Prediction of the Short-Term Therapeutic Effect of Anti-VEGF Therapy for Diabetic Macular Edema Using a Generative Adversarial Network with OCT Images
Abstract
:1. Introduction
2. Methods
2.1. Clinical Data and Imaging Examinations
2.2. Data Collection
2.3. Image Synthesis
2.4. Evaluation of Post-Therapeutic OCT Prediction Models
3. Results
3.1. Demographic Data of Training Data and Testing Data
3.2. Screening Experiment of Synthetic Images
3.3. Evaluation Experiment of Indistinguishable Images
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bhagat, N.; Grigorian, R.A.; Tutela, A.; Zarbin, M.A. Diabetic macular edema: Pathogenesis and treatment. Surv. Ophthalmol. 2009, 54, 1–32. [Google Scholar] [CrossRef] [PubMed]
- Bressler, N.M.; Beaulieu, W.T.; Glassman, A.R.; Blinder, K.J.; Bressler, S.B.; Jampol, L.M.; Melia, M.; Wells, J.A., 3rd. Diabetic Retinopathy Clinical Research Network. Persistent Macular Thickening Following Intravitreous Aflibercept, Bevacizumab, or Ranibizumab for Central-Involved Diabetic Macular Edema with Vision Impairment: A Secondary Analysis of a Randomized Clinical Trial. JAMA Ophthalmol. 2018, 136, 257–269. [Google Scholar] [PubMed] [Green Version]
- Cohen, S.R.; Gardner, T.W. Diabetic Retinopathy and Diabetic Macular Edema. Dev. Ophthalmol. 2016, 55, 137–146. [Google Scholar] [PubMed] [Green Version]
- Ding, J.; Wong, T.Y. Current epidemiology of diabetic retinopathy and diabetic macular edema. Curr. Diabetes Rep. 2012, 12, 346–354. [Google Scholar] [CrossRef]
- Bressler, S.B.; Odia, I.; Maguire, M.G.; Dhoot, D.S.; Glassman, A.R.; Jampol, L.M.; Marcus, D.M.; Solomon, S.D.; Sun, J.K.; Diabetic Retinopathy Clinical Research Network. Factors Associated with Visual Acuity and Central Subfield Thickness Changes When Treating Diabetic Macular Edema with Anti-Vascular Endothelial Growth Factor Therapy: An Exploratory Analysis of the Protocol T Randomized Clinical Trial. JAMA Ophthalmol. 2019, 137, 382–389. [Google Scholar] [CrossRef]
- Browning, D.J.; Stewart, M.W.; Lee, C. Diabetic macular edema: Evidence-based management. Indian J. Ophthalmol. 2018, 66, 1736–1750. [Google Scholar]
- Choovuthayakorn, J.; Tantraworasin, A.; Phinyo, P.; Patumanond, J.; Kunavisarut, P.; Srisomboon, T.; Winaikosol, P.; Patikulsila, D.; Chaikitmongkol, V.; Watanachai, N.; et al. Factors associated with 1-year visual response following intravitreal bevacizumab treatment for diabetic macular edema: A retrospective single center study. Int. J. Retin. Vitr. 2021, 7, 17. [Google Scholar] [CrossRef]
- James, D.G.P.; Mitkute, D.; Porter, G.; Vayalambrone, D. Visual Outcomes Following Intravitreal Ranibizumab for Diabetic Macular Edema in a Pro Re Nata Protocol from Baseline: A Real-World Experience. Asia Pac. J. Ophthalmol. 2019, 8, 200–205. [Google Scholar]
- Ciulla, T.A.; Pollack, J.S.; Williams, D.F. Visual acuity outcomes and anti-VEGF therapy intensity in diabetic macular oedema: A real-world analysis of 28,658 patient eyes. Br. J. Ophthalmol. 2021, 105, 216–221. [Google Scholar] [CrossRef] [Green Version]
- Lai, K.; Huang, C.; Li, L.; Gong, Y.; Xu, F.; Zhong, X.; Lu, L.; Jin, C. Anatomical and functional responses in eyes with diabetic macular edema treated with “1 + PRN” ranibizumab: One-year outcomes in population of mainland China. BMC Ophthalmol. 2020, 20, 229. [Google Scholar] [CrossRef]
