Cardiovascular Disease in Type 1 Diabetes Mellitus: Epidemiology and Management of Cardiovascular Risk
Abstract
:1. Introduction
2. Epidemiology of Cardiovascular Disease in T1DM Patients
2.1. Clinical Atherosclerosis in T1DM Patients
Study | Population | Comparison Population | Follow Up (Years) | CVD Events | CVD Mortality |
---|---|---|---|---|---|
Observational study of T1DM (Joslin Diabetes Center) [13] | 292 newly diagnosed T1DM patients | No comparison group (NCG) | 20–40 | Cumulative mortality rate (CMR) for coronary heart disease (CHD): 33% among survivors ages 45–59 | CMR due to coronary artery disease (CAD): 35% |
Wisconsin Epidemiologic Study of Diabetic Retinopathy (WESDR) [14] | 1200 younger onset diabetic patients; 1772 older onset diabetic patients | General Wisconsin population | 8.5 | Younger onset: standardized mortality rate (SMR) (95% CI)—ischemic heart disease (IHD): 9.1 (5.9–13.4) men (M), 13.5 (6.7–24.2) women (W) and cerebrovascular disease: 4.1 (0.8–11.8) (M + W) Older onset: SMR (95% CI) IHD 4.4 (2.1–2.8) (M); 2.2 (1.9–2.6)(F) and cerebrovascular disease: 2.0 (1.6–2.5) (M + W) | |
Pittsburgh Epidemiology of Diabetes Complications (EDC) [9] | 1075 T1DM patients diagnosed from 1965–1979 (age: 42.8 ± 8.0 years; diabetes duration: 32.0 ± 7.6 years) | Age-, sex-, and race-matched general population | Cross-sectional study | SMR (95% CI) for CVD: 8.8 (6.3–11.2) (M) 24.7 (17.9–31.6) (W) | |
EURODIAB IDDM Complications study [16] | 3250 T1DM patients (ages: 33 ± 10 years; diabetes duration: 14.7 ± 9.3 years) | NCG | Cross-sectional study | CVD prevalence: 9% (M) 10% (W) | |
EDC Study compared with the EURODIAB IDDM Complications Study [17] | -EDC: 286 male patients (diabetes duration: 20.1 years) and 281 female patients (diabetes duration: 19.9 years); - | EURODIAB 608 M patients (diabetes duration: 18.1 years) and 607 W patients (diabetes duration: 18.9 years) | Cross-sectional comparison study | CVD Prevalence: EDC: 8% (M), 8,5% (W) EURODIAB: 8.6% (M) 7.4% (W) | |
UK General Practice Research Database (GPRD) [18] | 7479 T1DM patients; 38,116 non-DM patients | 38,116 controls subjects without diabetes | From 1992 to 1999 (mean 4.5 ± 2.26 years) | HR (95% CI): 3.6 (2.9–4.5) (M) HR (95% CI) 7.7 (5.5–10.7) (W) | CVD mortality HR (95% CI): 5.8 (3.9–8.6) (M) CVD mortality HR (95% CI): 11.6 (6.7–20, 1) (W) |
DCCT/EDIC cohort and a subset of the EDC cohort [20] | DCCT/EDIT: 1441 T1DM patients; EDC: 161 T1DM patients | Study after a diabetes duration of 30 years | Cumulative incidence: DCCT/EDIC- Conventional therapy: 14% EDC cohort: 14% DCCT/EDIC intensive therapy: 9% | ||
Swedish National Diabetes Register [22] | 33,915 T1DM patients; | 169,249 controls subjects without diabetes | 8 years | CVD mortality: HR (95% CI), 4.60 (3.47–6.10); Total mortality: HR (95% CI), 3.52 (3.06–4.04) | |
Scottish Registry Linkage Study [21] | 21,789 T1DM patients; 3.96 million non-DM patients | Non diabetic Scottish population (3.96 million) | Cross-sectional comparison study (Nationwide, register-based cohort study) | incidence rate ratio (IRR) for first CVD (95% CI): 2.3 (4.0–2.7) (M) 3.02 (2.4–3.8) (W) | IRR (95% CI) for all-cause mortality: 2.6 (2.2–3) (M) 2.7 (2.2–3.4) (W) |
Meta-analysis [10] | 26 studies (214,114 individuals) published between 1996 and 2014) | SMR (95% CI) for CVD T1DM vs. non-DM 11.30 (6.87–18.59) in W and 5.68 (3.82–8.44) in M | |||
Allegheny County type 1 diabetes Registry [23] | 1075 childhood-onset T1DM patients, 1965–1979 | General Allegheny County population | 33.0 years | Total mortality SMR (95% CI): 5.0 (4.0–6.0) (M) 13.2 (10.7–15.7) (W) | |
Norwegian Childhood Diabetes Registry [24] | 1906 childhood-onset T1DM patients diagnosed between 1973 and 1982 | General Norway population | 24.2 ± 3.9 years | CVD mortality SMR (95% CI): 11 (5.2–18.8) (M); 10.3 (2.7–22.7) (W) IHD mortality SMR (95% CI): 20.2 (7.3–39.8) (M) 20.6 (1.8–54.1) (W) | |
Finnish Diabetic Nephropathy Study (FinnDiane) cohort [25] | 10,737 children newly diagnosed with T1DM; 2544 adults with long-term T1DM (DM duration: 16.2 years) | General Finnish population; 6655 control subjects without diabetes | 10 years 14 years | SMR 2.58 [95% CI 2.07–3.18]; SMR 1.33 (95% CI 1.06–1.66); IHD mortality 4.34 (95% CI 2.49–7.57) | |
Swedish National Diabetes Register (NDR) [8] | 27,195 T1DM patients; | 135,178 matched controls selected from the general population in Sweden | 10 years | Hazard ratio (HR) (95% CI): 11.44 (7.95–16.44); T1DM onset age < 10 years and 3.85 (3.05–4.87); T1DM onset age: 26–30 years) | CVD mortality HR: 7.38 (3.65−14.94); T1DM onset age <10 years) and 3.64 (2.34−5.66); T1DM onset age 26–30 years |
2.2. Preclinical or Subclinical Atherosclerosis
2.3. CVD Risk Factors in T1DM Patients
2.3.1. Hyperglycemia
2.3.2. Hypoglycemia and Glucose Variability
2.3.3. Insulin Resistance and Metabolic Syndrome
2.3.4. Dyslipidemia
2.3.5. High Blood Pressure
2.3.6. Diabetic Kidney Disease
2.4. Assessment of CVR in T1DM Patients
2.5. CVD Prevention in T1DM Patients
3. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Xu, G.; Liu, B.; Sun, Y.; Du, Y.; Snetselaar, L.G.; Hu, F.B.; Bao, W. Prevalence of Diagnosed Type 1 and Type 2 Diabetes among US Adults in 2016 and 2017: Population Based Study. BMJ 2018, 362, k1497. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- You, W.-P.; Henneberg, M. Type 1 Diabetes Prevalence Increasing Globally and Regionally: The Role of Natural Selection and Life Expectancy at Birth. BMJ Open Diabetes Res. Care 2016, 4, e000161. [Google Scholar] [CrossRef] [Green Version]
- Preis, S.R.; Hwang, S.-J.; Coady, S.; Pencina, M.J.; D’Agostino, R.B.; Savage, P.J.; Levy, D.; Fox, C.S. Trends in All-Cause and Cardiovascular Disease Mortality among Women and Men with and without Diabetes in the Framingham Heart Study, 1950–2005. Circulation 2009, 119, 1728–1735. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, L.; Islam, R.M.; Wang, J.; Hird, T.R.; Pavkov, M.E.; Gregg, E.W.; Salim, A.; Tabesh, M.; Koye, D.N.; Harding, J.L.; et al. A Systematic Review of Trends in All-Cause Mortality among People with Diabetes. Diabetologia 2020, 63, 1718–1735. [Google Scholar] [CrossRef]
- Nishimura, R.; LaPorte, R.E.; Dorman, J.S.; Tajima, N.; Becker, D.; Orchard, T.J. Mortality Trends in Type 1 Diabetes: The Allegheny County (Pennsylvania) Registry 1965–1999. Diabetes Care 2001, 24, 823–827. [Google Scholar] [CrossRef] [Green Version]
