Angiotensin-Inhibiting Drugs Do Not Impact Disease Activity in Patients with Rheumatoid Arthritis: A Retrospective Cross-Sectional Study
Abstract
1. Introduction
2. Methods
Study Design
3. Participants
3.1. Outcomes of the Study
3.2. Exposure to ACEi and ARBs
3.3. Measurements
3.4. Statistical Analysis
4. Results
4.1. Effect of ACEi and/or ARBs on Disease Activity
4.2. Effect of ACEi and/or ARBs Use on Medication Use
5. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
RA | rheumatoid arthritis |
CVD | cardiovascular disease |
CV | cardiovascular |
ACE | angiotensin-converting enzyme |
ARB | angiotensin II receptor blockers |
RAS | renin-angiotensin system |
DMARDs | disease-modifying antirheumatic drugs |
NSAIDs | non-steroidal anti-inflammatory drugs |
ACR/EULAR | American College of Rheumatology/European League Against Rheumatism |
DAS28-CRP | Disease Activity Score-28 |
eGFR | estimated glomerular filtration rate |
CRP | C-reactive protein |
bDMARD | biological disease-modifying antirheumatic drugs |
csDMARD | conventional synthetic disease-modifying antirheumatic drugs |
DDD | defined daily dose |
ATC/DDD | Anatomical Therapeutic Chemical classification system/ Defined Daily Dose |
Anti CCP | anti-cyclic citrullinated peptide |
CVA | cerebrovascular accident |
TIA | transient ischemic attack |
AMI | acute myocardial infarct |
AP | angina pectoris |
References
- Castaneda, S.; Nurmohamed, M.T.; Gonzalez-Gay, M.A. Cardiovascular disease in inflammatory rheumatic diseases. Best Pract. Res. Clin. Rheumatol. 2016, 30, 851–869. [Google Scholar] [CrossRef]
- Crowson, C.S.; Rollefstad, S.; Ikdahl, E.; Kitas, G.D.; van Riel, P.; Gabriel, S.E.; Matteson, E.L.; Kvien, T.K.; Douglas, K.; Sandoo, A.; et al. Impact of risk factors associated with cardiovascular outcomes in patients with rheumatoid arthritis. Ann. Rheum. Dis. 2018, 77, 48–54. [Google Scholar] [CrossRef]
- Meyer, P.W.; Anderson, R.; Ker, J.A.; Ally, M.T. Rheumatoid arthritis and risk of cardiovascular disease. Cardiovasc. J. Afr. 2018, 29, 317–321. [Google Scholar] [CrossRef]
- Metsios, G.S.; Moe, R.H.; van der Esch, M.; van Zanten, J.; Fenton, S.A.M.; Koutedakis, Y.; Vitalis, P.; Kennedy, N.; Brodin, N.; Bostrom, C.; et al. The effects of exercise on cardiovascular disease risk factors and cardiovascular physiology in rheumatoid arthritis. Rheumatol. Int. 2020, 40, 347–357. [Google Scholar] [CrossRef] [PubMed]
- Kerola, A.M.; Kerola, T.; Kauppi, M.J.; Kautiainen, H.; Virta, L.J.; Puolakka, K.; Nieminen, T.V. Cardiovascular comorbidities antedating the diagnosis of rheumatoid arthritis. Ann. Rheum. Dis. 2013, 72, 1826–1829. [Google Scholar] [CrossRef]
- Atzeni, F.; Rodríguez-Carrio, J.; Popa, C.D.; Nurmohamed, M.T.; Szűcs, G.; Szekanecz, Z. Cardiovascular effects of approved drugs for rheumatoid arthritis. Nat. Rev. Rheumatol. 2021, 17, 270–290. [Google Scholar] [CrossRef]
- England, B.R.; Thiele, G.M.; Anderson, D.R.; Mikuls, T.R. Increased cardiovascular risk in rheumatoid arthritis: Mechanisms and implications. BMJ 2018, 361, k1036. [Google Scholar] [CrossRef]