- Maggio, E.; Sartore, M.; Attanasio, M.; Maraone, G.; Guerriero, M.; Polito, A.; Pertile, G. Anti-Vascular Endothelial Growth Factor Treatment for Diabetic Macular Edema in a Real-World Clinical Setting. Am. J. Ophthalmol. 2018, 195, 209–222. [Google Scholar] [CrossRef] [PubMed]
- Nagai, N.; Suzuki, M.; Uchida, A.; Kurihara, T.; Ban, N.; Minami, S.; Shinoda, H.; Tsubota, K.; Ozawa, Y. The Area and Number of Intraretinal Cystoid Spaces Predict the Visual Outcome after Ranibizumab Monotherapy in Diabetic Macular Edema. J. Clin. Med. 2020, 9, 1391. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Chen, Z.; Zhao, X.; Shao, L. MapGAN: An Intelligent Generation Model for Network Tile Maps. Sensors 2020, 20, 3119. [Google Scholar] [CrossRef] [PubMed]
- Tschuchnig, M.E.; Oostingh, G.J.; Gadermayr, M. Generative Adversarial Networks in Digital Pathology: A Survey on Trends and Future Potential. Patterns 2020, 1, 100089. [Google Scholar] [CrossRef]
- Brou Boni, K.N.D.; Klein, J.; Vanquin, L.; Wagner, A.; Lacornerie, T.; Pasquier, D.; Reynaert, N. MR to CT synthesis with multicenter data in the pelvic area using a conditional generative adversarial network. Phys. Med. Biol. 2020, 65, 075002. [Google Scholar] [CrossRef]
- Schreur, V.; Altay, L.; van Asten, F.; Groenewoud, J.M.; Fauser, S.; Klevering, B.J.; Hoyng, C.B.; de Jong, E.K. Hyperreflective foci on optical coherence tomography associate with treatment outcome for anti-VEGF in patients with diabetic macular edema. PLoS ONE 2018, 13, e0206482. [Google Scholar] [CrossRef]
- Virgili, G.; Parravano, M.; Evans, J.R.; Gordon, I.; Lucenteforte, E. Anti-vascular endothelial growth factor for diabetic macular oedema: A network meta-analysis. Cochrane Database Syst. Rev. 2018, 10, CD007419. [Google Scholar] [CrossRef] [Green Version]
- Sun, Z.; Tang, F.; Wong, R.; Lok, J.; Szeto, S.K.; Chan, J.C.; Chan, C.K.; Tham, C.C.; Ng, D.S.; Cheung, C.Y. OCT Angiography Metrics Predict Progression of Diabetic Retinopathy and Development of Diabetic Macular Edema: A Prospective Study. Ophthalmology 2019, 126, 1675–1684. [Google Scholar] [CrossRef]
- Regnier, S.; Malcolm, W.; Allen, F.; Wright, J.; Bezlyak, V. Efficacy of anti-VEGF and laser photocoagulation in the treatment of visual impairment due to diabetic macular edema: A systematic review and network meta-analysis. PLoS ONE 2014, 9, e102309. [Google Scholar] [CrossRef] [Green Version]
- Yau, J.W.; Rogers, S.L.; Kawasaki, R.; Lamoureux, E.L.; Kowalski, J.W.; Bek, T.; Chen, S.J.; Dekker, J.M.; Fletcher, A.; Grauslund, J.; et al. Global prevalence and major risk factors of diabetic retinopathy. Diabetes Care 2012, 35, 556–564. [Google Scholar] [CrossRef] [Green Version]
- Liu, B.; Zhang, B.; Hu, Y.; Cao, D.; Yang, D.; Wu, Q.; Hu, Y.; Yang, J.; Peng, Q.; Huang, M.; et al. Automatic prediction of treatment outcomes in patients with diabetic macular edema using ensemble machine learning. Ann. Transl. Med. 2021, 9, 43. [Google Scholar] [CrossRef] [PubMed]
Training Set | Validation Set | p-Value | |
---|---|---|---|
Patients (Female) | 96 (47) | 21 (11) | N/A |
Ages | 58.57 ± 9.14 | 56.57 ± 10.11 | 0.876 |
Eyes | 107 | 26 | N/A |
Paired OCT images | 561 | 71 | N/A |