- Miller, R.G.; Secrest, A.M.; Sharma, R.K.; Songer, T.J.; Orchard, T.J. Improvements in the Life Expectancy of Type 1 Diabetes: The Pittsburgh Epidemiology of Diabetes Complications Study Cohort. Diabetes 2012, 61, 2987–2992. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Livingstone, S.J.; Levin, D.; Looker, H.C.; Lindsay, R.S.; Wild, S.H.; Joss, N.; Leese, G.; Leslie, P.; McCrimmon, R.J.; Metcalfe, W.; et al. Estimated Life Expectancy in a Scottish Cohort with Type 1 Diabetes, 2008–2010. JAMA 2015, 313, 37–44. [Google Scholar] [CrossRef] [PubMed]
- Rawshani, A.; Sattar, N.; Franzén, S.; Rawshani, A.; Hattersley, A.T.; Svensson, A.-M.; Eliasson, B.; Gudbjörnsdottir, S. Excess Mortality and Cardiovascular Disease in Young Adults with Type 1 Diabetes in Relation to Age at Onset: A Nationwide, Register-Based Cohort Study. Lancet Lond. Engl. 2018, 392, 477–486. [Google Scholar] [CrossRef] [Green Version]
- Secrest, A.M.; Becker, D.J.; Kelsey, S.F.; Laporte, R.E.; Orchard, T.J. Cause-Specific Mortality Trends in a Large Population-Based Cohort with Long-Standing Childhood-Onset Type 1 Diabetes. Diabetes 2010, 59, 3216–3222. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huxley, R.R.; Peters, S.A.E.; Mishra, G.D.; Woodward, M. Risk of All-Cause Mortality and Vascular Events in Women versus Men with Type 1 Diabetes: A Systematic Review and Meta-Analysis. Lancet Diabetes Endocrinol. 2015, 3, 198–206. [Google Scholar] [CrossRef]
- Constantino, M.I.; Molyneaux, L.; Limacher-Gisler, F.; Al-Saeed, A.; Luo, C.; Wu, T.; Twigg, S.M.; Yue, D.K.; Wong, J. Long-Term Complications and Mortality in Young-Onset Diabetes: Type 2 Diabetes Is More Hazardous and Lethal than Type 1 Diabetes. Diabetes Care 2013, 36, 3863–3869. [Google Scholar] [CrossRef] [Green Version]
- Amutha, A.; Anjana, R.M.; Venkatesan, U.; Ranjani, H.; Unnikrishnan, R.; Narayan, K.M.V.; Mohan, V.; Ali, M.K. Incidence of Complications in Young-Onset Diabetes: Comparing Type 2 with Type 1 (the Young Diab Study). Diabetes Res. Clin. Pract. 2017, 123, 1–8. [Google Scholar] [CrossRef]
- Krolewski, A.S.; Kosinski, E.J.; Warram, J.H.; Leland, O.S.; Busick, E.J.; Asmal, A.C.; Rand, L.I.; Christlieb, A.R.; Bradley, R.F.; Kahn, C.R. Magnitude and Determinants of Coronary Artery Disease in Juvenile-Onset, Insulin-Dependent Diabetes Mellitus. Am. J. Cardiol. 1987, 59, 750–755. [Google Scholar] [CrossRef]
- Moss, S.E.; Klein, R.; Klein, B.E. Cause-Specific Mortality in a Population-Based Study of Diabetes. Am. J. Public Health 1991, 81, 1158–1162. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Ferranti, S.D.; de Boer, I.H.; Fonseca, V.; Fox, C.S.; Golden, S.H.; Lavie, C.J.; Magge, S.N.; Marx, N.; McGuire, D.K.; Orchard, T.J.; et al. Type 1 Diabetes Mellitus and Cardiovascular Disease: A Scientific Statement from the American Heart Association and American Diabetes Association. Diabetes Care 2014, 37, 2843–2863. [Google Scholar] [CrossRef] [Green Version]
- Koivisto, V.A.; Stevens, L.K.; Mattock, M.; Ebeling, P.; Muggeo, M.; Stephenson, J.; Idzior-Walus, B. Cardiovascular Disease and Its Risk Factors in IDDM in Europe. EURODIAB IDDM Complications Study Group. Diabetes Care 1996, 19, 689–697. [Google Scholar] [CrossRef]
- Orchard, T.J.; Stevens, L.K.; Forrest, K.Y.; Fuller, J.H. Cardiovascular Disease in Insulin Dependent Diabetes Mellitus: Similar Rates but Different Risk Factors in the US Compared with Europe. Int. J. Epidemiol. 1998, 27, 976–983. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soedamah-Muthu, S.S.; Fuller, J.H.; Mulnier, H.E.; Raleigh, V.S.; Lawrenson, R.A.; Colhoun, H.M. High Risk of Cardiovascular Disease in Patients with Type 1 Diabetes in the UK: A Cohort Study Using the General Practice Research Database. Diabetes Care 2006, 29, 798–804. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soedamah-Muthu, S.S.; Fuller, J.H.; Mulnier, H.E.; Raleigh, V.S.; Lawrenson, R.A.; Colhoun, H.M. All-Cause Mortality Rates in Patients with Type 1 Diabetes Mellitus Compared with a Non-Diabetic Population from the UK General Practice Research Database, 1992–1999. Diabetologia 2006, 49, 660–666. [Google Scholar] [CrossRef] [Green Version]
- Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications (DCCT/EDIC) Research Group; Nathan, D.M.; Zinman, B.; Cleary, P.A.; Backlund, J.-Y.C.; Genuth, S.; Miller, R.; Orchard, T.J. Modern-Day Clinical Course of Type 1 Diabetes Mellitus after 30 Years’ Duration: The Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications and Pittsburgh Epidemiology of Diabetes Complications Experience (1983–2005). Arch. Intern. Med. 2009, 169, 1307–1316. [Google Scholar] [CrossRef] [Green Version]
- Livingstone, S.J.; Looker, H.C.; Hothersall, E.J.; Wild, S.H.; Lindsay, R.S.; Chalmers, J.; Cleland, S.; Leese, G.P.; McKnight, J.; Morris, A.D.; et al. Risk of Cardiovascular Disease and Total Mortality in Adults with Type 1 Diabetes: Scottish Registry Linkage Study. PLoS Med. 2012, 9, e1001321. [Google Scholar] [CrossRef] [Green Version]
- Lind, M.; Svensson, A.-M.; Kosiborod, M.; Gudbjörnsdottir, S.; Pivodic, A.; Wedel, H.; Dahlqvist, S.; Clements, M.; Rosengren, A. Glycemic Control and Excess Mortality in Type 1 Diabetes. N. Engl. J. Med. 2014, 371, 1972–1982. [Google Scholar] [CrossRef] [PubMed]
- Secrest, A.M.; Becker, D.J.; Kelsey, S.F.; LaPorte, R.E.; Orchard, T.J. All-Cause Mortality Trends in a Large Population-Based Cohort with Long-Standing Childhood-Onset Type 1 Diabetes: The Allegheny County Type 1 Diabetes Registry. Diabetes Care 2010, 33, 2573–2579. [Google Scholar] [CrossRef] [Green Version]
- Skrivarhaug, T.; Bangstad, H.-J.; Stene, L.C.; Sandvik, L.; Hanssen, K.F.; Joner, G. Long-Term Mortality in a Nationwide Cohort of Childhood-Onset Type 1 Diabetic Patients in Norway. Diabetologia 2006, 49, 298–305. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Groop, P.-H.; Thomas, M.; Feodoroff, M.; Forsblom, C.; Harjutsalo, V.; FinnDiane Study Group. Excess Mortality in Patients with Type 1 Diabetes Without Albuminuria-Separating the Contribution of Early and Late Risks. Diabetes Care 2018, 41, 748–754. [Google Scholar] [CrossRef] [Green Version]
- Malcom, G.T.; Oalmann, M.C.; Strong, J.P. Risk Factors for Atherosclerosis in Young Subjects: The PDAY Study. Pathobiological Determinants of Atherosclerosis in Youth. Ann. N. Y. Acad. Sci. 1997, 817, 179–188. [Google Scholar] [CrossRef]
- Wissler, R.W.; Strong, J.P. Risk Factors and Progression of Atherosclerosis in Youth. PDAY Research Group. Pathological Determinants of Atherosclerosis in Youth. Am. J. Pathol. 1998, 153, 1023–1033. [Google Scholar] [CrossRef] [Green Version]
