Elevated Monocyte Chemoattractant Protein-1 as the Independent Risk Factor of Delirium after Cardiac Surgery. A Prospective Cohort Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Overview
2.2. Preoperative Psychiatric and Psychological Procedures
2.3. Anesthesia and Surgery
2.4. Measurement of Serum MCP-1 and hsCRP Concentration
2.5. Delirium Diagnosis
2.6. Statistical Analysis
3. Results
3.1. Basic Findings
3.2. Variables Associated with Delirium according to Univariate and Multivariable Analysis
- According to univariate analysis, the individuals with raised pre-, and postoperative hsCRP, and preoperative MCP-1 levels were at higher risk of postoperative delirium compared to patients with lower hsCRP and MCP-1 concentrations (Table 2). Interestingly, after controlling for variables significant in univariate comparisons, only individuals with an MCP-1 level increased before surgery remained at increased risk of postoperative delirium development (Table 4). Other factors independently associated with delirium included: age, gender female, MDD diagnosis, peripheral vascular disease diagnosis, and the presence of extracorporeal circulation (Table 4).
- The most optimal cut-off for preoperative MCP-1 concentration in predicting the development of delirium was 371.81 ng/mL with sensitivity of 77.0% and specificity of 58.6%.
3.3. Correlations between MCP-1 Concentration, Demographic and Perioperative Variables
- Patients aged 65 and more who developed delirium after surgery had significantly higher baseline MCP-1 concentrations compared to younger, non-delirious subjects (466.66 ng/mL; IQR: 371.81–554.67 vs. 326.96 ng/mL; IQR: 263.01–408.31, p = 0.008).
- Preoperative MCP-1 level was also increased in individuals with a diagnosis of anxiety disorders who developed postoperative delirium compared to patients without anxiety disorders and without postoperative delirium (546.65 ng/mL; IQR: 450.45–598.58 vs. 352.44 ng/mL; IQR: 288.13–448.81, p = 0.05).
- Moreover, a nonparametric analysis of variance of aligned rank transformed data (ART) showed significant interaction for gender female and delirium with regard to the postoperative MCP-1 concentration (partial eta-squared = 0.023; p = 0.046). According to the post hoc pairwise comparisons, median postoperative MCP-1 concentration was increased among women who developed delirium compared to non-delirium women (678.46 ng/mL; IQR: 408.64–816.40 vs. 366.54 ng/mL; IQR: 273.18–520.03, p = 0.002), whereas there were no MCP-1 differences between men with and without delirium (p = 0.207).
- Furthermore, positive correlations between more advanced age, prolonged intubation time, and MCP-1 concentrations were observed (Table 5).
- According to the ART analysis, there were no significant differences in pre- and postoperative MCP-1 levels between patients with depression (p = 0.33; p = 0.85, respectively), cognitive impairment (p = 025; p = 022, respectively), undergoing CABG plus CVR surgery (p = 0.90 for postoperative MCP-1), and surgery with ECC (p = 0.38 for postoperative MCP-1) compared to patients without depression, without cognitive impairment, and CABG only and on-pump surgery. Furthermore, there were no significant correlations between MCP-1 concentrations and MMSE score, CDT score, surgery time and aortic cross-clamping, as well as pre- and postoperative hsCRP levels (Table 5).