- Baker, J.F.; Sauer, B.; Teng, C.C.; George, M.; Cannon, G.W.; Ibrahim, S.; Cannella, A.; England, B.R.; Michaud, K.; Caplan, L.; et al. Initiation of Disease-Modifying Therapies in Rheumatoid Arthritis Is Associated With Changes in Blood Pressure. J. Clin. Rheumatol. 2018, 24, 203–209. [Google Scholar] [CrossRef]
- van den Oever, I.A.M.; Heslinga, M.; Griep, E.N.; Griep-Wentink, H.R.M.; Schotsman, R.; Cambach, W.; Dijkmans, B.A.C.; Smulders, Y.M.; Lems, W.F.; Boers, M.; et al. Cardiovascular risk management in rheumatoid arthritis patients still suboptimal: The Implementation of Cardiovascular Risk Management in Rheumatoid Arthritis project. Rheumatology 2017, 56, 1472–1478. [Google Scholar] [CrossRef] [PubMed]
- Unger, T.; Borghi, C.; Charchar, F.; Khan, N.A.; Poulter, N.R.; Prabhakaran, D.; Ramirez, A.; Schlaich, M.; Stergiou, G.S.; Tomaszewski, M.; et al. 2020 International Society of Hypertension Global Hypertension Practice Guidelines. Hypertension 2020, 75, 1334–1357. [Google Scholar] [CrossRef]
- WHO Collaborating Centre for Drug Statistics Methodology. Guidelines for ATC Classification and DDD Assignment 2020. Available online: https://www.whocc.no/filearchive/publications/2020_guidelines_web.pdf (accessed on 20 October 2020).
- Akagi, T.; Mukai, T.; Mito, T.; Kawahara, K.; Tsuji, S.; Fujita, S.; Uchida, H.A.; Morita, Y. Effect of Angiotensin II on Bone Erosion and Systemic Bone Loss in Mice with Tumor Necrosis Factor-Mediated Arthritis. Int. J. Mol. Sci. 2020, 21, 4145. [Google Scholar] [CrossRef] [PubMed]
- Fahmy Wahba, M.G.; Shehata Messiha, B.A.; Abo-Saif, A.A. Ramipril and haloperidol as promising approaches in managing rheumatoid arthritis in rats. Eur. J. Pharmacol. 2015, 765, 307–315. [Google Scholar] [CrossRef]
- Price, A.; Lockhart, J.C.; Ferrell, W.R.; Gsell, W.; McLean, S.; Sturrock, R.D. Angiotensin II type 1 receptor as a novel therapeutic target in rheumatoid arthritis: In vivo analyses in rodent models of arthritis and ex vivo analyses in human inflammatory synovitis. Arthritis Rheum. 2007, 56, 441–447. [Google Scholar] [CrossRef] [PubMed]
- Silveira, K.D.; Coelho, F.M.; Vieira, A.T.; Barroso, L.C.; Queiroz-Junior, C.M.; Costa, V.V.; Sousa, L.F.C.; Oliveira, M.L.; Bader, M.; Silva, T.A.; et al. Mechanisms of the anti-inflammatory actions of the angiotensin type 1 receptor antagonist losartan in experimental models of arthritis. Peptides 2013, 46, 53–63. [Google Scholar] [CrossRef]
- Martin, M.F.; Surrall, K.E.; McKenna, F.; Dixon, J.S.; Bird, H.A.; Wright, V. Captopril: A new treatment for rheumatoid arthritis? Lancet 1984, 1, 1325–1328. [Google Scholar] [CrossRef]
- Bird, H.A.; Le Gallez, P.; Dixon, J.S.; Catalano, M.A.; Traficante, A.; Liauw, L.A.; Sussman, H.; Rotman, H.; Wright, V. A clinical and biochemical assessment of a nonthiol ACE inhibitor (pentopril; CGS-13945) in active rheumatoid arthritis. J. Rheumatol. 1990, 17, 603–608. [Google Scholar]
- Federatie medisch specialisten richtlijnendatabase. Rheumatoid Arthritis Guideline 2019. Available online: https://richtlijnendatabase.nl/richtlijn/reumato_de_artritis_ra/startpagina_-_reumatoide_artritis.html (accessed on 20 October 2020).