- Pastore, I.; Bolla, A.M.; Montefusco, L.; Lunati, M.E.; Rossi, A.; Assi, E.; Zuccotti, G.V.; Fiorina, P. The Impact of Diabetes Mellitus on Cardiovascular Risk Onset in Children and Adolescents. Int. J. Mol. Sci. 2020, 21, 4928. [Google Scholar] [CrossRef] [PubMed]
- Snell-Bergeon, J.K.; West, N.A.; Mayer-Davis, E.J.; Liese, A.D.; Marcovina, S.M.; D’Agostino, R.B.; Hamman, R.F.; Dabelea, D. Inflammatory Markers Are Increased in Youth with Type 1 Diabetes: The SEARCH Case-Control Study. J. Clin. Endocrinol. Metab. 2010, 95, 2868–2876. [Google Scholar] [CrossRef]
- Błaszkowska, M.; Shalimova, A.; Wolnik, B.; Orłowska-Kunikowska, E.; Graff, B.; Hoffmann, M.; Nilsson, P.; Wolf, J.; Narkiewicz, K. Subclinical Macroangiopathic Target Organ Damage in Type 1 Diabetes Mellitus Patients. Blood Press. 2020, 29, 344–356. [Google Scholar] [CrossRef]
- Wang, P.; Xu, Y.-Y.; Lv, T.-T.; Guan, S.-Y.; Li, X.-M.; Li, X.-P.; Pan, H.-F. Subclinical Atherosclerosis in Patients with Type 1 Diabetes Mellitus: A Systematic Review and Meta-Analysis. Angiology 2019, 70, 141–159. [Google Scholar] [CrossRef] [PubMed]
- O’Leary, D.H.; Polak, J.F.; Kronmal, R.A.; Manolio, T.A.; Burke, G.L.; Wolfson, S.K. Carotid-Artery Intima and Media Thickness as a Risk Factor for Myocardial Infarction and Stroke in Older Adults. Cardiovascular Health Study Collaborative Research Group. N. Engl. J. Med. 1999, 340, 14–22. [Google Scholar] [CrossRef] [PubMed]
- Salonen, J.T.; Salonen, R. Ultrasonographically Assessed Carotid Morphology and the Risk of Coronary Heart Disease. Arterioscler. Thromb. J. Vasc. Biol. 1991, 11, 1245–1249. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bots, M.L.; Hoes, A.W.; Koudstaal, P.J.; Hofman, A.; Grobbee, D.E. Common Carotid Intima-Media Thickness and Risk of Stroke and Myocardial Infarction: The Rotterdam Study. Circulation 1997, 96, 1432–1437. [Google Scholar] [CrossRef] [Green Version]
- Chambless, L.E.; Heiss, G.; Folsom, A.R.; Rosamond, W.; Szklo, M.; Sharrett, A.R.; Clegg, L.X. Association of Coronary Heart Disease Incidence with Carotid Arterial Wall Thickness and Major Risk Factors: The Atherosclerosis Risk in Communities (ARIC) Study, 1987–1993. Am. J. Epidemiol. 1997, 146, 483–494. [Google Scholar] [CrossRef] [PubMed]
- Hodis, H.N.; Mack, W.J.; LaBree, L.; Selzer, R.H.; Liu, C.R.; Liu, C.H.; Azen, S.P. The Role of Carotid Arterial Intima-Media Thickness in Predicting Clinical Coronary Events. Ann. Intern. Med. 1998, 128, 262–269. [Google Scholar] [CrossRef]
- Iglesias del Sol, A.; Bots, M.L.; Grobbee, D.E.; Hofman, A.; Witteman, J.C.M. Carotid Intima-Media Thickness at Different Sites: Relation to Incident Myocardial Infarction; The Rotterdam Study. Eur. Heart J. 2002, 23, 934–940. [Google Scholar] [CrossRef] [Green Version]
- Chambless, L.E.; Folsom, A.R.; Clegg, L.X.; Sharrett, A.R.; Shahar, E.; Nieto, F.J.; Rosamond, W.D.; Evans, G. Carotid Wall Thickness Is Predictive of Incident Clinical Stroke: The Atherosclerosis Risk in Communities (ARIC) Study. Am. J. Epidemiol. 2000, 151, 478–487. [Google Scholar] [CrossRef]
- Hollander, M.; Bots, M.L.; Del Sol, A.I.; Koudstaal, P.J.; Witteman, J.C.M.; Grobbee, D.E.; Hofman, A.; Breteler, M.M.B. Carotid Plaques Increase the Risk of Stroke and Subtypes of Cerebral Infarction in Asymptomatic Elderly: The Rotterdam Study. Circulation 2002, 105, 2872–2877. [Google Scholar] [CrossRef] [Green Version]
- Margeirsdottir, H.D.; Stensaeth, K.H.; Larsen, J.R.; Brunborg, C.; Dahl-Jørgensen, K. Early Signs of Atherosclerosis in Diabetic Children on Intensive Insulin Treatment: A Population-Based Study. Diabetes Care 2010, 33, 2043–2048. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dalla Pozza, R.; Bechtold, S.; Bonfig, W.; Putzker, S.; Kozlik-Feldmann, R.; Netz, H.; Schwarz, H.-P. Age of Onset of Type 1 Diabetes in Children and Carotid Intima Medial Thickness. J. Clin. Endocrinol. Metab. 2007, 92, 2053–2057. [Google Scholar] [CrossRef] [Green Version]
- Nathan, D.M.; Lachin, J.; Cleary, P.; Orchard, T.; Brillon, D.J.; Backlund, J.-Y.; O’Leary, D.H.; Genuth, S.; Diabetes Control and Complications Trial; Epidemiology of Diabetes Interventions and Complications Research Group. Intensive Diabetes Therapy and Carotid Intima-Media Thickness in Type 1 Diabetes Mellitus. N. Engl. J. Med. 2003, 348, 2294–2303. [Google Scholar] [CrossRef] [Green Version]
- Larsen, J.R.; Brekke, M.; Bergengen, L.; Sandvik, L.; Arnesen, H.; Hanssen, K.F.; Dahl-Jorgensen, K. Mean HbA1c over 18 Years Predicts Carotid Intima Media Thickness in Women with Type 1 Diabetes. Diabetologia 2005, 48, 776–779. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aguilera, E.; Serra-Planas, E.; Serra, E.; Granada, M.L.; Alonso, N.; Pellitero, S.; Pizarro, E.; Reverter, J.L.; Salinas, I.; Soldevila, B.; et al. Low Prevalence of Subclinical Atherosclerosis in Asymptomatic Patients with Type 1 Diabetes in a European Mediterranean Population. Diabetes Care 2014, 37, 814–820. [Google Scholar] [CrossRef] [Green Version]
- Junyent, M.; Gilabert, R.; Núñez, I.; Corbella, E.; Cofána, M.; Zambón, D.; Ros, E. Femoral ultrasound in the assessment of preclinical atherosclerosis. Distribution of intima-media thickness and frequency of atheroma plaques in a Spanish community cohort. Med. Clin. Barc. 2008, 131, 566–571. [Google Scholar] [CrossRef] [PubMed]
- Lekakis, J.P.; Papamichael, C.; Papaioannou, T.G.; Stamatelopoulos, K.S.; Cimponeriu, A.; Protogerou, A.D.; Kanakakis, J.; Stamatelopoulos, S.F. Intima-Media Thickness Score from Carotid and Femoral Arteries Predicts the Extent of Coronary Artery Disease: Intima-Media Thickness and CAD. Int. J. Cardiovasc. Imaging 2005, 21, 495–501. [Google Scholar] [CrossRef]
- Giménez, M.; Gilabert, R.; Lara, M.; Conget, I. Preclinical Arterial Disease in Patients with Type 1 Diabetes without Other Major Cardiovascular Risk Factors or Micro-/Macrovascular Disease. Diab. Vasc. Dis. Res. 2011, 8, 5–11. [Google Scholar] [CrossRef]
- Elkeles, R.S. Coronary Artery Calcium and Cardiovascular Risk in Diabetes. Atherosclerosis 2010, 210, 331–336. [Google Scholar] [CrossRef]
- Dabelea, D.; Kinney, G.; Snell-Bergeon, J.K.; Hokanson, J.E.; Eckel, R.H.; Ehrlich, J.; Garg, S.; Hamman, R.F.; Rewers, M. Coronary Artery Calcification in Type 1 Diabetes Study Effect of Type 1 Diabetes on the Gender Difference in Coronary Artery Calcification: A Role for Insulin Resistance? The Coronary Artery Calcification in Type 1 Diabetes (CACTI) Study. Diabetes 2003, 52, 2833–2839. [Google Scholar] [CrossRef] [Green Version]