4. Discussion
Study Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kazmierski, J.; Kowman, M.; Banach, M.; Pawelczyk, T.; Okonski, P.; Iwaszkiewicz, A.; Zaslonka, J.; Sobow, T.; Kloszewska, I. Preoperative predictors of delirium after cardiac surgery: A preliminary study. Gen. Hosp. Psychiatry 2006, 28, 536–538. [Google Scholar] [CrossRef]
- Krzych, L.J.; Wybraniec, M.T.; Krupka-Matuszczyk, I.; Skrzypek, M.; Bolkowska, A.; Wilczyński, M.; Bochenek, A.A. Complex assessment of the incidence and risk factors of delirium in a large cohort of cardiac surgery patients: A single-center 6-year experience. Biomed Res. Int. 2013, 2013, 835850. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rudolph, J.L.; Jones, R.N.; Grande, L.J.; Milberg, W.P.; King, E.G.; Lipsitz, L.A.; Levkoff, S.E.; Marcantonio, E.R. Impaired executive function is associated with delirium after coronary artery bypass graft surgery. J. Am. Geriatr. Soc. 2006, 54, 937–941. [Google Scholar] [CrossRef]
- Kazmierski, J.; Kowman, M.; Banach, M.; Fendler, W.; Okonski, P.; Banys, A.; Jaszewski, R.; Rysz, J.; Mikhailidis, D.P.; Sobow, T.; et al. Incidence and predictors of delirium after cardiac surgery: Results from The IPDACS Study. J. Psychosom. Res. 2010, 69, 179–185. [Google Scholar] [CrossRef] [PubMed]
- Bucerius, J.; Gummert, J.F.; Borger, M.A.; Walther, T.; Doll, N.; Falk, V.; Schmitt, D.V.; Mohr, F.W. Predictors of delirium after cardiac surgery delirium: Effect of beating-heart (off-pump) surgery. J. Thorac. Cardiovasc. Surg. 2004, 127, 57–64. [Google Scholar] [CrossRef] [Green Version]
- Detroyer, E.; Dobbels, F.; Verfaillie, E.; Meyfroidt, G.; Sergeant, P.; Milisen, K. Is preoperative anxiety and depression associated with onset of delirium after cardiac surgery in older patients? A prospective cohort study. J. Am. Geriatr. Soc. 2008, 56, 2278–2284. [Google Scholar] [CrossRef] [PubMed]
- Franco, K.; Litaker, D.; Locala, J.; Bronson, D. The cost of delirium in the surgical patient. Psychosomatics 2001, 42, 68–73. [Google Scholar] [CrossRef]
- Krzych, L.J.; Wybraniec, M.T.; Krupka-Matuszczyk, I.; Skrzypek, M.; Bolkowska, A.; Wilczyński, M.; Bochenek, A.A. Detailed insight into the impact of postoperative neuropsychiatric complications on mortality in a cohort of cardiac surgery subjects: A 23,000-patient-year analysis. J. Cardiothorac. Vasc. Anesth. 2014, 28, 448–457. [Google Scholar] [CrossRef]
- Saczynski, J.S.; Marcantonio, E.R.; Quach, L.; Fong, T.G.; Gross, A.; Inouye, S.K.; Jones, R.N. Cognitive trajectories after postoperative delirium. N. Engl. J. Med. 2012, 367, 30–39. [Google Scholar] [CrossRef] [Green Version]
- Hall, R.J.; Shenkin, S.D.; Maclullich, A.M. A systematic literature review of cerebrospinal fluid biomarkers in delirium. Dement. Geriatr. Cogn. Disord. 2011, 32, 79–93. [Google Scholar] [CrossRef]
- Conductier, G.; Blondeau, N.; Guyon, A.; Nahon, J.L.; Rovère, C. The role of monocyte chemoattractant protein MCP1/CCL2 in neuroinflammatory diseases. J. Neuroimmunol. 2010, 224, 93–100. [Google Scholar] [CrossRef] [PubMed]
