Fatty Liver Is Associated with Low N-Terminal Pro-B-Type Natriuretic Peptide in a Healthy Population
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Measurements
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yancy, C.W.; Jessup, M.; Bozkurt, B.; Butler, J.; Casey, D.E., Jr.; Colvin, M.M.; Drazner, M.H.; Filippatos, G.S.; Fonarow, G.C.; Givertz, M.M.; et al. 2017 ACC/AHA/HFSA Focused Update of the 2013 ACCF/AHA Guideline for the Management of Heart Failure: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Failure Society of America. Circulation 2017, 136, e137–e161. [Google Scholar] [PubMed]
- Schlueter, N.; De Sterke, A.; Willmes, D.M.; Spranger, J.; Jordan, J.; Birkenfeld, A.L. Metabolic actions of natriuretic peptides and therapeutic potential in the metabolic syndrome. Pharmacol. Ther. 2014, 144, 12–27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Birkenfeld, A.L.; Budziarek, P.; Boschmann, M.; Moro, C.; Adams, F.; Franke, G.; Berlan, M.; Marquès, M.-A.; Sweep, F.C.; Luft, F.C.; et al. Atrial Natriuretic Peptide Induces Postprandial Lipid Oxidation in Humans. Diabetes 2008, 57, 3199–3204. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Engeli, S.; Birkenfeld, A.L.; Badin, P.-M.; Bourlier, V.; Louche, K.; Viguerie, N.; Thalamas, C.; Montastier, E.; Larrouy, D.; Harant, I.; et al. Natriuretic peptides enhance the oxidative capacity of human skeletal muscle. J. Clin. Investig. 2012, 122, 4675–4679. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pivovarova, O.; Gögebakan, Ö.; Klöting, N.; Sparwasser, A.; Weickert, M.O.; Haddad, I.; Nikiforova, V.J.; Bergmann, A.; Kruse, M.; Seltmann, A.-C.; et al. Insulin Up-Regulates Natriuretic Peptide Clearance Receptor Expression in the Subcutaneous Fat Depot in Obese Subjects: A Missing Link between CVD Risk and Obesity? J. Clin. Endocrinol. Metab. 2012, 97, E731–E739. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qiao, Z.P.; Zheng, K.I.; Zhu, P.W.; Gao, F.; Ma, H.L.; Li, G.; Li, Y.-Y.; Targher, G.; Byrne, C.D.; Zheng, M.-H. Lower levels of plasma NT-proBNP are associated with higher prevalence of NASH in patients with biopsy-proven NAFLD. Nutr. Metab. Cardiovasc. Dis. 2020, 30, 1820–1825. [Google Scholar] [CrossRef] [PubMed]
- Johansen, M.L.; Schou, M.; Rasmussen, J.; Rossignol, P.; Holm, M.R.; Chabanova, E.; Dela, F.; Faber, J.; Kistorp, C. Low N-terminal pro-brain natriuretic peptide levels are associated with non-alcoholic fatty liver disease in patients with type 2 diabetes. Diabetes Metab. 2019, 45, 429–435. [Google Scholar] [CrossRef] [PubMed]