- Bishop, F.K.; Maahs, D.M.; Snell-Bergeon, J.K.; Ogden, L.G.; Kinney, G.L.; Rewers, M. Lifestyle Risk Factors for Atherosclerosis in Adults with Type 1 Diabetes. Diab. Vasc. Dis. Res. 2009, 6, 269–275. [Google Scholar] [CrossRef] [PubMed]
- Schauer, I.E.; Snell-Bergeon, J.K.; Bergman, B.C.; Maahs, D.M.; Kretowski, A.; Eckel, R.H.; Rewers, M. Insulin Resistance, Defective Insulin-Mediated Fatty Acid Suppression, and Coronary Artery Calcification in Subjects with and without Type 1 Diabetes: The CACTI Study. Diabetes 2011, 60, 306–314. [Google Scholar] [CrossRef] [Green Version]
- Chow, B.J.W.; Small, G.; Yam, Y.; Chen, L.; Achenbach, S.; Al-Mallah, M.; Berman, D.S.; Budoff, M.J.; Cademartiri, F.; Callister, T.Q.; et al. Incremental Prognostic Value of Cardiac Computed Tomography in Coronary Artery Disease Using CONFIRM: COroNary Computed Tomography Angiography Evaluation for Clinical Outcomes: An InteRnational Multicenter Registry. Circ. Cardiovasc. Imaging 2011, 4, 463–472. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rana, J.S.; Dunning, A.; Achenbach, S.; Al-Mallah, M.; Budoff, M.J.; Cademartiri, F.; Callister, T.Q.; Chang, H.-J.; Cheng, V.Y.; Chinnaiyan, K.; et al. Differences in Prevalence, Extent, Severity, and Prognosis of Coronary Artery Disease among Patients with and without Diabetes Undergoing Coronary Computed Tomography Angiography: Results from 10,110 Individuals from the CONFIRM (COronary CT Angiography EvaluatioN for Clinical Outcomes): An InteRnational Multicenter Registry. Diabetes Care 2012, 35, 1787–1794. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, T.P.; Groehn, H.; Kazmers, A. Vascular Function and Carotid Intimal-Medial Thickness in Children with Insulin-Dependent Diabetes Mellitus. J. Am. Coll. Cardiol. 2003, 41, 661–665. [Google Scholar] [CrossRef] [Green Version]
- Järvisalo, M.J.; Raitakari, M.; Toikka, J.O.; Putto-Laurila, A.; Rontu, R.; Laine, S.; Lehtimäki, T.; Rönnemaa, T.; Viikari, J.; Raitakari, O.T. Endothelial Dysfunction and Increased Arterial Intima-Media Thickness in Children with Type 1 Diabetes. Circulation 2004, 109, 1750–1755. [Google Scholar] [CrossRef] [Green Version]
- Costacou, T.; Lopes-Virella, M.F.; Zgibor, J.C.; Virella, G.; Otvos, J.; Walsh, M.; Orchard, T.J. Markers of Endothelial Dysfunction in the Prediction of Coronary Artery Disease in Type 1 Diabetes. The Pittsburgh Epidemiology of Diabetes Complications Study. J. Diabetes Complicat. 2005, 19, 183–193. [Google Scholar] [CrossRef]
- Lepore, G.; Bruttomesso, D.; Nosari, I.; Tiengo, A.; Trevisan, R. Glycaemic Control and Microvascular Complications in a Large Cohort of Italian Type 1 Diabetic Out-Patients. Diabetes Nutr. Metab. 2002, 15, 232–239. [Google Scholar]
- Rodrigues, T.C.; Canani, L.H.; Gross, J.L. Metabolic syndrome, insulin resistance and cardiovascular disease in type-1 diabetes mellitus. Arq. Bras. Cardiol. 2010, 94, 134–139. [Google Scholar] [CrossRef] [Green Version]
- Zgibor, J.C.; Piatt, G.A.; Ruppert, K.; Orchard, T.J.; Roberts, M.S. Deficiencies of Cardiovascular Risk Prediction Models for Type 1 Diabetes. Diabetes Care 2006, 29, 1860–1865. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soedamah-Muthu, S.S.; Chaturvedi, N.; Toeller, M.; Ferriss, B.; Reboldi, P.; Michel, G.; Manes, C.; Fuller, J.H.; EURODIAB Prospective Complications Study Group. Risk Factors for Coronary Heart Disease in Type 1 Diabetic Patients in Europe: The EURODIAB Prospective Complications Study. Diabetes Care 2004, 27, 530–537. [Google Scholar] [CrossRef] [Green Version]
- May, O.; Arildsen, H.; Damsgaard, E.M.; Mickley, H. Cardiovascular Autonomic Neuropathy in Insulin-Dependent Diabetes Mellitus: Prevalence and Estimated Risk of Coronary Heart Disease in the General Population. J. Intern. Med. 2000, 248, 483–491. [Google Scholar] [CrossRef] [PubMed]
- Rathmann, W.; Ziegler, D.; Jahnke, M.; Haastert, B.; Gries, F.A. Mortality in Diabetic Patients with Cardiovascular Autonomic Neuropathy. Diabet. Med. J. Br. Diabet. Assoc. 1993, 10, 820–824. [Google Scholar] [CrossRef]
- Airaksinen, K.E. Silent Coronary Artery Disease in Diabetes—A Feature of Autonomic Neuropathy or Accelerated Atherosclerosis? Diabetologia 2001, 44, 259–266. [Google Scholar] [CrossRef] [Green Version]
- Brownlee, M. Biochemistry and Molecular Cell Biology of Diabetic Complications. Nature 2001, 414, 813–820. [Google Scholar] [CrossRef]
- Aronson, D.; Rayfield, E.J. How Hyperglycemia Promotes Atherosclerosis: Molecular Mechanisms. Cardiovasc. Diabetol. 2002, 1, 1. [Google Scholar] [CrossRef] [Green Version]
- Larsen, J.; Brekke, M.; Sandvik, L.; Arnesen, H.; Hanssen, K.F.; Dahl-Jorgensen, K. Silent Coronary Atheromatosis in Type 1 Diabetic Patients and Its Relation to Long-Term Glycemic Control. Diabetes 2002, 51, 2637–2641. [Google Scholar] [CrossRef] [Green Version]
- Orchard, T.J.; Olson, J.C.; Erbey, J.R.; Williams, K.; Forrest, K.Y.-Z.; Smithline Kinder, L.; Ellis, D.; Becker, D.J. Insulin Resistance-Related Factors, but Not Glycemia, Predict Coronary Artery Disease in Type 1 Diabetes: 10-Year Follow-up Data from the Pittsburgh Epidemiology of Diabetes Complications Study. Diabetes Care 2003, 26, 1374–1379. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Forrest, K.Y.; Becker, D.J.; Kuller, L.H.; Wolfson, S.K.; Orchard, T.J. Are Predictors of Coronary Heart Disease and Lower-Extremity Arterial Disease in Type 1 Diabetes the Same? A Prospective Study. Atherosclerosis 2000, 148, 159–169. [Google Scholar] [CrossRef]
- Eeg-Olofsson, K.; Cederholm, J.; Nilsson, P.M.; Zethelius, B.; Svensson, A.-M.; Gudbjörnsdóttir, S.; Eliasson, B. Glycemic Control and Cardiovascular Disease in 7454 Patients with Type 1 Diabetes: An Observational Study from the Swedish National Diabetes Register (NDR). Diabetes Care 2010, 33, 1640–1646. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Klein, B.E.K.; Klein, R.; McBride, P.E.; Cruickshanks, K.J.; Palta, M.; Knudtson, M.D.; Moss, S.E.; Reinke, J.O. Cardiovascular Disease, Mortality, and Retinal Microvascular Characteristics in Type 1 Diabetes: Wisconsin Epidemiologic Study of Diabetic Retinopathy. Arch. Intern. Med. 2004, 164, 1917–1924. [Google Scholar] [CrossRef] [Green Version]
- Nathan, D.M.; Cleary, P.A.; Backlund, J.-Y.C.; Genuth, S.M.; Lachin, J.M.; Orchard, T.J.; Raskin, P.; Zinman, B.; Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications (DCCT/EDIC) Study Research Group. Intensive Diabetes Treatment and Cardiovascular Disease in Patients with Type 1 Diabetes. N. Engl. J. Med. 2005, 353, 2643–2653. [Google Scholar] [CrossRef]
