Evolution of Mitochondrially Derived Peptides Humanin and MOTSc, and Changes in Insulin Sensitivity during Early Gestation in Women with and without Gestational Diabetes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Data Collection and Biomarkers
2.3. Statistical Analysis
3. Results
3.1. Basal Characteristics
3.2. Humanin and MOTSc MDP Levels in the First and Second Trimesters
3.3. Association with Insulin Resistance
3.4. Association with GDM
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Powe, C.E.; Presley, L.P.H.; Locascio, J.J.; Catalano, P.M. Augmented insulin secretory response in early pregnancy. Diabetologia 2019, 62, 1445–1452. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- World Health Organization. Definition, Diagnosis and Classification of Diabetes Mellitus and Its Complications. Part 1: Diagnosis and Classification of Diabetes Mellitus; World Health Organization: Geneva, Sweden, 1999. [Google Scholar]
- Metzger, B.E.; International Association of Diabetes and Pregnancy Study Groups Consensus Panel; Gabbe, S.G.; Persson, B.; Buchanan, T.A.; Catalano, P.A.; Damm, P.; Dyer, A.R.; de Leiva, A.; Hod, M.; et al. International association of diabetes and pregnancy study groups recommendations on the diagnosis and classification of hyperglycemia in pregnancy. Diabetes Care 2010, 33, 676–682. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- American Diabetes Association. Classification and diagnosis of diabetes: Standards of medical care in diabetes-2020. Diabetes Care 2020, 43, S14–S31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sweeting, A.N.; Ross, G.P.; Hyett, J.; Molyneaux, L.; Constantino, M.; Harding, A.J.; Wong, J. Gestational diabetes mellitus in early pregnancy: Evidence for poor pregnancy outcomes despite treatment. Diabetes Care 2016, 39, 75–81. [Google Scholar] [CrossRef] [Green Version]
- Diaz-Vegas, A.; Sanchez-Aguilera, P.; Krycer, J.R.; Morales, P.E.; Monsalves-Alvarez, M.; Cifuentes, M.; Rothermel, B.A.; Lavandero, S. Is mitochondrial dysfunction a common root of noncommunicable chronic diseases? Endocr. Rev. 2020, 41, 491–517. [Google Scholar] [CrossRef]
- McElwain, C.; McCarthy, C.M. Investigating mitochondrial dysfunction in gestational diabetes mellitus and elucidating if BMI is a causative mediator. Eur. J. Obs. Gynecol. Reprod. Biol. 2020, 251, 60–65. [Google Scholar] [CrossRef]
- Abbade, J.; Klemetti, M.M.; Farrell, A.; Ermini, L.; Gillmore, T.; Sallais, J.; Tagliaferro, A.; Post, M.; Caniggia, I. Increased placental mitochondrial fusion in gestational diabetes mellitus: An adaptive mechanism to optimize feta-placental metabolic homeostasis. BMJ Open Diab. Res. Care 2020, 8, e000923. [Google Scholar] [CrossRef]
- Meng, Q.; Shao, L.; Luo, X.; Mu, Y.; Xu, W.; Gao, C.; Gao, L.; Liu, J.; Cui, Y. Ultrastructure of placenta of gravidas with gestational diabetes mellitus. Obs. Gynecol. Int. 2015, 283124. [Google Scholar] [CrossRef] [Green Version]
- Popov, L.D. Mitochondrial peptides-appropriate options for therapeutic exploitation. Cell Tissue Res. 2019, 377, 161–165. [Google Scholar] [CrossRef]