- Simpson, J.E.; Newcombe, J.; Cuzner, M.L.; Woodroofe, M.N. Expression of monocyte chemoattractant protein-1 and other beta-chemokines by resident glia and inflammatory cells in multiple sclerosis lesions. J. Neuroimmunol. 1998, 84, 238–249. [Google Scholar] [CrossRef]
- Che, X.; Ye, W.; Panga, L.; Wu, D.C.; Yang, G.Y. Monocyte chemoattractant protein-1 expressed in neurons and astrocytes during focal ischemia in mice. Brain Res. 2001, 902, 171–177. [Google Scholar] [CrossRef]
- Lee, W.J.; Liao, Y.C.; Wang, Y.F.; Lin, I.F.; Wang, S.J.; Fuh, J.L. Plasma MCP-1 and Cognitive Decline in Patients with Alzheimer’s Disease and Mild Cognitive Impairment: A Two-year Follow-up Study. Sci. Rep. 2018, 8, 1280. [Google Scholar] [CrossRef]
- Britschgi, M.; Wyss-Coray, T. Systemic and acquired immune responses in Alzheimer’s disease. Int. Rev. Neurobiol. 2007, 82, 205–233. [Google Scholar] [CrossRef] [PubMed]
- Galimberti, D.; Fenoglio, C.; Lovati, C.; Venturelli, E.; Guidi, I.; Corrà, B.; Scalabrini, D.; Clerici, F.; Mariani, C.; Bresolin, N.; et al. Serum MCP-1 levels are increased in mild cognitive impairment and mild Alzheimer’s disease. Neurobiol. Aging 2006, 27, 1763–1768. [Google Scholar] [CrossRef] [PubMed]
- Kazmierski, J.; Banys, A.; Latek, J.; Bourke, J.; Jaszewski, R. Raised IL-2 and TNF-α concentrations are associated with postoperative delirium in patients undergoing coronary-artery bypass graft surgery. Int. Psychogeriatr. 2014, 26, 845–855. [Google Scholar] [CrossRef] [PubMed]
- Kazmierski, J.; Banys, A.; Latek, J.; Bourke, J.; Jaszewski, R. Cortisol levels and neuropsychiatric diagnosis as markers of postoperative delirium: A prospective cohort study. Crit. Care 2013, 17, R38. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Folstein, M.F.; Folstein, S.E.; McHugh, P.R. Mini-Mental State: A practical method for grading the cognitive state of patients for clinician. J. Psychiatr. Res. 1975, 12, 189–198. [Google Scholar] [CrossRef]
- Henderson, V.W.; Mack, W.; Williams, B.W. Spatial disorientation in Alzheimer’s disease. Arch. Neurol. 1989, 46, 391–394. [Google Scholar] [CrossRef] [PubMed]
- American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders, 5th ed.; American Psychiatric Publishing: Arlingon, VA, USA, 2013. [Google Scholar]
- Dittus, R.; Speroff, T.; Gautam, S.; Bernard, G.R.; Inouye, S.K. Evaluation of delirium in critically ill patients: Validation of the Confusion Assessment Method for the Intensive Care Unit (CAM-ICU). Crit. Care Med. 2001, 29, 1370–1379. [Google Scholar] [CrossRef]
- Kazmierski, J.; Kowman, M.; Banach, M.; Fendler, W.; Okonski, P.; Banys, A.; Jaszewski, R.; Rysz, J.; Sobow, T.; Kloszewska, I. The use of DSM-IV and ICD-10 criteria and diagnostic scales for delirium among cardiac surgery patients: Results from the IPDACS study. J. Neuropsychiatry Clin. Neurosci. 2010, 22, 426–432. [Google Scholar] [CrossRef] [PubMed]