- Writing Team for the Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications Research Group. Sustained Effect of Intensive Treatment of Type 1 Diabetes Mellitus on Development and Progression of Diabetic Nephropathy: The Epidemiology of Diabetes Interventions and Complications (EDIC) Study. JAMA 2003, 290, 2159–2167. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ceriello, A.; Ihnat, M.A.; Thorpe, J.E. Clinical Review 2: The “Metabolic Memory”: Is More than Just Tight Glucose Control Necessary to Prevent Diabetic Complications? J. Clin. Endocrinol. Metab. 2009, 94, 410–415. [Google Scholar] [CrossRef] [Green Version]
- Goh, S.-Y.; Cooper, M.E. Clinical Review: The Role of Advanced Glycation End Products in Progression and Complications of Diabetes. J. Clin. Endocrinol. Metab. 2008, 93, 1143–1152. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Del Prato, S. Megatrials in Type 2 Diabetes. From Excitement to Frustration? Diabetologia 2009, 52, 1219–1226. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- The Diabetes Control and Complications Trial Research Group. The Effect of Intensive Treatment of Diabetes on the Development and Progression of Long-Term Complications in Insulin-Dependent Diabetes Mellitus. N. Engl. J. Med. 1993, 329, 977–986. [Google Scholar] [CrossRef]
- DCCT/EDIC Research Group; de Boer, I.H.; Sun, W.; Cleary, P.A.; Lachin, J.M.; Molitch, M.E.; Steffes, M.W.; Zinman, B. Intensive Diabetes Therapy and Glomerular Filtration Rate in Type 1 Diabetes. N. Engl. J. Med. 2011, 365, 2366–2376. [Google Scholar] [CrossRef] [Green Version]
- Pérez, A.; Wägner, A.M.; Carreras, G.; Giménez, G.; Sánchez-Quesada, J.L.; Rigla, M.; Gómez-Gerique, J.A.; Pou, J.M.; de Leiva, A. Prevalence and Phenotypic Distribution of Dyslipidemia in Type 1 Diabetes Mellitus: Effect of Glycemic Control. Arch. Intern. Med. 2000, 160, 2756–2762. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sánchez-Quesada, J.L.; Pérez, A.; Caixàs, A.; Ordónmez-Llanos, J.; Carreras, G.; Payés, A.; González-Sastre, F.; de Leiva, A. Electronegative Low Density Lipoprotein Subform Is Increased in Patients with Short-Duration IDDM and Is Closely Related to Glycaemic Control. Diabetologia 1996, 39, 1469–1476. [Google Scholar] [CrossRef] [Green Version]
- Sánchez Quesada, J.L.; Pérez Péreza, A. Modificaciones Aterogénicas de Las Partículas LDL En Los Pacientes Con Diabetes. Av. Diabetol. 2009, 25, 9–20. [Google Scholar]
- Marques, J.L.; George, E.; Peacey, S.R.; Harris, N.D.; Macdonald, I.A.; Cochrane, T.; Heller, S.R. Altered Ventricular Repolarization during Hypoglycaemia in Patients with Diabetes. Diabet. Med. J. Br. Diabet. Assoc. 1997, 14, 648–654. [Google Scholar] [CrossRef]
- Chow, E.; Heller, S.R. Pathophysiology of the Effects of Hypoglycemia on the Cardiovascular System. Diabet. Hypoglycemia 2012, 5, 3–8. [Google Scholar]
- Snell-Bergeon, J.K.; Nadeau, K. Cardiovascular Disease Risk in Young People with Type 1 Diabetes. J Cardiovasc. Transl. Res. 2012, 5, 446–462. [Google Scholar] [CrossRef]
- Giménez, M.; Gilabert, R.; Monteagudo, J.; Alonso, A.; Casamitjana, R.; Paré, C.; Conget, I. Repeated Episodes of Hypoglycemia as a Potential Aggravating Factor for Preclinical Atherosclerosis in Subjects with Type 1 Diabetes. Diabetes Care 2011, 34, 198–203. [Google Scholar] [CrossRef] [Green Version]
- Chow, E.; Bernjak, A.; Williams, S.; Fawdry, R.A.; Hibbert, S.; Freeman, J.; Sheridan, P.J.; Heller, S.R. Risk of Cardiac Arrhythmias during Hypoglycemia in Patients with Type 2 Diabetes and Cardiovascular Risk. Diabetes 2014, 63, 1738–1747. [Google Scholar] [CrossRef] [Green Version]
- ACCORD Study Group; Gerstein, H.C.; Miller, M.E.; Genuth, S.; Ismail-Beigi, F.; Buse, J.B.; Goff, D.C.; Probstfield, J.L.; Cushman, W.C.; Ginsberg, H.N.; et al. Long-Term Effects of Intensive Glucose Lowering on Cardiovascular Outcomes. N. Engl. J. Med. 2011, 364, 818–828. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, J.H.; Han, K.; Park, S.; Lee, D.Y.; Nam, G.E.; Seo, J.A.; Kim, S.G.; Baik, S.H.; Park, Y.G.; Kim, S.M.; et al. Effects of Long-Term Glycemic Variability on Incident Cardiovascular Disease and Mortality in Subjects without Diabetes: A Nationwide Population-Based Study. Med. Baltim. 2019, 98, e16317. [Google Scholar] [CrossRef] [PubMed]
- Benalia, M.; Zeller, M.; Mouhat, B.; Guenancia, C.; Yameogo, V.; Greco, C.; Yao, H.; Maza, M.; Vergès, B.; Cottin, Y. Glycaemic Variability Is Associated with Severity of Coronary Artery Disease in Patients with Poorly Controlled Type 2 Diabetes and Acute Myocardial Infarction. Diabetes Metab. 2019, 45, 446–452. [Google Scholar] [CrossRef]
- Zhou, Z.; Sun, B.; Huang, S.; Zhu, C.; Bian, M. Glycemic Variability: Adverse Clinical Outcomes and How to Improve It? Cardiovasc. Diabetol. 2020, 19, 102. [Google Scholar] [CrossRef] [PubMed]
- Snell-Bergeon, J.K.; Roman, R.; Rodbard, D.; Garg, S.; Maahs, D.M.; Schauer, I.E.; Bergman, B.C.; Kinney, G.L.; Rewers, M. Glycaemic Variability Is Associated with Coronary Artery Calcium in Men with Type 1 Diabetes: The Coronary Artery Calcification in Type 1 Diabetes Study. Diabet. Med. J. Br. Diabet. Assoc. 2010, 27, 1436–1442. [Google Scholar] [CrossRef] [Green Version]
- Esposito, K.; Nappo, F.; Marfella, R.; Giugliano, G.; Giugliano, F.; Ciotola, M.; Quagliaro, L.; Ceriello, A.; Giugliano, D. Inflammatory Cytokine Concentrations Are Acutely Increased by Hyperglycemia in Humans: Role of Oxidative Stress. Circulation 2002, 106, 2067–2072. [Google Scholar] [CrossRef] [Green Version]
- Ceriello, A.; Esposito, K.; Piconi, L.; Ihnat, M.A.; Thorpe, J.E.; Testa, R.; Boemi, M.; Giugliano, D. Oscillating Glucose Is More Deleterious to Endothelial Function and Oxidative Stress than Mean Glucose in Normal and Type 2 Diabetic Patients. Diabetes 2008, 57, 1349–1354. [Google Scholar] [CrossRef] [Green Version]
- Hoffman, R.P.; Dye, A.S.; Huang, H.; Bauer, J.A. Glycemic Variability Predicts Inflammation in Adolescents with Type 1 Diabetes. J. Pediatr. Endocrinol. Metab. JPEM 2016, 29, 1129–1133. [Google Scholar] [CrossRef] [Green Version]
- Ceriello, A.; Monnier, L.; Owens, D. Glycaemic Variability in Diabetes: Clinical and Therapeutic Implications. Lancet Diabetes Endocrinol. 2019, 7, 221–230. [Google Scholar] [CrossRef] [Green Version]
- Jamiołkowska, M.; Jamiołkowska, I.; Łuczyński, W.; Tołwińska, J.; Bossowski, A.; Głowińska Olszewska, B. Impact of Real-Time Continuous Glucose Monitoring Use on Glucose Variability and Endothelial Function in Adolescents with Type 1 Diabetes: New Technology—New Possibility to Decrease Cardiovascular Risk? J. Diabetes Res. 2016, 2016, 4385312. [Google Scholar] [CrossRef]