VA baseline | 0.581 ± 0.349 | 0.569 ± 0.316 | 0.651 |
VA 1-month | 0.546 ± 0.313 | 0.524 ± 0.309 | 0.563 |
Injection phase | 0.921 | ||
Loading phase | 56 (52.33%) | 15 (57.69%) | N/A |
PRN phase | 51 (47.67%) | 11 (42.31%) | N/A |
Anti-VEGF agent (%) | 0.783 | ||
Ranibizumab | 52 (48.60%) | 12 (46.15%) | N/A |
Conbercept | 55 (51.40%) | 14 (53.85%) | N/A |
Classification of macular edema | N/A | ||
Diffuse retinal thickening | 87 (81.31%) | 18 (69.23%) | 0.103 |
Cystoids macular edema | 79 (73.83%) | 17 (65.38%) | 0.328 |
Serous retinal detachment | 23 (21.50%) | 6 (23.08%) | 0.823 |
Algorithms | Unqualified Images Specialist #1 | Unqualified Images Specialist #2 | Identifiable Images Specialist #1 | Identifiable Images Specialist #2 |
---|---|---|---|---|
pix2pixHD | 0 | 2 | 6 | 4 |
pix2pix | 5 | 9 | 12 | 11 |
CRN | 15 | 20 | 18 | 23 |
CMT (μm) | Baseline | 1-mo Prediction | ||
---|---|---|---|---|
Real Images | Synthetic Images | Real Images | MAE | |
Testing data | 360.30 ± 224.34 | 330.35 ± 210.25 | 319.34 ± 208.65 | 24.51 ± 18.56 |
Injection phase | ||||
Loading phase | 365.43 ± 226.36 | 332.39 ± 214.87 | 320.67 ± 221.21 | 25.76 ± 20.25 |
PRN phase | 354.67 ± 223.98 | 326.56 ± 209.32 | 319.76 ± 201.98 | 23.11 ± 17.79 |
Anti-VEGF agent (%) | ||||
Ranibizumab | 354.54 ± 219.46 | 340.34 ± 223.25 | 333.48 ± 221.09 | 26.78 ± 19.34 |
Conbercept | 367.01 ± 228.37 | 323.18 ± 201.23 | 314.56 ± 203.39 | 22.39 ± 18.36 |
Classification of macular edema | ||||
Diffuse retinal thickening | 360.52 ± 225.37 | 335.39 ± 223.12 | 323.90 ± 215.91 | 22.11 ± 18.47 |
Cystoids macular edema | 379.30 ± 238.78 | 329.59 ± 219.78 | 346.36 ± 238.85 | 32.45 ± 23.15 |
Serous retinal detachment | 356.37 ± 227.74 | 327.35 ± 201.09 | 314.33 ± 197.64 | 23.87 ± 21.65 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, F.; Liu, S.; Xiang, Y.; Hong, J.; Wang, J.; Shao, Z.; Zhang, R.; Zhao, W.; Yu, X.; Li, Z.; et al. Prediction of the Short-Term Therapeutic Effect of Anti-VEGF Therapy for Diabetic Macular Edema Using a Generative Adversarial Network with OCT Images. J. Clin. Med. 2022, 11, 2878. https://doi.org/10.3390/jcm11102878
Xu F, Liu S, Xiang Y, Hong J, Wang J, Shao Z, Zhang R, Zhao W, Yu X, Li Z, et al. Prediction of the Short-Term Therapeutic Effect of Anti-VEGF Therapy for Diabetic Macular Edema Using a Generative Adversarial Network with OCT Images. Journal of Clinical Medicine. 2022; 11(10):2878. https://doi.org/10.3390/jcm11102878
Chicago/Turabian StyleXu, Fabao, Shaopeng Liu, Yifan Xiang, Jiaming Hong, Jiawei Wang, Zheyi Shao, Rui Zhang, Wenjuan Zhao, Xuechen Yu, Zhiwen Li, and et al. 2022. "Prediction of the Short-Term Therapeutic Effect of Anti-VEGF Therapy for Diabetic Macular Edema Using a Generative Adversarial Network with OCT Images" Journal of Clinical Medicine 11, no. 10: 2878. https://doi.org/10.3390/jcm11102878
APA StyleXu, F., Liu, S., Xiang, Y., Hong, J., Wang, J., Shao, Z., Zhang, R., Zhao, W., Yu, X., Li, Z., Yang, X., Geng, Y., Xiao, C., Wei, M., Zhai, W., Zhang, Y., Wang, S., & Li, J. (2022). Prediction of the Short-Term Therapeutic Effect of Anti-VEGF Therapy for Diabetic Macular Edema Using a Generative Adversarial Network with OCT Images. Journal of Clinical Medicine, 11(10), 2878. https://doi.org/10.3390/jcm11102878