- Sessler, C.N.; Gosnell, M.S.; Grap, M.J.; Brophy, G.M.; O’Neal, P.V.; Keane, K.A.; Tesoro, E.P.; Elswick, R.K. The Richmond Agitation-Sedation Scale: Validity and reliability in adult intensive care unit patients. Am. J. Respir. Crit. Care Med. 2002, 166, 1338–1344. [Google Scholar] [CrossRef] [PubMed]
- Sander, M.; von Heymann, V.; von Dossow, V.; Spaethe, C.; Konertz, W.F.; Jain, U.; Spies, C.D. Increased interleukin-6 after cardiac surgery predicts infection. Anesth. Analg. 2006, 102, 1623–1629. [Google Scholar] [CrossRef] [PubMed]
- Wan, S.; Leclerc, J.-L.; Vincent, J.-L. Inflammatory response to cardiopulmonary bypass: Mechanisms involved and possible therapeutic strategies. Chest 1997, 112, 676–692. [Google Scholar] [CrossRef] [PubMed]
- Ricklin, D.; Lambris, J.D. Complement in immune and inflammatory disorders: Pathophysiological mechanisms. J. Immunol. 2013, 190, 3831–3838. [Google Scholar] [CrossRef] [Green Version]
- Girard, T.D.; Ware, L.B.; Bernard, G.R.; Pandharipande, P.P.; Thompson, J.L.; Shintani, A.K.; Jackson, J.C.; Dittus, R.S.; Ely, E.W. Associations of markers of inflammation and coagulation with delirium during critical illness. Intensive Care Med. 2012, 38, 1965–1973. [Google Scholar] [CrossRef]
- McNeil, J.B.; Hughes, C.G.; Girard, T.; Ware, L.B.; Ely, E.W.; Chandrasekhar, R.; Han, J.H. Plasma biomarkers of inflammation, coagulation, and brain injury as predictors of delirium duration in older hospitalized patients. PLoS ONE 2019, 14, e0226412. [Google Scholar] [CrossRef] [PubMed]
- Van Munster, B.C.; Korevaar, J.C.; Zwinderman, A.H.; Levi, M.; Wiersinga, W.J.; De Rooij, S.E. Time-course of cytokines during delirium in elderly patients with hip fractures. J. Am. Geriatr. Soc. 2008, 56, 1704–1709. [Google Scholar] [CrossRef] [PubMed]
- Westhoff, D.; Witlox, J.; Koenderman, L.; Kalisvaart, K.J.; de Jonghe, J.F.; van Stijn, M.F.; Houdijk, A.P.; Hoogland, I.C.; Maclullich, A.M.; van Westerloo, D.J.; et al. Preoperative cerebrospinal fluid cytokine levels and the risk of postoperative delirium in elderly hip fracture patients. J. Neuroinflamm. 2013, 10, 122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Capri, M.; Yani, S.L.; Chattat, R.; Fortuna, D.; Bucci, L.; Lazarini, C.; Morsiani, C.; Catena, F.; Ansaloni, L.; Adversi, M.; et al. Pre-operative high-IL-6 blood level is a risk factor of post-operative delirium onset in old patients. Front. Endocrinol. 2014, 5, 173. [Google Scholar] [CrossRef] [Green Version]
- Deshmane, S.L.; Kremlev, S.; Amini, S.; Sawaya, B.E. Monocyte chemoattractant protein-1 (MCP-1): An overview. J. Interferon Cytokine Res. 2009, 29, 313–326. [Google Scholar] [CrossRef]
- Shimamoto, A.; Chong, A.J.; Yada, M.; Shomura, S.; Takayama, H.; Fleisig, A.J.; Agnew, M.L.; Hampton, C.R.; Rothnie, C.L.; Spring, D.J.; et al. Inhibition of Toll-like receptor 4 with eritoran attenuates myocardial ischemia-reperfusion injury. Circulation 2006, 114 (Suppl. 1), I270–I274. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frangogiannis, N.G.; Dewald, O.; Xia, Y.; Ren, G.; Haudek, S.; Leucker, T.; Kraemer, D.; Taffet, G.; Rollins, B.J.; Entman, M.L. Critical role of monocyte chemoattractant protein-1/cc chemokine ligand 2 in the pathogenesis of ischemic cardiomyopathy. Circulation 2007, 115, 584–592. [Google Scholar] [CrossRef]