- McGill, M.; Molyneaux, L.; Twigg, S.M.; Yue, D.K. The Metabolic Syndrome in Type 1 Diabetes: Does It Exist and Does It Matter? J. Diabetes Complicat. 2008, 22, 18–23. [Google Scholar] [CrossRef] [PubMed]
- Chillarón, J.J.; Flores Le-Roux, J.A.; Benaiges, D.; Pedro-Botet, J. Type 1 Diabetes, Metabolic Syndrome and Cardiovascular Risk. Metabolism 2014, 63, 181–187. [Google Scholar] [CrossRef] [PubMed]
- Chillarón, J.J.; Goday, A.; Flores-Le-Roux, J.A.; Benaiges, D.; Carrera, M.J.; Puig, J.; Cano-Pérez, J.F.; Pedro-Botet, J. Estimated Glucose Disposal Rate in Assessment of the Metabolic Syndrome and Microvascular Complications in Patients with Type 1 Diabetes. J. Clin. Endocrinol. Metab. 2009, 94, 3530–3534. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Purnell, J.Q.; Hokanson, J.E.; Marcovina, S.M.; Steffes, M.W.; Cleary, P.A.; Brunzell, J.D. Effect of Excessive Weight Gain with Intensive Therapy of Type 1 Diabetes on Lipid Levels and Blood Pressure: Results from the DCCT. Diabetes Control and Complications Trial. JAMA 1998, 280, 140–146. [Google Scholar] [CrossRef] [PubMed]
- Melin, E.O.; Thulesius, H.O.; Hillman, M.; Landin-Olsson, M.; Thunander, M. Abdominal Obesity in Type 1 Diabetes Associated with Gender, Cardiovascular Risk Factors and Complications, and Difficulties Achieving Treatment Targets: A Cross Sectional Study at a Secondary Care Diabetes Clinic. BMC Obes. 2018, 5, 15. [Google Scholar] [CrossRef] [Green Version]
- Nadeau, K.J.; Regensteiner, J.G.; Bauer, T.A.; Brown, M.S.; Dorosz, J.L.; Hull, A.; Zeitler, P.; Draznin, B.; Reusch, J.E.B. Insulin Resistance in Adolescents with Type 1 Diabetes and Its Relationship to Cardiovascular Function. J. Clin. Endocrinol. Metab. 2010, 95, 513–521. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thorn, L.M.; Forsblom, C.; Wadén, J.; Saraheimo, M.; Tolonen, N.; Hietala, K.; Groop, P.-H.; Finnish Diabetic Nephropathy (FinnDiane) Study Group. Metabolic Syndrome as a Risk Factor for Cardiovascular Disease, Mortality, and Progression of Diabetic Nephropathy in Type 1 Diabetes. Diabetes Care 2009, 32, 950–952. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- The DCCT Research Group. Lipid and Lipoprotein Levels in Patients with IDDM Diabetes Control and Complication. Trial Experience. Diabetes Care 1992, 15, 886–894. [Google Scholar] [CrossRef]
- Hero, C.; Svensson, A.-M.; Gidlund, P.; Gudbjörnsdottir, S.; Eliasson, B.; Eeg-Olofsson, K. LDL Cholesterol Is Not a Good Marker of Cardiovascular Risk in Type 1 Diabetes. Diabet. Med. J. Br. Diabet. Assoc. 2016, 33, 316–323. [Google Scholar] [CrossRef]
- Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications (DCCT/EDIC) Research Group. Risk Factors for Cardiovascular Disease in Type 1 Diabetes. Diabetes 2016, 65, 1370–1379. [Google Scholar] [CrossRef] [Green Version]
- Cholesterol Treatment Trialists’ (CTT) Collaborators; Kearney, P.M.; Blackwell, L.; Collins, R.; Keech, A.; Simes, J.; Peto, R.; Armitage, J.; Baigent, C. Efficacy of Cholesterol-Lowering Therapy in 18,686 People with Diabetes in 14 Randomised Trials of Statins: A Meta-Analysis. Lancet Lond. Engl. 2008, 371, 117–125. [Google Scholar] [CrossRef]
- Sánchez-Quesada, J.L.; Pérez, A. Modified Lipoproteins as Biomarkers of Cardiovascular Risk in Diabetes Mellitus. Endocrinol. Nutr. Órgano Soc. Esp. Endocrinol. Nutr. 2013, 60, 518–528. [Google Scholar] [CrossRef]
- Colom, C.; Viladés, D.; Pérez-Cuellar, M.; Leta, R.; Rivas-Urbina, A.; Carreras, G.; Ordóñez-Llanos, J.; Pérez, A.; Sánchez-Quesada, J.L. Associations between Epicardial Adipose Tissue, Subclinical Atherosclerosis and High-Density Lipoprotein Composition in Type 1 Diabetes. Cardiovasc. Diabetol. 2018, 17, 156. [Google Scholar] [CrossRef] [Green Version]
- Ganjali, S.; Dallinga-Thie, G.M.; Simental-Mendía, L.E.; Banach, M.; Pirro, M.; Sahebkar, A. HDL Functionality in Type 1 Diabetes. Atherosclerosis 2017, 267, 99–109. [Google Scholar] [CrossRef]
- Heier, M.; Borja, M.S.; Brunborg, C.; Seljeflot, I.; Margeirsdottir, H.D.; Hanssen, K.F.; Dahl-Jørgensen, K.; Oda, M.N. Reduced HDL Function in Children and Young Adults with Type 1 Diabetes. Cardiovasc. Diabetol. 2017, 16, 85. [Google Scholar] [CrossRef] [Green Version]
- Maahs, D.M.; Kinney, G.L.; Wadwa, P.; Snell-Bergeon, J.K.; Dabelea, D.; Hokanson, J.; Ehrlich, J.; Garg, S.; Eckel, R.H.; Rewers, M.J. Hypertension Prevalence, Awareness, Treatment, and Control in an Adult Type 1 Diabetes Population and a Comparable General Population. Diabetes Care 2005, 28, 301–306. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Collado-Mesa, F.; Colhoun, H.M.; Stevens, L.K.; Boavida, J.; Ferriss, J.B.; Karamanos, B.; Kempler, P.; Michel, G.; Roglic, G.; Fuller, J.H. Prevalence and Management of Hypertension in Type 1 Diabetes Mellitus in Europe: The EURODIAB IDDM Complications Study. Diabet. Med. J. Br. Diabet. Assoc. 1999, 16, 41–48. [Google Scholar] [CrossRef]
- De Boer, I.H.; Kestenbaum, B.; Rue, T.C.; Steffes, M.W.; Cleary, P.A.; Molitch, M.E.; Lachin, J.M.; Weiss, N.S.; Brunzell, J.D.; Diabetes Control and Complications Trial (DCCT)/Epidemiology of Diabetes Interventions and Complications (EDIC) Study Research Group. Insulin Therapy, Hyperglycemia, and Hypertension in Type 1 Diabetes Mellitus. Arch. Intern. Med. 2008, 168, 1867–1873. [Google Scholar] [CrossRef]
- Tuomilehto, J.; Borch-Johnsen, K.; Molarius, A.; Forsén, T.; Rastenyte, D.; Sarti, C.; Reunanen, A. Incidence of Cardiovascular Disease in Type 1 (Insulin-Dependent) Diabetic Subjects with and without Diabetic Nephropathy in Finland. Diabetologia 1998, 41, 784–790. [Google Scholar] [CrossRef] [Green Version]
- Newman, D.J.; Mattock, M.B.; Dawnay, A.B.S.; Kerry, S.; McGuire, A.; Yaqoob, M.; Hitman, G.A.; Hawke, C. Systematic Review on Urine Albumin Testing for Early Detection of Diabetic Complications. Health Technol. Assess. Winch. Engl. 2005, 9, iii–vi, xiii–163. [Google Scholar] [CrossRef] [Green Version]
- Orchard, T.J.; Secrest, A.M.; Miller, R.G.; Costacou, T. In the Absence of Renal Disease, 20 Year Mortality Risk in Type 1 Diabetes Is Comparable to That of the General Population: A Report from the Pittsburgh Epidemiology of Diabetes Complications Study. Diabetologia 2010, 53, 2312–2319. [Google Scholar] [CrossRef] [Green Version]