- Sanchez, O.A.; Lazo-Elizondo, M.; Zeb, I.; Tracy, R.P.; Bradley, R.; Duprez, D.A.; Bahrami, H.; Peralta, C.A.; Daniels, L.B.; Lima, J.A.; et al. Computerized tomography measured liver fat is associated with low levels of N-terminal pro-brain natriuretic protein (NT-proBNP). Multi-Ethnic Study of Atherosclerosis. Metabolism 2016, 65, 728–735. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sung, K.-C.; Ryu, S.; Lee, J.-Y.; Kim, J.-Y.; Wild, S.H.; Byrne, C.D. Effect of exercise on the development of new fatty liver and the resolution of existing fatty liver. J. Hepatol. 2016, 65, 791–797. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, J.-T.; Kim, B.-G.; Jhun, H.-J. Alcohol Consumption and the CAGE Questionnaire in Korean Adults: Results from the Second Korea National Health and Nutrition Examination Survey. J. Korean Med. Sci. 2008, 23, 199–206. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chun, M.Y. Validity and Reliability of Korean Version of International Physical Activity Questionnaire Short Form in the Elderly. Korean J. Fam. Med. 2012, 33, 144–151. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fogelholm MI KA, E.L.; Malmberg JA RM, O.; Suni, J.; Santtila MA TT, I.; Kyröläinen, H.; Mäntysaari, M.; Oja, P. International Physical Activity Questionnaire: Validity against fitness. Med. Sci. Sports Exerc. 2006, 38, 753–760. [Google Scholar] [CrossRef] [PubMed]
- Levey, A.S.; Stevens, L.A.; Schmid, C.H.; Zhang, Y.L.; Castro, A.F., 3rd; Feldman, H.I.; Kusek, J.W.; Eggers, P.; Van Lente, F.; Greene, T.; et al. A new equation to estimate glomerular filtration rate. Ann. Intern. Med. 2009, 150, 604–612. [Google Scholar] [CrossRef] [PubMed]
- Levey, A.S.; Coresh, J.; Greene, T.; Marsh, J.; Stevens, L.A.; Kusek, J.W.; Van Lente, F.; for Chronic Kidney Disease Epidemiology Collaboration. Expressing the Modification of Diet in Renal Disease Study Equation for Estimating Glomerular Filtration Rate with Standardized Serum Creatinine Values. Clin. Chem. 2007, 53, 766–772. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mathiesen, U.; Franzen, L.; Åselius, H.; Resjö, M.; Jacobsson, L.; Foberg, U.; Frydén, A.; Bodemar, G. Increased liver echogenicity at ultrasound examination reflects degree of steatosis but not of fibrosis in asymptomatic patients with mild/moderate abnormalities of liver transaminases. Dig. Liver Dis. 2002, 34, 516–522. [Google Scholar] [CrossRef]
- Reilly, M.P.; Wolfe, M.L.; Rhodes, B.T.; Girman, M.C.; Mehta, N.; Rader, D.J. Measures of Insulin Resistance Add Incremental Value to the Clinical Diagnosis of Metabolic Syndrome in Association With Coronary Atherosclerosis. Circulation 2004, 110, 803–809. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wallace, T.M.; Matthews, D.R. The assessment of insulin resistance in man. Diabet. Med. 2002, 19, 527–534. [Google Scholar] [CrossRef] [PubMed]