- De Mendonca-Filho, H.T.; Pereira, K.C.; Fontes, M.; Vieira, D.A.; de Mendonça, M.L.; de Almeida Campos, L.A.; Castro-Faria-Neto, H.C. Circulating inflammatory mediators and organ dysfunction after cardiovascular surgery with cardiopulmonary bypass: A prospective observational study. Crit. Care 2006, 10, R46. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lindholm, E.E.; Aune, E.; Seljeflot, I.; Otterstad, J.E.; Kirkeboen, K.A. Biomarkers of inflammation in major vascular surgery: A prospective randomised trial. Acta Anaesthesiol. Scand. 2015, 59, 773–787. [Google Scholar] [CrossRef] [PubMed]
- Ejaz, A.A.; Kambhampati, G.; Ejaz, N.I.; Dass, B.; Lapsia, V.; Arif, A.A.; Asmar, A.; Shimada, M.; Alsabbagh, M.M.; Aiyer, R.; et al. Post-operative serum uric acid and acute kidney injury. J. Nephrol. 2012, 25, 497–505. [Google Scholar] [CrossRef]
- Yadav, A.; Saini, V.; Arora, S. MCP-1: Chemoattractant with a role beyond immunity: A review. Clin. Chim. Acta 2010, 411, 1570–1579. [Google Scholar] [CrossRef] [PubMed]
- Basurto, L.; Gregory, M.A.; Hernández, S.B.; Sánchez-Huerta, L.; Martínez, A.D.; Manuel-Apolinar, L.; Avelar, F.J.; Alonso, L.A.M.; Sánchez-Arenas, R. Monocyte chemoattractant protein-1 (MCP-1) and fibroblast growth factor-21 (FGF-21) as biomarkers of subclinical atherosclerosis in women. Exp. Gerontol. 2019, 124, 110624. [Google Scholar] [CrossRef]
- Haam, J.H.; Kim, Y.S.; Koo, H.S.; Haam, J.; Seo, N.K.; Kim, H.Y.; Park, K.C.; Park, K.S.; Kim, M.J. Intermuscular adipose tissue is associated with monocyte chemoattractant protein-1, independent of visceral adipose tissue. Clin. Biochem. 2016, 49, 439–443. [Google Scholar] [CrossRef] [Green Version]
- Oh, E.S.; Sieber, F.E.; Leoutsakos, J.M.; Inouye, S.K.; Lee, H.B. Sex Differences in Hip Fracture Surgery: Preoperative Risk Factors for Delirium and Postoperative Outcomes. J. Am. Geriatr. Soc. 2016, 64, 1616–1621. [Google Scholar] [CrossRef] [Green Version]
- Vogelzangs, N.; Beekman, A.T.; De Jonge, P.; Penninx, B.W. Anxiety disorders and inflammation in a large adult cohort. Transl. Psychiatry 2013, 3, e249. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, L.; Wang, M.; Guo, Y.Y.; Sun, T.; Li, Y.J.; Yang, Q.; Zhang, K.; Liu, S.B.; Zhao, M.G.; Wu, Y.M. Systemic inflammation induces anxiety disorder through CXCL12/CXCR4 pathway. Brain Behav. Immun. 2016, 56, 352–362. [Google Scholar] [CrossRef] [PubMed]
- Sheldon, J.; Riches, P.; Gooding, R.; Soni, N.; Hobbs, J.R. C-reactive protein and its cytokine mediators in intensive-care patients. Clin. Chem. 1993, 39, 147–150. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, M.; Masuyama, J.; Ikeda, U.; Kasahara, T.; Kitagawa, S.; Takahashi, Y.; Shimada, K.; Kano, S. Induction of monocyte chemoattractant protein-1 synthesis in human monocytes during transendothelial migration in vitro. Circ. Res. 1995, 76, 750–757. [Google Scholar] [CrossRef]