- Merry, T.L.; Chan, A.; Woodhead, J.S.T.; Reynolds, J.C.; Kumagai, H.; Kim, S.J.; Lee, C. Mitochondrial-derived peptides in energy metabolism. Am. J. Physiol. Endocrinol. Metab. 2020, 319, E659–E666. [Google Scholar] [CrossRef]
- Nashine, S.; Cohen, P.; Chwa, M.; Lu, S.; Nesburn, A.B.; Kuppermann, B.D.; Kenney, M.C. Humanin G (HNG) protects age-related macular degeneration (AMD) transmitochondrial ARPE-19 cybrids from mitochondrial and cellular damage. Cell Death Dis. 2017, 8, e2951. [Google Scholar] [CrossRef]
- Gong, Z.; Tasset, I.; Diaz, A.; Anguiano, J.; Tas, E.; Cui, L.; Kuliawat, R.; Liu, H.; Kühn, B.; Cuervo, A.M.; et al. Humanin is an endogenous activator of chaperone-mediated autophagy. J. Cell Biol. 2018, 217, 635–647. [Google Scholar] [CrossRef]
- Minasyan, L.; Parameswaran, G.S.; Hinton, D.R.; Kannan, R. Protective mechanisms of the mitochondrial-derived peptide Humanin in oxidative and endoplasmic reticulum stress in RPE cells. Oxid. Med. Cell. Longev. 2017, 1675230. [Google Scholar] [CrossRef]
- Zarse, K.; Ristow, M.A. A mitochondrially encoded hormone amiliorates obesity and insulin resitance. Cell Metab. 2015, 21, 355–356. [Google Scholar] [CrossRef] [Green Version]
- Lee, C.D.; Zeng, J.; Drew, B.G.; Sallam, T. The mitochondrial-derived peptide MOTSc promotes metabolic homeostasis and reduces obesity and insulin resistance. Cell Metab. 2015, 21, 443–454. [Google Scholar] [CrossRef] [Green Version]
- Kim, K.H.; Son, J.M.; Benayoun, B.A.; Lee, C. The mitochondrial-encoded peptide mots-c translocate to the nucleus to regulate nuclear gene expression in response to metabolic stress. Cell Metab. 2018, 28, 516–524.e7. [Google Scholar] [CrossRef] [Green Version]
- Mangahara, K.C.; Shadel, G.S. A mitochondrial-derived peptide exercises the nuclear option. Cell Metab. 2018, 28, 330–331. [Google Scholar] [CrossRef] [Green Version]
- Ejigou, A. Power and sample size for matched case-control studies. Biometrics 1996, 52, 925–933. [Google Scholar] [CrossRef]
- Williams, M.A.; Qiu, C.; Muy-Rivera, M.; Vadachkoria, S.; Song, T.; Luthy, D.A. Plasma adiponectin in early pregnancy and subsequent risk of gestational diabetes mellitus. J. Clin. Endocrinol. Metab. 2004, 89, 2306–2311. [Google Scholar] [CrossRef] [Green Version]
- National Diabetes Data Group. Classification and diagnosis of diabetes mellitus and other categories of glucose intolerance. Diabetes 1979, 28, 1039–1057. [Google Scholar] [CrossRef]
- Ma, Y.; Li, S.; Wei, X.; Huang, J.; Lai, M.; Wang, N.; Huang, Q.; Zhao, L.; Peng, Y.; Wang, Y. Comparison of serum concentrations of humanin in women with and without gestational diabetes mellitus. Gynecol. Endocrinol. 2018, 34, 1064–1067. [Google Scholar] [CrossRef]
- Wojciechowska, M.; Pruszyńska-Oszmałek, E.; Kołodziejski, P.A.; Krauss, H.; Leciejewska, N.; Szczepankiewicz, D.; Bień, J.; Skrzypski, M.; Wilczak, M.; Sassek, M. Changes in MOTS-c level in the blood of pregnant women with metabolic disorders. Biology 2021, 10, 1032. [Google Scholar] [CrossRef]
- Kim, S.J.; Miller, B.; Mehta, H.H.; Xiao, J.; Wan, J.; Arpawong, T.E.; Yen, K.; Cohen, P. The mitochondrial-derived peptide MOTSc is a regulator of plasma metabolites and enhances insulin sensitivity. Physiol. Rep. 2019, 7, e14171. [Google Scholar] [CrossRef] [Green Version]