- Samuel, V.T.; Liu, Z.-X.; Qu, X.; Elder, B.D.; Bilz, S.; Befroy, D.; Romanelli, A.J.; Shulman, G.I. Mechanism of Hepatic Insulin Resistance in Non-alcoholic Fatty Liver Disease. J. Biol. Chem. 2004, 279, 32345–32353. [Google Scholar] [CrossRef] [Green Version]
- Neeland, I.J.; Winders, B.R.; Ayers, C.R.; Das, S.R.; Chang, A.Y.; Berry, J.D.; Khera, A.; McGuire, D.K.; Vega, G.L.; De Lemos, J.A.; et al. Higher Natriuretic Peptide Levels Associate With a Favorable Adipose Tissue Distribution Profile. J. Am. Coll. Cardiol. 2013, 62, 752–760. [Google Scholar] [CrossRef] [Green Version]
- Nakatsuji, H.; Maeda, N.; Hibuse, T.; Hiuge, A.; Hirata, A.; Kuroda, Y.; Kishida, K.; Kihara, S.; Funahashi, T.; Shimomura, I. Reciprocal regulation of natriuretic peptide receptors by insulin in adipose cells. Biochem. Biophys. Res. Commun. 2010, 392, 100–105. [Google Scholar] [CrossRef] [PubMed]
- Everett, B.M.; Cook, N.R.; Chasman, D.I.; Magnone, M.C.; Bobadilla, M.; Rifai, N.; Ridker, P.M.; Pradhan, A.D. Prospective Evaluation of B-type Natriuretic Peptide Concentrations and the Risk of Type 2 Diabetes in Women. Clin. Chem. 2013, 59, 557–565. [Google Scholar] [CrossRef] [PubMed]
- Sung, K.-C.; Jeong, W.-S.; Wild, S.H.; Byrne, C.D. Combined Influence of Insulin Resistance, Overweight/Obesity, and Fatty Liver as Risk Factors for Type 2 Diabetes. Diabetes Care 2012, 35, 717–722. [Google Scholar] [CrossRef] [Green Version]
- Targher, G.; Byrne, C.D.; Lonardo, A.; Zoppini, G.; Barbui, C. Non-alcoholic fatty liver disease and risk of incident cardiovascular disease: A meta-analysis. J. Hepatol. 2016, 65, 589–600. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Targher, G.; Byrne, C.D. Clinical Review: Nonalcoholic fatty liver disease: A novel cardiometabolic risk factor for type 2 diabetes and its complications. J. Clin. Endocrinol. Metab. 2013, 98, 483–495. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miyashita, K.; Itoh, H.; Tsujimoto, H.; Tamura, N.; Fukunaga, Y.; Sone, M.; Yamahara, K.; Taura, D.; Inuzuka, M.; Sonoyama, T.; et al. Natriuretic peptides/cGMP/cGMP-dependent protein kinase cascades promote muscle mitochondrial biogenesis and prevent obesity. Diabetes 2009, 58, 2880–2892. [Google Scholar] [CrossRef] [Green Version]
- Souza, S.C.; Chau, M.D.; Yang, Q.; Gauthier, M.-S.; Clairmont, K.B.; Wu, Z.; Gromada, J.; Dole, W.P. Atrial natriuretic peptide regulates lipid mobilization and oxygen consumption in human adipocytes by activating AMPK. Biochem. Biophys. Res. Commun. 2011, 410, 398–403. [Google Scholar] [CrossRef] [PubMed]
- Lafontan, M.; Moro, C.; Berlan, M.; Crampes, F.; Sengenès, C.; Galitzky, J. Control of lipolysis by natriuretic peptides and cyclic GMP. Trends Endocrinol. Metab. 2008, 19, 130–137. [Google Scholar] [CrossRef] [PubMed]