- Yong, K.K.; Chang, J.H.; Chien, M.H.; Tsao, S.M.; Yu, M.C.; Bai, K.J.; Tsao, T.C.; Yang, S.F. Plasma Monocyte Chemoattractant Protein-1 Level as a Predictor of the Severity of Community-Acquired Pneumonia. Int. J. Mol. Sci. 2016, 17, 179. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Georgakis, M.K.; Malik, R.; Björkbacka, H.; Pana, T.A.; Demissie, S.; Ayers, C.; Elhadad, M.A.; Fornage, M.; Beiser, A.S.; Benjamin, E.J.; et al. Circulating Monocyte Chemoattractant Protein-1 and Risk of Stroke: Meta-Analysis of Population-Based Studies Involving 17 180 Individuals. Circ. Res. 2019, 125, 773–782. [Google Scholar] [CrossRef] [Green Version]
- Piemonti, L.; Calori, G.; Lattuada, G.; Mercalli, A.; Ragogna, F.; Garancini, M.P.; Ruotolo, G.; Luzi, L.; Perseghin, G. Association between plasma monocyte chemoattractant protein-1 concentration and cardiovascular disease mortality in middle-aged diabetic and nondiabetic individuals. Diabetes Care 2009, 32, 2105–2110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Variable | Non-Delirious a (n = 116) | Delirious a (n = 61) | Effect Size b | p |
---|---|---|---|---|
Age (years) | 66 (61–69) | 70 (66–72) | −0.340 | <0.001 * |
Gender female | 15 (13.0%) | 24 (39.0%) | 0.303 | <0.001 * |
Peripheral vascular disease | 13 (11.2%) | 17 (27.9%) | 0.211 | 0.005 * |
Arterial hypertension | 89 (76.7%) | 56 (91.8%) | 0.186 | 0.013 * |
NYHA | 2 (2–2) | 2 (2–3) | −0.175 | 0.029 * |
Atrial fibrillation | 10 (8.6%) | 12 (19.7%) | 0.159 | 0.034 * |
Diabetes | 35 (30.0%) | 26 (42.6%) | 0.125 | 0.098 * |
Creatinine concentration (mcmol/L) | 83.7 (75.4–98.3) | 88 (68.1–104.8) | −0.028 | 0.758 |
Anemia c | 16 (13.8%) | 11 (18.0%) | 0.056 | 0.456 |
Cerebrovascular disease | 12 (10.3%) | 9 (14.7%) | 0.065 | 0.464 |
COPD | 6 (5%) | 5 (8.25) | 0.060 | 0.516 |
CCS | 2 (2–3) | 2 (2–3) | 0.115 | 0.503 |
Variable | Non-Delirious a (n = 116) | Delirious a (n = 61) | Effect Size b | p |
---|---|---|---|---|
Depression | 9 (7.8%) | 24 (39.0%) | 0.385 | <0.001 * |
Anxiety disorders | 5 (4.3%) | 9 (14.7%) | 0.184 | 0.02 * |
Alcohol addiction c | 8 (6.9%) | 5 (8.2%) | 0.024 | 0.768 |
MMSE score | 28 (26–29) | 28 (26–29) | 0.130 | 0.149 |
CDT score | 7 (5–7) | 6 (5–7) | 0.066 | 0.458 |
Preoperative MCP-1 (ng/mL) | 353.4 (290.7–446.0) 400.3 (114.6–1416.4) d | 458.4 (374.1–554.7) 483.5 (174.33–987.6) d | −0.404 | <0.001 * |
Postoperative MCP-1 (ng/mL) | 486.9 (359.8–712.1) 671.2 (202.0–2069.3) d | 598.9 (386.1–765.5) 712.5 (154.0–10688.1) d | −0.129 | 0.16 |
Preoperative hsCRP (mcg/mL) | 2.97 (0.94–7.57) 9.92 (0.04–151.5) d | 7.6 (2.2–12.0) 10.7 (0.08–102.7) d | −0.302 | 0.001 * |
Postoperative hsCRP (mcg/mL) | 151.6 (93.9–207.2) 177.3 (9.5–2116.1) d | 212.88 (124.6–277.6) 266 (30.4–4009.6) d | −0.322 | <0.001 * |
Variable | Non-Delirious a (n = 116) | Delirious a (n = 61) | Effect Size b | p |