- Schieffer, B.; Bünte, C.; Witte, J.; Hoeper, K.; Böger, R.H.; Schwedhelm, E.; Drexler, H. Comparative effects of AT1-antagonism and angiotensin-converting enzyme inhibition on markers of inflammation and platelet aggregation in patients with coronary artery disease. J. Am. Coll. Cardiol. 2004, 44, 362–368. [Google Scholar] [CrossRef]
- Cardoso, P.R.G.; Matias, K.A.; Dantas, A.T.; Marques, C.D.L.; Pereira, M.C.; Duarte, A.; de Melo Rego, M.J.B.; da Rocha Pitta, I.; da Rocha Pitta, M.G. Losartan, but not Enalapril and Valsartan, Inhibits the Expression of IFN-γ, IL-6, IL-17F and IL-22 in PBMCs from Rheumatoid Arthritis Patients. Open Rheumatol. J. 2018, 12, 160–170. [Google Scholar] [CrossRef]
- Chang, Y.; Wei, W. Angiotensin II in inflammation, immunity and rheumatoid arthritis. Clin. Exp. Immunol. 2015, 179, 137–145. [Google Scholar] [CrossRef] [PubMed]
- Alvarez, A.; Cerdá-Nicolás, M.; Naim Abu Nabah, Y.; Mata, M.; Issekutz, A.C.; Panés, J.; Lobb, R.R.; Sanz, M.J. Direct evidence of leukocyte adhesion in arterioles by angiotensin II. Blood 2004, 104, 402–408. [Google Scholar] [CrossRef]
- Piqueras, L.; Kubes, P.; Alvarez, A.; O’Connor, E.; Issekutz, A.C.; Esplugues, J.V.; Sanz, M.J. Angiotensin II induces leukocyte-endothelial cell interactions in vivo via AT(1) and AT(2) receptor-mediated P-selectin upregulation. Circulation 2000, 102, 2118–2123. [Google Scholar] [CrossRef]
- Han, C.; Liu, J.; Liu, X.; Li, M. Angiotensin II induces C-reactive protein expression through ERK1/2 and JNK signaling in human aortic endothelial cells. Atherosclerosis 2010, 212, 206–212. [Google Scholar] [CrossRef]
- Sagawa, K.; Nagatani, K.; Komagata, Y.; Yamamoto, K. Angiotensin receptor blockers suppress antigen-specific T cell responses and ameliorate collagen-induced arthritis in mice. Arthritis Rheum. 2005, 52, 1920–1928. [Google Scholar] [CrossRef]
- Dalbeth, N.; Edwards, J.; Fairchild, S.; Callan, M.; Hall, F.C. The non-thiol angiotensin-converting enzyme inhibitor quinapril suppresses inflammatory arthritis. Rheumatology 2005, 44, 24–31. [Google Scholar] [CrossRef]
- Sakuta, T.; Morita, Y.; Satoh, M.; Fox, D.A.; Kashihara, N. Involvement of the renin-angiotensin system in the development of vascular damage in a rat model of arthritis: Effect of angiotensin receptor blockers. Arthritis Rheum. 2010, 62, 1319–1328. [Google Scholar] [CrossRef] [PubMed]
- Dagenais, N.J.; Jamali, F. Protective effects of angiotensin II interruption: Evidence for antiinflammatory actions. Pharmacotherapy 2005, 25, 1213–1229. [Google Scholar] [CrossRef] [PubMed]
- de Jong, H.J.; Vandebriel, R.J.; Saldi, S.R.; van Dijk, L.; van Loveren, H.; Cohen Tervaert, J.W.; Klungel, O.H. Angiotensin-converting enzyme inhibitors or angiotensin II receptor blockers and the risk of developing rheumatoid arthritis in antihypertensive drug users. Pharmacoepidemiol. Drug Saf. 2012, 21, 835–843. [Google Scholar] [CrossRef] [PubMed]