- Sengenès, C.; Berlan, M.; de Glisezinski, I.; Lafontan, M.A.X.; Galitzky, J. Natriuretic peptides: A new lipolytic pathway in human adipocytes. FASEB J. 2000, 14, 1345–1351. [Google Scholar] [CrossRef] [PubMed]
- Saadeh, S.; Younossi, Z.M.; Remer, E.M.; Gramlich, T.; Ong, J.P.; Hurley, M.; Mullen, K.D.; Cooper, J.N.; Sheridan, M.J. The utility of radiological imaging in nonalcoholic fatty liver disease. Gastroenterology 2002, 123, 745–750. [Google Scholar] [CrossRef] [PubMed]
Total (n = 39,923) | Fatty Liver (n = 11,704) | No Fatty Liver (n = 28,219) | p Value | |
---|---|---|---|---|
Age | 39.1 ± 7.6 | 40.6 ± 7.5 | 38.4 ± 7.6 | <0.001 |
IPAQ % | <0.001 | |||
Sedentary | 19,493 (48.83) | 5602 (47.86) | 13,891 (49.23) | |
Mild | 14,288 (35.79) | 4500 (38.45) | 9788 (34.69) | |
HEPA | 5998 (15.03) | 1559 (13.32) | 4439 (15.73) | |
Unknown | 141 (0.35) | 43 (0.37) | 98 (0.35) | |
Current smoker, % | 4814 (12.06) | 2164 (18.49) | 2650 (9.39) | <0.001 |
Alcohol intake (g/day) | 4 (1–13) | 6 (2–15) | 4 (1–11) | <0.001 |
High alcohol intake, % | 3964 (10.58) | 1394 (12.48) | 2570 (9.78) | <0.001 |
BMI, kg/m2 | 23.4 ± 3.4 | 26.3 ± 3.1 | 22.3 ± 2.7 | <0.001 |
Waist, cm | 81.1 ± 9.8 | 89.6 ± 8 | 77.6 ± 8.3 | <0.001 |
Weight, kg | 67 ± 13.3 | 77.6 ± 11.7 | 62.6 ± 11.3 | <0.001 |
Higher education, % | 33,449 (83.79) | 9905 (84.63) | 23,544 (83.44) | 0.012 |
SBP, mmHg | 109 ± 12.1 | 115.4 ± 11.4 | 106.4 ± 11.3 | <0.001 |
DBP, mmHg | 69.9 ± 9.4 | 74.6 ± 9.1 | 67.9 ± 8.8 | <0.001 |
Fasting glucose, mg/dL | 93.7 ± 10.9 | 98 ± 13.9 | 92 ± 8.7 | <0.001 |
Total cholesterol, mg/dL | 190.5 ± 33.1 | 201.6 ± 34.6 | 185.9 ± 31.2 | <0.001 |
LDL-C, mg/dL | 127.1 ± 32.1 | 140.9 ± 32.3 | 121.4 ± 30.3 | <0.001 |
HDL-C, mg/dL | 61.2 ± 16.6 | 50.4 ± 12.2 | 65.7 ± 16.1 | <0.001 |
Triglycerides, mg/dL | 91 (65–135) | 140 (101–197) | 78 (59–108) | <0.001 |
AST, IU/L | 20 (16–24) | 23 (19–30) | 19 (16–22) | <0.001 |
ALT, IU/L | 19 (13–28) | 30 (21–45) | 16 (12–22) | <0.001 |
rGTP, IU/L | 20 (14–34) | 34 (23–54) | 17 (12–25) | <0.001 |
NT-proBNP, ng/L | 20.76 (12.79–35.8) | 14.5 (8.99–23.5) | 24.4 (14.5–40.4) | <0.001 |
eGFR, ml/min/1.73 m2 | 104.1 ± 13.2 | 101.1 ± 13 | 105.3 ± 13 | <0.001 |
HOMA-IR | 1.38 (0.93–2.04) | 2.03 (1.41–2.92) | 1.19 (0.82–1.7) | <0.001 |
Total (n = 39,923) | HOMA IR < 75% (n = 29,943) | HOMA IR ≥ 75% (n = 9980) | p Value | |
---|---|---|---|---|
HOMA-IR, range | 0.04–30.93 | 0.04–2.03 | 2.03–30.93 | |
Age | 39.1 ± 7.6 | 39.1 ± 7.6 | 38.8 ± 7.6 | <0.001 |
IPAQ % | <0.001 | |||
sedentary | 19,501 (48.83) | 14,289 (47.71) | 5212 (52.2) | |
Mild | 14,293 (35.79) | 10,725 (35.81) | 3568 (35.74) | |
HEPA | 6001 (15.03) | 4835 (16.14) | 1166 (11.68) | |
Unknown | 141 (0.35) | 103 (0.34) | 38 (0.38) | |
Current smoker, % | 4817 (12.06) | 3387 (11.31) | 1430 (14.32) | <0.001 |
