative Magnesium Sulfate Administration on Blood Glucose Control following Total Joint Arthroplasty in Patients with Diabetes. Journal of Clinical Medicine. 2022; 11(11):3040. https://doi.org/10.3390/jcm11113040
Chicago/Turabian StylePark, Jin-Woo, Eun-Kyoung Kim, Jiyoun Lee, Seung Hyun Chung, Gihong Boo, and Sang-Hwan Do. 2022. "Effect of Intraoperative Magnesium Sulfate Administration on Blood Glucose Control following Total Joint Arthroplasty in Patients with Diabetes" Journal of Clinical Medicine 11, no. 11: 3040. https://doi.org/10.3390/jcm11113040
APA StylePark, J.-W., Kim, E.-K., Lee, J., Chung, S. H., Boo, G., & Do, S.-H. (2022). Effect of Intraoperative Magnesium Sulfate Administration on Blood Glucose Control following Total Joint Arthroplasty in Patients with Diabetes. Journal of Clinical Medicine, 11(11), 3040. https://doi.org/10.3390/jcm11113040