- Groop, P.-H.; Thomas, M.C.; Moran, J.L.; Wadèn, J.; Thorn, L.M.; Mäkinen, V.-P.; Rosengård-Bärlund, M.; Saraheimo, M.; Hietala, K.; Heikkilä, O.; et al. The Presence and Severity of Chronic Kidney Disease Predicts All-Cause Mortality in Type 1 Diabetes. Diabetes 2009, 58, 1651–1658. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bebu, I.; Braffett, B.H.; Pop-Busui, R.; Orchard, T.J.; Nathan, D.M.; Lachin, J.M.; DCCT/EDIC Research Group. The Relationship of Blood Glucose with Cardiovascular Disease Is Mediated over Time by Traditional Risk Factors in Type 1 Diabetes: The DCCT/EDIC Study. Diabetologia 2017, 60, 2084–2091. [Google Scholar] [CrossRef] [Green Version]
- Cederholm, J.; Eeg-Olofsson, K.; Eliasson, B.; Zethelius, B.; Gudbjörnsdottir, S.; Swedish National Diabetes Register. A New Model for 5-Year Risk of Cardiovascular Disease in Type 1 Diabetes; from the Swedish National Diabetes Register (NDR). Diabet. Med. J. Br. Diabet. Assoc. 2011, 28, 1213–1220. [Google Scholar] [CrossRef] [PubMed]
- Vistisen, D.; Andersen, G.S.; Hansen, C.S.; Hulman, A.; Henriksen, J.E.; Bech-Nielsen, H.; Jørgensen, M.E. Prediction of First Cardiovascular Disease Event in Type 1 Diabetes Mellitus: The Steno Type 1 Risk Engine. Circulation 2016, 133, 1058–1066. [Google Scholar] [CrossRef] [Green Version]
- Zgibor, J.C.; Ruppert, K.; Orchard, T.J.; Soedamah-Muthu, S.S.; Fuller, J.; Chaturvedi, N.; Roberts, M.S. Development of a Coronary Heart Disease Risk Prediction Model for Type 1 Diabetes: The Pittsburgh CHD in Type 1 Diabetes Risk Model. Diabetes Res. Clin. Pract. 2010, 88, 314–321. [Google Scholar] [CrossRef] [Green Version]
- Viñals, C.; Conget, I.; Pané, A.; Boswell, L.; Perea, V.; Blanco, A.J.; Ruiz, S.; Giménez, M.; Vinagre, I.; Esmatjes, E.; et al. Steno Type 1 Risk Engine and Preclinical Atherosclerosis in Mediterranean Individuals with Type 1 Diabetes. Diabetes Metab. Res. Rev. 2020, 36, e3320. [Google Scholar] [CrossRef] [Green Version]
- Llauradó, G.; Cano, A.; Albert, L.; Ballesta, S.; Mazarico, I.; Luchtenberg, M.-F.; González-Sastre, M.; Megía, A.; Simó, R.; Vendrell, J.; et al. Arterial Stiffness Is Highly Correlated with the Scores Obtained from the Steno Type 1 Risk Engine in Subjects with T1DM. PLoS ONE 2019, 14, e0220206. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boscari, F.; Morieri, M.L.; Amato, A.M.L.; Vallone, V.; Uliana, A.; Baritussio, A.; Vitturi, N.; Cipponeri, E.; Cavallin, F.; Avogaro, A.; et al. Performance of the Steno Type 1 Risk Engine for Cardiovascular Disease Prediction in Italian Patients with Type 1 Diabetes. Nutr. Metab. Cardiovasc. Dis. NMCD 2020, 30, 1813–1819. [Google Scholar] [CrossRef]
- Jaspers, N.E.M.; Blaha, M.J.; Matsushita, K.; van der Schouw, Y.T.; Wareham, N.J.; Khaw, K.-T.; Geisel, M.H.; Lehmann, N.; Erbel, R.; Jöckel, K.-H.; et al. Prediction of Individualized Lifetime Benefit from Cholesterol Lowering, Blood Pressure Lowering, Antithrombotic Therapy, and Smoking Cessation in Apparently Healthy People. Eur. Heart J. 2020, 41, 1190–1199. [Google Scholar] [CrossRef] [PubMed]
- Berkelmans, G.F.N.; Gudbjörnsdottir, S.; Visseren, F.L.J.; Wild, S.H.; Franzen, S.; Chalmers, J.; Davis, B.R.; Poulter, N.R.; Spijkerman, A.M.; Woodward, M.; et al. Prediction of Individual Life-Years Gained without Cardiovascular Events from Lipid, Blood Pressure, Glucose, and Aspirin Treatment Based on Data of More than 500,000 Patients with Type 2 Diabetes Mellitus. Eur. Heart J. 2019, 40, 2899–2906. [Google Scholar] [CrossRef] [Green Version]
- Mach, F.; Baigent, C.; Catapano, A.L.; Koskinas, K.C.; Casula, M.; Badimon, L.; Chapman, M.J.; De Backer, G.G.; Delgado, V.; Ference, B.A.; et al. 2019 ESC/EAS Guidelines for the Management of Dyslipidaemias: Lipid Modification to Reduce Cardiovascular Risk. Eur. Heart J. 2020, 41, 111–188. [Google Scholar] [CrossRef] [PubMed]
- American Diabetes Association. Cardiovascular Disease and Risk Management: Standards of Medical Care in Diabetes-2021. Diabetes Care 2021, 44, S125–S150. [Google Scholar] [CrossRef]
- Cosentino, F.; Grant, P.J.; Aboyans, V.; Bailey, C.J.; Ceriello, A.; Delgado, V.; Federici, M.; Filippatos, G.; Grobbee, D.E.; Hansen, T.B.; et al. 2019 ESC Guidelines on Diabetes, Pre-Diabetes, and Cardiovascular Diseases Developed in Collaboration with the EASD. Eur. Heart J. 2020, 41, 255–323. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tecce, N.; Masulli, M.; Lupoli, R.; Della Pepa, G.; Bozzetto, L.; Palmisano, L.; Rivellese, A.A.; Riccardi, G.; Capaldo, B. Evaluation of Cardiovascular Risk in Adults with Type 1 Diabetes: Poor Concordance between the 2019 ESC Risk Classification and 10-Year Cardiovascular Risk Prediction According to the Steno Type 1 Risk Engine. Cardiovasc. Diabetol. 2020, 19, 166. [Google Scholar] [CrossRef] [PubMed]
- Lachin, J.M.; Orchard, T.J.; Nathan, D.M.; DCCT/EDIC Research Group. Update on Cardiovascular Outcomes at 30 Years of the Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications Study. Diabetes Care 2014, 37, 39–43. [Google Scholar] [CrossRef] [Green Version]
- Holman, R.R.; Paul, S.K.; Bethel, M.A.; Matthews, D.R.; Neil, H.A.W. 10-Year Follow-up of Intensive Glucose Control in Type 2 Diabetes. N. Engl. J. Med. 2008, 359, 1577–1589. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prattichizzo, F.; de Candia, P.; De Nigris, V.; Nicolucci, A.; Ceriello, A. Legacy Effect of Intensive Glucose Control on Major Adverse Cardiovascular Outcome: Systematic Review and Meta-Analyses of Trials According to Different Scenarios. Metabolism 2020, 110, 154308. [Google Scholar] [CrossRef]
- American Diabetes Association. Glycemic Targets: Standards of Medical Care in Diabetes-2021. Diabetes Care 2021, 44, S73–S84. [Google Scholar] [CrossRef]
- Redondo, M.J.; Libman, I.; Maahs, D.M.; Lyons, S.K.; Saraco, M.; Reusch, J.; Rodriguez, H.; DiMeglio, L.A. The Evolution of Hemoglobin A1c Targets for Youth with Type 1 Diabetes: Rationale and Supporting Evidence. Diabetes Care 2021, 44, 301–312. [Google Scholar] [CrossRef]
- American Diabetes Association. Diabetes Technology: Standards of Medical Care in Diabetes-2020. Diabetes Care 2020, 43, S77–S88. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahmadizar, F.; Souverein, P.; de Boer, A.; Maitland-van der Zee, A.H. Undertreatment of Hypertension and Hypercholesterolaemia in Children and Adolescents with Type 1 Diabetes: Long-Term Follow-up on Time Trends in the Occurrence of Cardiovascular Disease, Risk Factors and Medications Use. Br. J. Clin. Pharmacol. 2018, 84, 776–785. [Google Scholar] [CrossRef] [Green Version]