- van den Bemt, B.J.; van den Hoogen, F.H.; Benraad, B.; Hekster, Y.A.; van Riel, P.L.; van Lankveld, W. Adherence rates and associations with nonadherence in patients with rheumatoid arthritis using disease modifying antirheumatic drugs. J. Rheumatol. 2009, 36, 2164–2170. [Google Scholar] [CrossRef]
- Lin, T.T.; Wu, C.K.; Liao, M.T.; Yang, Y.H.; Chen, P.C.; Yeih, D.F.; Lin, L.Y. Primary prevention of myocardial infarction with angiotensin-converting enzyme inhibitors and angiotensin receptor blockers in hypertensive patients with rheumatoid arthritis—A nationwide cohort study. PLoS ONE 2017, 12, e0188720. [Google Scholar] [CrossRef] [PubMed]
- Braz, N.F.T.; Pinto, M.R.C.; Vieira, É.L.M.; Souza, A.J.; Teixeira, A.L.; Simoes-e-Silva, A.C.; Kakehasi, A.M. Renin-angiotensin system molecules are associated with subclinical atherosclerosis and disease activity in rheumatoid arthritis. Mod. Rheumatol. 2020, 31, 119–126. [Google Scholar] [CrossRef] [PubMed]
- Rodgers, J.E.; Patterson, J.H. Angiotensin II-receptor blockers: Clinical relevance and therapeutic role. Am. J. Health Syst. Pharm. 2001, 58, 671–683. [Google Scholar] [CrossRef] [PubMed]
Exposed to ACEi or ARBs (n = 584) | Non-Exposed (n = 552) | p Value | |
---|---|---|---|
Age, years a | 70.3 (10.0) | 61.2 (14.6) | <0.01 |
Female, n (%) | 382 (65.4) | 395 (71.6) | 0.03 |
Disease duration, years b | 12.8 (6.2–20.4) | 8.0 (2.6–16.0) | <0.01 |
Positive rheumatoid factor (%) | 63.7 | 65.0 | 0.66 |
Anti-CCP positive (%) | 60.2 | 65.0 | 0.11 |
CRP b | 2 (1–7) | 2 (1–6) | 0.76 |
SJC b | 0 (0–1) | 0 (0–1) | 0.05 |
TJC b | 0 (0–1) | 0 (0–1) | 0.62 |
Kidney function (%) | |||
Impaired | 21.4 | 7.1 | <0.01 |
Steroid users (%) | 17.3 | 16.1 | 0.63 |
NSAID users (%) | 37.7 | 42.6 | 0.10 |
DMARD users (%) | 85.8 | 77.4 | <0.01 |
csDMARDs | 72.4 | 62.9 | <0.01 |
bDMARDs | 38.9 | 33.0 | 0.04 |
DDD csDMARDs b | 0.9 (0.6–1.3) | 1.0 (0.7–1.4) | <0.01 |
DDD bDMARDs b | 1.0 (0.5–1.0) | 1.0 (0.6–1.0) | 0.97 |
Medication (%) | |||
Enalapril | 8.7 | ||
Lisinopril | 25.7 | ||
Perindopril | 13.9 | ||
Losartan | 18.2 | ||
Irbesartan | 7.2 | ||
Other ACEi or ARB | 26.3 | ||
Comorbidities (%) | |||
Diabetes | 17.3 | 5.4 | <0.01 |
Hypertension | 48.6 | 13.2 | <0.01 |
Other cardiovascular diseases | 38.2 | 16.7 | <0.01 |
CVA | 5.8 | 3.8 | 0.13 |
TIA | 5.1 | 2.7 | 0.05 |
AMI | 12.5 | 2.0 | <0.01 |
AP | 4.5 | 2.5 | 0.11 |
F(14, 1121) | = | 9.64 | ||
Prob > F | = | 0.0000 | ||
R-squared | = | 0.1074 | ||
DAS28-CRP * | Factor | (95% Conf.Interval) | p > t | |
Intercept | 0.45 # | 0.30–0.60 | <0.001 | |
Using ACEi | 1.00 | 0.94–1.06 | 0.965 | |
Using ARB | 1.02 | 0.96–1.09 | 0.483 | |
Female | 1.10 | 1.05–1.15 | <0.001 | |
Diabetes | 1.01 | 0.94–1.08 | 0.848 | |
Impaired kidney function | 1.06 | 0.99–1.14 | 0.071 | |
Using NSAIDs | 1.05 | 1.00–1.10 | 0.050 | |
Using steroids | 1.16 | 1.09–1.23 | <0.001 | |
Seropositive RA | 0.98 | 0.93–1.03 | 0.343 | |