- Hoang, P.T.; Park, P.; Cobb, L.J.; Paharkova-Vatchkova, V.; Hakimi, M.; Cohen, P.; Lee, K.-W. The neurosurvival factor Humanin inhibits beta-cell apoptosis via signal transducer and activator of transcription 3 activation and delays and ameliorates diabetes in nonobese diabetic mice. Metab. 2010, 59, 343–349. [Google Scholar] [CrossRef] [Green Version]
- Ramanjaneya, M.; Bettahi, I.; Jerobin, J.; Chandra, P.; Khalil, C.A.; Skarulis, M.; Atkin, S.L.; Abou-Samra, A.-B. Mitochondrial-derived peptides are down regulated in diabetes subjects. Front. Endocrinol. 2019, 10, 331. [Google Scholar] [CrossRef] [Green Version]
- McIntyre, H.D.; Sacks, D.A.; Barbour, L.A.; Feig, D.S.; Catalano, P.M.; Damm, P.; McElduff, A. Issues with the diagnosis and classification of hyperglycemia in early pregnancy. Diabetes Care 2016, 39, 53–54. [Google Scholar] [CrossRef] [Green Version]
- Artzi, N.S.; Shilo, S.; Hadar, E.; Rossman, H.; Barbash-Hazan, S.; Ben-Haroush, A.; Balicer, R.D.; Feldman, B.; Wiznitzer, A.; Segal, E. Prediction of gestational diabetes based on nationwide electronic health records. Nat. Med. 2020, 26, 71–76. [Google Scholar] [CrossRef]
- Badon, S.E.; Zhu, Y.; Sridhar, S.B.; Xu, F.; Lee, C.; Ehrlich, S.F.; Quesenberry, C.P.; Hedderson, M.M. A pre-pregnancy biomarker risk score improves prediction of future gestational diabetes. J. Endocr. Soc. 2018, 2, 1158–1169. [Google Scholar] [CrossRef] [Green Version]
- Matthews, D.R.; Hosker, J.P.; Rudenski, A.S.; Naylor, B.A.; Treacher, D.F.; Turner, R.C. Homeostasis model assessment: Insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 1985, 28, 412–419. [Google Scholar] [CrossRef] [Green Version]
- García-Estévez, D.A.; Araújo-Vilar, D.; Fiestras-Janeiro, G.; Saavedra-González, A.; Cabezas-Cerrato, J. Comparison of several insulin sensitivity indices derived from basal plasma insulin and glucose levels with minimal model indices. Horm. Metab. Res. 2003, 35, 13–17. [Google Scholar] [CrossRef]
Variable | Total | GDM | Non-GDM | p Value |
---|---|---|---|---|
(n = 73) | (n = 28) | (n = 45) | ||
Age, (yr) (mean ± SD) | 32.7 ± 5.1 | 32.8 ± 5.4 | 32.6 ± 4.9 | 0.937 |
BMI (kg/m2) (mean ± SD) | ||||
First Trimester | 25.2 ± 5.0 | 25.4 ± 5.6 | 25.0 ± 4.7 | 0.851 |
Second Trimester | 27.6 ± 4.7 | 27.9 ± 5.0 | 27.4 ± 4.6 | 0.704 |
Race/ethnicity | ||||
Non-Hispanic white | 70 (95.8%) | 28 (100%) | 42 (93.3%) | 0.565 |
African | 1 (1.3%) | 1 (2.2%) | ||
Hispanic | 2 (2.7%) | 2 (4.4%) | ||
Previous pregnancies | ||||
None, n (%) | 28 (38.4%) | 10 (35.7%) | 18 (40.0%) | 0.935 |
1, n (%) | 30 (41.1%) | 12 (42.9%) | 18 (40.0%) | |
+1, n (%) | 15 (20.5%) | 6 (21.4%) | 9 (20.0%) | |
Tobacco (yes) | 10 (13.7%) | 7 (25.0%) | 3 (6.7%) | 0.038 |
Gestational age (weeks) (mean ± SD) | ||||
First Trimester | 10.37 ± 0.77 | 10.42 ± 0.57 | 10.33 ± 0.87 | 0.262 |
Second Trimester | 25.09 ± 1.45 | 25.17 ± 1.38 | 25.04 ± 1.50 | 0.623 |
First Trimester | Second Trimester | p Value | |
---|---|---|---|
Humanin (pg/mL), mean (SD) | 797.9 ± 607.7 | 697.2 ± 523.0 | <0.001 |