---|---|---|---|---|
CABG with valve surgery | 8 (6.9%) | 9 (14.75%) | 0.127 | 0.092 * |
ECC | 81 (69.8%) | 52 (85%) | 0.170 | 0.024 * |
Hyperthermia d | 9 (7.8%) | 10 (16.4%) | 0.133 | 0.078 * |
Aortic cross-clamping c (min.) | 40 (30–55) | 43 (30–70) | −0.114 | 0.270 |
Duration of surgery (h) | 4.0 (3–4.5) | 4.0 (4–4.5) | −0.085 | 0.350 |
Circulatory support c | 2 (1.70%) | 1 (1.6%) | 0.003 | 0.97 |
Corticosteroids use c | 0 (0%) | 1 (1.6%) | 0.104 | 0.345 |
pCO2 ≥ 45 d (mmHg) | 24 (20.7%) | 18 (29.5%) | 0.099 | 0.19 |
pO2 ≤ 60 d (mmHg) | 18 (15.5%) | 13 (21.3%) | 0.072 | 0.33 |
Variables | Coefficient | Standard Error | OR (95% CI) | p |
---|---|---|---|---|
MCP-1 b | 0.002 | 0.001 | 1.002 (1.000–1.004) | 0.050 |
Depression b | 2.360 | 0.518 | 10.59 (3.835–29.238) | 0.000 |
Gender female | 1.779 | 0.465 | 5.992 (2.380–14.735) | 0.000 |
Age | 0.085 | 0.033 | 1.089 (1.021–1.161) | 0.010 |
ECC | 1.253 | 0.539 | 3.5 (1.217–10.072) | 0.020 |
Peripheral vascular disease b | 1.248 | 0.503 | 3.483 (1.300–9.331) | 0.013 |
Preoperative hsCRP c | 0.015 | 0.009 | 1.015 (0.998–1.032) | 0.094 |
Postoperative hsCRP c | 0.001 | 0.001 | 1.001 (0.999–1.003) | 0.340 |
Constant | −9.435 | 2.336 | - | 0.000 |
Variables | Spearman’s Rank Correlation | p |
---|---|---|
Preop-MCP-1 and age | 0.192 | 0.01 * |
Postop-MCP-1 and age | 0.059 | 0.43 |
Preop-MCP-1 and MMSE score | −0.029 | 0.69 |
Postop-MCP-1 and MMSE score | −0.080 | 0.28 |
Preop-MCP-1 and CDT score | −0.062 | 0.41 |
Postop-MCP-1 and CDT score | −0.092 | 0.22 |
Postop-MCP-1 and surgery time | 0.039 | 0.60 |
Postop-MCP-1 and aortic cross-clamping time | 0.124 | 0.15 |
Preop-MCP-1 and intubation time | 0.279 | 0.0002 * |
Postop-MCP-1 and intubation time | 0.148 | 0.048 * |
Preop-MCP-1 and preop-hsCRP | 0.11 | 0.13 |
Postop-MCP-1 and postop-hsCRP | 0.03 | 0.66 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kaźmierski, J.; Miler, P.; Pawlak, A.; Jerczyńska, H.; Woźniak, J.; Frankowska, E.; Brzezińska, A.; Woźniak, K.; Krejca, M.; Wilczyński, M. Elevated Monocyte Chemoattractant Protein-1 as the Independent Risk Factor of Delirium after Cardiac Surgery. A Prospective Cohort Study. J. Clin. Med. 2021, 10, 1587. https://doi.org/10.3390/jcm10081587
Kaźmierski J, Miler P, Pawlak A, Jerczyńska H, Woźniak J, Frankowska E, Brzezińska A, Woźniak K, Krejca M, Wilczyński M. Elevated Monocyte Chemoattractant Protein-1 as the Independent Risk Factor of Delirium after Cardiac Surgery. A Prospective Cohort Study. Journal of Clinical Medicine. 2021; 10(8):1587. https://doi.org/10.3390/jcm10081587
Chicago/Turabian StyleKaźmierski, Jakub, Piotr Miler, Agnieszka Pawlak, Hanna Jerczyńska, Joanna Woźniak, Emilia Frankowska, Agnieszka Brzezińska, Katarzyna Woźniak, Michał Krejca, and Mirosław Wilczyński. 2021. "Elevated Monocyte Chemoattractant Protein-1 as the Independent Risk Factor of Delirium after Cardiac Surgery. A Prospective Cohort Study" Journal of Clinical Medicine 10, no. 8: 1587. https://doi.org/10.3390/jcm10081587