CVD | 1.01 | 0.96–1.07 | 0.643 | |
Hypertension | 1.06 | 1.00–1.12 | 0.036 | |
BMI ## | 1.01 | 1.00–1.02 | 0.070 | |
Disease duration * | 0.57 | 0.50–0.66 | <0.001 | |
Age | 1.00 | 1.00–1.00 | 0.076 | |
Using csDMARDs | 0.93 | 0.87–0.98 | 0.003 | |
Using bDMARDs | 1.01 | 0.96–1.06 | 0.776 |
F (12, 757) | = | 11.10 | ||
Prob > F | = | 0.0000 | ||
R-squared | = | 0.1496 | ||
DDD csDMARDs * | Factor | (95% Conf. Interval) | p > t | |
Intercept | 0.43 # | 0.21–0.65 | <0.001 | |
Using ACEi | 0.97 | 0.89–1.07 | 0.547 | |
Using ARB | 0.99 | 0.90–1.10 | 0.914 | |
Female | 0.95 | 0.88–1.02 | 0.157 | |
Diabetes | 1.08 | 0.96–1.21 | 0.201 | |
Impaired kidney function | 0.85 | 0.76–0.94 | 0.002 | |
Using NSAIDs | 1.02 | 0.94–1.10 | 0.658 | |
Using steroids | 1.11 | 1.01–1.24 | 0.032 | |
Seropositive RA | 1.10 | 1.01–1.19 | 0.024 | |
CVD | 0.99 | 0.91–1.07 | 0.750 | |
Hypertension | 1.04 | 0.95–1.13 | 0.396 | |
Disease duration * | 2.34 | 2.27–2.42 | <0.001 | |
Age | 1.00 | 0.99–1.00 | 0.070 |
LR chi2(12) | = | 48.85 | ||
Prob > chi2 | = | 0.0000 | ||
Pseudo R2 | = | 0.0395 | ||
bDMARD | Odds Ratio | (95% Conf. Interval) | p > z | |
Intercept | 0.23 | 0.10–0.56 | 0.001 | |
Using ACEi | 1.14 | 0.79–1.64 | 0.477 | |
Using ARB | 1.46 | 0.98–2.18 | 0.061 | |
Female | 0.91 | 0.66–1.23 | 0.531 | |
Diabetes | 0.94 | 0.59–1.50 | 0.790 | |
Impaired kidney function | 0.96 | 0.62–1.48 | 0.854 | |
Using NSAIDs | 1.39 | 1.04–1.86 | 0.028 | |
Using steroids | 1.02 | 0.70–1.47 | 0.929 | |
Seropositive RA | 2.09 | 1.46–2.98 | <0.001 | |
CVD | 1.21 | 0.86–1.70 | 0.274 | |
Hypertension | 0.90 | 0.64–1.27 | 0.550 | |
Disease duration | 1.03 | 1.01–1.04 | <0.001 | |
Age | 0.99 | 0.97–1.00 | 0.044 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sluijsmans, D.M.C.F.; Rohrich, D.C.; Popa, C.D.; van den Bemt, B.J.F. Angiotensin-Inhibiting Drugs Do Not Impact Disease Activity in Patients with Rheumatoid Arthritis: A Retrospective Cross-Sectional Study. J. Clin. Med. 2021, 10, 1985. https://doi.org/10.3390/jcm10091985
Sluijsmans DMCF, Rohrich DC, Popa CD, van den Bemt BJF. Angiotensin-Inhibiting Drugs Do Not Impact Disease Activity in Patients with Rheumatoid Arthritis: A Retrospective Cross-Sectional Study. Journal of Clinical Medicine. 2021; 10(9):1985. https://doi.org/10.3390/jcm10091985
Chicago/Turabian StyleSluijsmans, Dorien M. C. F., Daphne C. Rohrich, Calin D. Popa, and Bart J. F. van den Bemt. 2021. "Angiotensin-Inhibiting Drugs Do Not Impact Disease Activity in Patients with Rheumatoid Arthritis: A Retrospective Cross-Sectional Study" Journal of Clinical Medicine 10, no. 9: 1985. https://doi.org/10.3390/jcm10091985
APA StyleSluijsmans, D. M. C. F., Rohrich, D. C., Popa, C. D., & van den Bemt, B. J. F. (2021). Angiotensin-Inhibiting Drugs Do Not Impact Disease Activity in Patients with Rheumatoid Arthritis: A Retrospective Cross-Sectional Study. Journal of Clinical Medicine, 10(9), 1985. https://doi.org/10.3390/jcm10091985