Alcohol intake (g/day) | 4 (1–13) | 4 (1–11) | 5 (1–14) | <0.001 |
High alcohol intake, % | 3967 (10.59) | 2888 (10.29) | 1079 (11.48) | 0.001 |
BMI, kg/m2 | 23.4 ± 3.4 | 22.6 ± 2.9 | 25.9 ± 3.7 | <0.001 |
Waist, cm | 81.1 ± 9.8 | 78.9 ± 8.7 | 88 ± 9.9 | <0.001 |
Weight, kg | 67 ± 13.3 | 64.2 ± 11.8 | 75.3 ± 14 | <0.001 |
Higher education, % | 33,462 (83.79) | 25,348 (84.63) | 8114 (81.27) | <0.001 |
SBP, mmHg | 109 ± 12.1 | 107.2 ± 11.5 | 114.7 ± 12 | <0.001 |
DBP, mmHg | 69.9 ± 9.4 | 68.6 ± 9 | 73.5 ± 9.5 | <0.001 |
Fasting glucose, mg/dL | 93.7 ± 10.9 | 91.5 ± 8 | 100.3 ± 14.9 | <0.001 |
Total cholesterol, mg/dL | 190.5 ± 33.1 | 188.6 ± 32.3 | 196.2 ± 34.7 | <0.001 |
LDL-C, mg/dL | 127.1 ± 32.1 | 124.8 ± 31.6 | 134.1 ± 32.7 | <0.001 |
HDL-C, mg/dL | 61.2 ± 16.6 | 63.9 ± 16.5 | 53.3 ± 14.3 | <0.001 |
Triglycerides, mg/dL | 91 (65–135) | 82 (60–115) | 134 (94–193) | <0.001 |
AST, IU/L | 20 (16–24) | 19 (16–23) | 22 (17–28) | <0.001 |
ALT, IU/L | 19 (13–28) | 17 (13–25) | 27 (17–42) | <0.001 |
rGTP, IU/L | 20 (14–34) | 18 (13–29) | 31 (19–52) | <0.001 |
NT-proBNP, ng/L | 20.77 (12.79–35.8) | 22.8 (14.3–38.7) | 15.5 (9.82–26.86) | <0.001 |
eGFR, ml/min/1.73 m2 | 104.1 ± 13.2 | 104.2 ± 13 | 103.6 ± 13.5 | <0.001 |
Fatty liver, % | 11,704 (29.3) | 5896 (19.7) | 5808 (58.2) | <0.001 |
Total (n = 39,923) | Male (n = 23,009) | Female (n = 16,914) | p Value | |
---|---|---|---|---|
Age | 39.1 ± 7.6 | 39.5 ± 7.5 | 38.4 ± 7.7 | <0.001 |
IPAQ % | <0.001 | |||
sedentary | 19,501 (48.83) | 9626 (41.83) | 9875 (58.35) | |
Mild | 14,294 (35.79) | 9373 (40.73) | 4921 (29.08) | |
HEPA | 6001 (15.03) | 3950 (17.16) | 2051 (12.12) | |
Unknown | 141 (0.35) | 64 (0.28) | 77 (0.45) | |
Current smoker, % | 4817 (12.06) | 4625 (20.1) | 192 (1.13) | <0.001 |
Alcohol intake (g/day) | 4 (1–13) | 7 (3–19) | 2 (0–6) | <0.001 |
High alcohol intake, % | 3967 (10.59) | 3138 (14.06) | 829 (5.47) | <0.001 |
BMI, kg/m2 | 23.4 ± 3.4 | 24.7 ± 3 | 21.7 ± 3.1 | <0.001 |
Waist, cm | 81.1 ± 9.8 | 86 ± 8 | 74.6 ± 8.2 | <0.001 |
Weight, kg | 67 ± 13.3 | 74.8 ± 10.4 | 56.3 ± 8.7 | <0.001 |
Higher education, % | 33,462 (83.79) | 20,298 (88.2) | 13,164 (77.78) | <0.001 |
SBP, mmHg | 109 ± 12.1 | 113.8 ± 10.9 | 102.6 ± 10.4 | <0.001 |
DBP, mmHg | 69.9 ± 9.4 | 73.2 ± 8.8 | 65.3 ± 8.1 | <0.001 |
Fasting glucose, mg/dL | 93.7 ± 10.9 | 95.7 ± 11.2 | 91.1 ± 9.8 | <0.001 |
Total cholesterol, mg/dL | 190.5 ± 33.1 | 195.8 ± 33.3 | 183.3 ± 31.3 | <0.001 |
LDL-C, mg/dL | 127.1 ± 32.1 | 135.1 ± 31.5 | 116.2 ± 29.7 | <0.001 |
HDL-C, mg/dL | 61.2 ± 16.6 | 55 ± 13.9 | 69.7 ± 16.3 | <0.001 |
Triglycerides, mg/dL | 91 (65–135) | 112 (79–162) | 71 (55–97) | <0.001 |
AST, IU/L | 20 (16–24) | 22 (18–27) | 17 (15–20) | <0.001 |
ALT, IU/L | 19 (13–28) | 24 (18–35) | 13 (11–18) | <0.001 |