MOTSc (ng/mL), mean (SD) | 725.1 ± 332.8 | 592.0 ± 250.5 | 0.003 |
Glucose (mmol/L), mean (SD) | 4.3 ± 0.3 | 4.4 ± 0.6 | 0.400 |
Insulin (µU/mL), mean (SD) | 8.2 ± 4.5 | 11.1 ± 10.1 | 0.001 |
HOMA-IR, mean (SD) | 1.6 ± 0.9 | 2.3 ± 2.5 | 0.006 |
HOMA-β (%), mean (SD) | 223.2 ± 144.1 | 288.1 ± 262.0 | 0.039 |
HOMA-IR Low | HOMA-IR High | ||||||||
---|---|---|---|---|---|---|---|---|---|
MDPs | Cutoff Points | n = 48 (1T) n = 49 (2T) | n = 24 (1T) n= 23 (2T) | Crude OR | (95% | CI) | aOR a | (95% | CI) |
First trimester Humanin (pg/mL) (Tertiles) | |||||||||
High (reference) | 790+ | 20 | 3 | 1.00 | -- | 1.00 | -- | ||
Medium | 567–789 | 16 | 8 | 3.33 | 0.76 | 14.65 | 2.22 | 0.45 | 10.98 |
Low | ≤566 | 12 | 13 | 7.22 | 1.70 | 30.64 | 2.63 | 0.51 | 13.43 |
p linear trend | 0.006 | 0.260 | |||||||
First trimester MOTSc (ng/mL) (Tertiles) | |||||||||
High (reference) | 823.3+ | 16 | 7 | 1.00 | -- | 1.00 | -- | ||
Medium | 526.9–823.2 | 15 | 10 | 1.52 | 0.46 | 5.04 | 1.23 | 0.29 | 5.10 |
Low | ≤526.8 | 17 | 7 | 0.94 | 0.27 | 3.29 | 1.02 | 0.24 | 4.23 |
p linear trend | 0.918 | 0.992 | |||||||
Second trimester Humanin (pg/mL) (Tertiles) | |||||||||
High (reference) | 648+ | 21 | 3 | 1.00 | -- | 1.00 | -- | ||
Medium | 374–647 | 15 | 7 | 3.27 | 0.72 | 14.73 | 3.18 | 0.60 | 16.78 |
Low | ≤373 | 13 | 13 | 7.00 | 1.67 | 29.35 | 3.14 | 0.64 | 15.44 |
p linear trend | 0.006 | 0.175 | |||||||
Second trimester MOTSc (ng/mL) (Tertiles) | |||||||||
High (reference) | 586.9+ | 19 | 5 | 1.00 | -- | 1.00 | -- | ||
Medium | 477.1–586.8 | 18 | 5 | 1.06 | 0.26 | 4.27 | 1.43 | 0.26 | 7.84 |
Low | ≤477.0 | 12 | 13 | 4.12 | 1.17 | 14.50 | 7.68 | 1.49 | 39.67 |
p linear trend | 0.022 | 0.012 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ruiz, D.; Santibañez, M.; Lavín, B.A.; Berja, A.; Montalban, C.; Vazquez, L.A. Evolution of Mitochondrially Derived Peptides Humanin and MOTSc, and Changes in Insulin Sensitivity during Early Gestation in Women with and without Gestational Diabetes. J. Clin. Med. 2022, 11, 3003. https://doi.org/10.3390/jcm11113003
Ruiz D, Santibañez M, Lavín BA, Berja A, Montalban C, Vazquez LA. Evolution of Mitochondrially Derived Peptides Humanin and MOTSc, and Changes in Insulin Sensitivity during Early Gestation in Women with and without Gestational Diabetes. Journal of Clinical Medicine. 2022; 11(11):3003. https://doi.org/10.3390/jcm11113003
Chicago/Turabian StyleRuiz, David, Miguel Santibañez, Bernardo Alio Lavín, Ana Berja, Coral Montalban, and Luis Alberto Vazquez. 2022. "Evolution of Mitochondrially Derived Peptides Humanin and MOTSc, and Changes in Insulin Sensitivity during Early Gestation in Women with and without Gestational Diabetes" Journal of Clinical Medicine 11, no. 11: 3003. https://doi.org/10.3390/jcm11113003
APA StyleRuiz, D., Santibañez, M., Lavín, B. A., Berja, A., Montalban, C., & Vazquez, L. A. (2022). Evolution of Mitochondrially Derived Peptides Humanin and MOTSc, and Changes in Insulin Sensitivity during Early Gestation in Women with and without Gestational Diabetes. Journal of Clinical Medicine, 11(11), 3003. https://doi.org/10.3390/jcm11113003