- Rawshani, A.; Rawshani, A.; Sattar, N.; Franzén, S.; McGuire, D.K.; Eliasson, B.; Svensson, A.-M.; Zethelius, B.; Miftaraj, M.; Rosengren, A.; et al. Relative Prognostic Importance and Optimal Levels of Risk Factors for Mortality and Cardiovascular Outcomes in Type 1 Diabetes Mellitus. Circulation 2019, 139, 1900–1912. [Google Scholar] [CrossRef] [PubMed]
- Miller, R.G.; Costacou, T.; Orchard, T.J. Risk Factor Modeling for Cardiovascular Disease in Type 1 Diabetes in the Pittsburgh Epidemiology of Diabetes Complications (EDC) Study: A Comparison with the Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications Study (DCCT/EDIC). Diabetes 2019, 68, 409–419. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Collins, R.; Armitage, J.; Parish, S.; Sleigh, P.; Peto, R.; Heart Protection Study Collaborative Group. MRC/BHF Heart Protection Study of Cholesterol-Lowering with Simvastatin in 5963 People with Diabetes: A Randomised Placebo-Controlled Trial. Lancet Lond. Engl. 2003, 361, 2005–2016. [Google Scholar] [CrossRef]
- Hero, C.; Rawshani, A.; Svensson, A.-M.; Franzén, S.; Eliasson, B.; Eeg-Olofsson, K.; Gudbjörnsdottir, S. Association Between Use of Lipid-Lowering Therapy and Cardiovascular Diseases and Death in Individuals with Type 1 Diabetes. Diabetes Care 2016, 39, 996–1003. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marcovecchio, M.L.; Chiesa, S.T.; Bond, S.; Daneman, D.; Dawson, S.; Donaghue, K.C.; Jones, T.W.; Mahmud, F.H.; Marshall, S.M.; Neil, H.A.W.; et al. ACE Inhibitors and Statins in Adolescents with Type 1 Diabetes. N. Engl. J. Med. 2017, 377, 1733–1745. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Semova, I.; Levenson, A.E.; Krawczyk, J.; Bullock, K.; Williams, K.A.; Wadwa, R.P.; Shah, A.S.; Khoury, P.R.; Kimball, T.R.; Urbina, E.M.; et al. Type 1 Diabetes Is Associated with an Increase in Cholesterol Absorption Markers but a Decrease in Cholesterol Synthesis Markers in a Young Adult Population. J. Clin. Lipidol. 2019, 13, 940–946. [Google Scholar] [CrossRef]
- Ciriacks, K.; Coly, G.; Krishnaswami, S.; Patel, S.B.; Kidambi, S. Effects of Simvastatin and Ezetimibe in Lowering Low-Density Lipoprotein Cholesterol in Subjects with Type 1 and Type 2 Diabetes Mellitus. Metab. Syndr. Relat. Disord. 2015, 13, 84–90. [Google Scholar] [CrossRef]
- Levenson, A.E.; Wadwa, R.P.; Shah, A.S.; Khoury, P.R.; Kimball, T.R.; Urbina, E.M.; de Ferranti, S.D.; Bishop, F.K.; Maahs, D.M.; Dolan, L.M.; et al. PCSK9 Is Increased in Youth with Type 1 Diabetes. Diabetes Care 2017, 40, e85–e87. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leiter, L.A.; Cariou, B.; Müller-Wieland, D.; Colhoun, H.M.; Del Prato, S.; Tinahones, F.J.; Ray, K.K.; Bujas-Bobanovic, M.; Domenger, C.; Mandel, J.; et al. Efficacy and Safety of Alirocumab in Insulin-Treated Individuals with Type 1 or Type 2 Diabetes and High Cardiovascular Risk: The ODYSSEY DM-INSULIN Randomized Trial. Diabetes Obes. Metab. 2017, 19, 1781–1792. [Google Scholar] [CrossRef] [Green Version]
- American Diabetes Association. Children and Adolescents: Standards of Medical Care in Diabetes-2021. Diabetes Care 2021, 44, S180–S199. [Google Scholar] [CrossRef] [PubMed]
Cardiovascular Risk Categories | LDL-C Target | Lipid-Lowering Therapy | |
---|---|---|---|
Very high risk | Patients with diabetes and documented ASCVD, either clinical, or unequivocal on imaging, or other target organ damage, a or three or more major risk factors, or early onset T1DM of long duration (>20 years) | -LDL-C < 1.4 mmol/L (< 55 mg/dL) and LDL-c reduction ≥ 50% -IF two ASCVD events within two years, consider LDL-C < 1.0 mmol/L (40 mg/dL). | -If LDL-C is above the targeted goal, recommend statin therapy. -If the goal is not achieved with maximum tolerated statin therapy, a combination with ezetimibe is recommended. -If ASCVD and LDL-C are above the targeted goal, consider adding a PCSK9 inhibitor. -If ASCVD and LDL-C have not reached the targeted goal, recommend adding a PCSK9 inhibitor. |
High Risk | Patients with DM without target organ damage, a with DM duration ≥10 years or another additional risk factor. | LDL-c < 1.8 mmol/L (<70 mg/dL) and LDL-c reduction ≥ 50% | -If LDL-C is above the targeted goal, recommend statin therapy. -If the goal is not achieved with maximum tolerated statin therapy, a combination with ezetimibe is recommended. |
Moderate risk | Young patients (T1DM <35 years or T2DM <50 years) with DM duration <10 years, without other risk factors | LDL-c < 2.6 mmol/L (<100 mg/dL) | Statin therapy should be considered if LDL-C rises above the targeted goal. |
Primary Prevention | |
---|---|
Age | Recommendations |
Children and adolescents | >10 years, consider the use of statins if LDL-C > 160 mg/dL (4.1 mmol/L) or LDL cholesterol > 130 mg/dL (3.4 mmol/L) and one or more cardiovascular disease risk factors are present. LDL-C goal: <100 mg/dL (2.6 mmol/L). |
20–39 years | If additional ASCVD is present, consider the use of statin therapy. LDL-C goal: <100 mg/dL (2.6 mmol/L) |
40–75 years | Moderate-intensity statin therapy LDL-C goal: <100 mg/dL (2.6 mmol/L) |
If multiple ASCVD is present, or the patient is 50 to 70 years old, it would be reasonable to use high-intensity statin therapy. LDL-C goal: <100 mg/dL (2.6 mmol/L) | |
With a 10-year ASCVD risk of 20% or higher, it would be reasonable to add ezetimibe to maximally tolerated statin therapy to reduce LDL cholesterol levels by 50% or more. | |
>75 years | If on statin therapy, it is reasonable to continue. |
It may be reasonable to initiate statin therapy after considering potential benefits and risks. | |
Secondary Prevention | |
All ages with ASCVD | Recommendations |
High-intensity statin therapy | |
If the risk is very high using specific criteria, and LDL-C ≥ 70 mg/dL after a maximally tolerated statin dose, consider adding ezetimibe or a PCSK9 inhibitor to help lower LDL-C. LDL-C goal: <70 mg/dL (1.8 mmol/L) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Colom, C.; Rull, A.; Sanchez-Quesada, J.L.; Pérez, A. Cardiovascular Disease in Type 1 Diabetes Mellitus: Epidemiology and Management of Cardiovascular Risk. J. Clin. Med. 2021, 10, 1798. https://doi.org/10.3390/jcm10081798
Colom C, Rull A, Sanchez-Quesada JL, Pérez A. Cardiovascular Disease in Type 1 Diabetes Mellitus: Epidemiology and Management of Cardiovascular Risk. Journal of Clinical Medicine. 2021; 10(8):1798. https://doi.org/10.3390/jcm10081798
Chicago/Turabian StyleColom, Cristina, Anna Rull, José Luis Sanchez-Quesada, and Antonio Pérez. 2021. "Cardiovascular Disease in Type 1 Diabetes Mellitus: Epidemiology and Management of Cardiovascular Risk" Journal of Clinical Medicine 10, no. 8: 1798. https://doi.org/10.3390/jcm10081798