rGTP, IU/L | 20 (14–34) | 28 (20–45) | 13 (11–18) | <0.001 |
NT-proBNP, ng/L | 20.77 (12.79–35.8) | 14.6 (9.43–23.38) | 32.8 (21.3–50.3) | <0.001 |
eGFR, ml/min/1.73 m2 | 104.1 ± 13.2 | 100.4 ± 12.7 | 109.1 ± 12.2 | <0.001 |
HOMA IR (median (IQR)) | 1.38 (0.93–2.03) | 1.49 (1–2.2) | 1.25 (0.84–1.82) | <0.001 |
Fatty liver, % | 11,704 (29.3) | 9904 (43.0) | 1800 (10.6) | <0.001 |
Total (n = 39,923) | Male (n = 23,009) | Female (n = 16,914) | |
---|---|---|---|
Fatty liver | |||
No | 1 (reference) | 1 (reference) | 1 (reference) |
Yes | 0.833 (0.819–0.848) | 0.831 (0.814–0.848) | 0.795 (0.765–0.826) |
Fatty liver * | |||
No | 1 (reference) | 1 (reference) | 1 (reference) |
Yes | 0.864 (0.849–0.880) | 0.849 (0.816–0.884) | 0.856 (0.839–0.874) |
HOMA IR | |||
75% < | 1 (reference) | 1 (reference) | 1 (reference) |
75% ≥ | 0.859 (0.844–0.874) | 0.859 (0.841–0.877) | 0.844 (0.820–0.869) |
BMI | |||
BMI < 25 | 1 (reference) | 1 (reference) | 1 (reference) |
BMI ≥ 25 | 0.951 (0.931–0.971) | 0.939 (0.916–0.962) | 0.939 (0.9–0.978) |
Total (n = 39,923) | Male (n = 23,009) | Female (n = 16,914) | |
---|---|---|---|
Fatty liver *- high HOMA IR index ** | |||
No-No | 1 (reference) | 1 (reference) | 1 (reference) |
No-Yes | 0.888 (0.868–0.908) | 0.900 (0.871–0.929) | 0.869 (0.842–0.897) |
Yes-No | 0.856 (0.838–0.874) | 0.854 (0.834–0.875) | 0.825 (0.783–0.869) |
Yes-Yes | 0.755 (0.737–0.773) | 0.752 (0.732–0.773) | 0.712 (0.783–0.869) |
p for trend | <0.001 | <0.001 | <0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choi, H.-I.; Lee, M.Y.; Oh, B.K.; Lee, S.J.; Kang, J.G.; Lee, S.H.; Lee, J.-Y.; Kim, B.J.; Kim, B.S.; Kang, J.H.; et al. Fatty Liver Is Associated with Low N-Terminal Pro-B-Type Natriuretic Peptide in a Healthy Population. J. Clin. Med. 2021, 10, 1402. https://doi.org/10.3390/jcm10071402
Choi H-I, Lee MY, Oh BK, Lee SJ, Kang JG, Lee SH, Lee J-Y, Kim BJ, Kim BS, Kang JH, et al. Fatty Liver Is Associated with Low N-Terminal Pro-B-Type Natriuretic Peptide in a Healthy Population. Journal of Clinical Medicine. 2021; 10(7):1402. https://doi.org/10.3390/jcm10071402
Chicago/Turabian StyleChoi, Hyo-In, Mi Yeon Lee, Byeong Kil Oh, Seung Jae Lee, Jeong Gyu Kang, Sung Ho Lee, Jong-Young Lee, Byung Jin Kim, Bum Soo Kim, Jin Ho Kang, and et al. 2021. "Fatty Liver Is Associated with Low N-Terminal Pro-B-Type Natriuretic Peptide in a Healthy Population" Journal of Clinical Medicine 10, no. 7: 1402. https://doi.org/10.3390/jcm10071402
APA StyleChoi, H.-I., Lee, M. Y., Oh, B. K., Lee, S. J., Kang, J. G., Lee, S. H., Lee, J.-Y., Kim, B. J., Kim, B. S., Kang, J. H., & Sung, K.-C. (2021). Fatty Liver Is Associated with Low N-Terminal Pro-B-Type Natriuretic Peptide in a Healthy Population. Journal of Clinical Medicine, 10(7), 1402. https://doi.org/10.3390/jcm10071402