Treatment Strategy in Human Ocular Toxoplasmosis: Why Antibiotics Have Failed
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
4.1. General Aspects Affecting Treatment of OT
4.2. Adverse Effects of Antiparasitic Therapy
4.3. Intravitreal Treatment of OT
4.4. The Role of Corticosteroids as Adjuvant Therapy for OT
4.5. Risk of and Time to Recurrences
4.6. Trimethoprim-Sulfamethoxazole and the Risk of Recurrences of OT
4.7. Why Antibiotics Have Failed in OT
4.8. Therapeutic Decision Making in OT in the Absence of Evidence
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Furtado, J.M.; Winthrop, K.L.; Butler, N.J.; Smith, J.R. Ocular toxoplasmosis I: Parasitology, epidemiology and public health. Clin. Exp. Ophthalmol. 2013, 41, 82–94. [Google Scholar] [CrossRef]
- Petersen, E.; Kijlstra, A.; Stanford, M. Epidemiology of Ocular Toxoplasmosis. Ocul. Immunol. Inflamm. 2012, 20, 68–75. [Google Scholar] [CrossRef]
- Maenz, M.; Schlüter, D.; Liesenfeld, O.; Schares, G.; Gross, U.; Pleyer, U. Ocular toxoplasmosis past, present and new aspects of an old disease. Prog. Retin. Eye Res. 2014, 39, 77–106. [Google Scholar] [CrossRef]
- Bodaghi, B.; Touitou, V.; Fardeau, C.; Paris, L.; le Hoang, P. Toxoplasmosis: New challenges for an old disease. Eye 2012, 26, 241–244. [Google Scholar] [CrossRef]
- Delair, E.; Monnet, D.; Grabar, S.; Dupouy-Camet, J.; Yera, H.; Brézin, A.P. Respective Roles of Acquired and Congenital Infections in Presumed Ocular Toxoplasmosis. Am. J. Ophthalmol. 2008, 146, 851–855. [Google Scholar] [CrossRef] [PubMed]
- Jones, J.L.; Bonetti, V.; Holland, G.N.; Press, C.; Sanislo, S.R.; Khurana, R.N.; Montoya, J.G. Ocular Toxoplasmosis in the United States: Recent and Remote Infections. Clin. Infect. Dis. 2014, 60, 271–273. [Google Scholar] [CrossRef] [Green Version]
- Vasconcelos-Santos, D.V. Ocular manifestations of systemic disease: Toxoplasmosis. Curr. Opin. Ophthalmol. 2012, 23, 543–550. [Google Scholar] [CrossRef]
- Holland, G.N. Ocular toxoplasmosis: A global reassessment. Part I. Epidemiology and course of disease. Am. J. Ophthalmol. 2003, 136, 973–988. [Google Scholar] [CrossRef]
- Hernández-De-Los-Ríos, A.; Murillo-Leon, M.; Mantilla-Muriel, L.E.; Arenas, A.F.; Vargas-Montes, M.; Cardona, N.; De-La-Torre, A.; Sepúlveda-Arias, J.C.; Gómez-Marín, J.E. Influence of Two Major Toxoplasma Gondii Virulence Factors (ROP16 and ROP18) on the Immune Response of Peripheral Blood Mononuclear Cells to Human Toxoplasmosis Infection. Front. Cell. Infect. Microbiol. 2019, 9, 413. [Google Scholar] [CrossRef]
- Rochet, E.; Argy, N.; Greigert, V.; Brunet, J.; Sabou, M.; Marcellin, L.; De-La-Torre, A.; Sauer, A.; Candolfi, E.; Pfaff, A.W. Type I ROP16 regulates retinal inflammatory responses during ocular toxoplasmosis. PLoS ONE 2019, 14, e0214310. [Google Scholar] [CrossRef] [PubMed]
- Zorgi, N.E.; Costa, A.; Galisteo, A.J., Jr.; Nascimento, N.; de Andrade, H.F., Jr. Humoral responses and immune protection in mice immunized with irradiated T. gondii tachyzoites and challenged with three genetically distinct strains of T. gondii. Immunol Lett. 2011, 138, 187–196. [Google Scholar] [CrossRef] [PubMed]
- Fernández, C.; Jaimes, J.; Ortiz, M.C.; Ramírez, J.D. Host and Toxoplasma gondii genetic and non-genetic factors influencing the development of ocular toxoplasmosis: A systematic review. Infect. Genet. Evol. 2016, 44, 199–209. [Google Scholar] [CrossRef] [PubMed]
- Rudin, C.; Hirsch, H.H.; Spaelti, R.; Schaedelin, S.; Klimkait, T. Decline of Seroprevalence and Incidence of Congenital Toxoplasmosis Despite Changing Prevention Policy—Three Decades of Cord-blood Screening in North-western Switzerland. Pediatr. Infect. Dis. J. 2018, 37, 1087–1092. [Google Scholar] [CrossRef]
- Nogareda, F.; le Strat, Y.; Villena, I.; de Valk, H.; Goulet, V. Incidence and prevalence of Toxoplasma gondii infection in women in France, 1980–2020: Model-based estimation. Epidemiol. Infect. 2014, 142, 1661–1670. [Google Scholar] [CrossRef] [Green Version]
- Hofhuis, A.; van Pelt, W.; van Duynhoven, Y.T.H.P.; Nijhuis, C.D.M.; Mollema, L.; van der Klis, F.R.M.; Havelaar, A.H.; Kortbeek, L.M. Decreased prevalence and age-specific risk factors for Toxoplasma gondii IgG antibodies in The Netherlands between 1995/1996 and 2006/2007. Epidemiol. Infect. 2010, 139, 530–538. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jones, J.L.; Wilson, M.; Kruszon-Moran, D.; Sanders-Lewis, K. Toxoplasma gondii Infection in the United States, 1999–2004, Decline from the Prior Decade. Am. J. Trop. Med. Hyg. 2007, 77, 405–410. [Google Scholar] [CrossRef]
- Jones, J.L.; Price, C.; Wilkins, P.P.; Kruszon-Moran, D.; Rivera, H.N. Toxoplasma gondii Seroprevalence in the United States 2009–2010 and Comparison with the Past Two Decades. Am. J. Trop. Med. Hyg. 2014, 90, 1135–1139. [Google Scholar] [CrossRef]
- Jones, J.L.; Kruszon-Moran, D.; Elder, S.; Rivera, H.N.; Press, C.; Montoya, J.G.; McQuillan, G.M. Toxoplasma gondii Infection in the United States, 2011–2014. Am. J. Trop. Med. Hyg. 2018, 98, 551–557. [Google Scholar] [CrossRef]
- Wilking, H.; Thamm, M.; Stark, K.; Aebischer, T.; Seeber, F. Prevalence, incidence estimations and risk factors of Toxoplasma gondii infection in Germany: A representative, cross-sectional, serological study. Sci. Rep. 2016, 6, 22551. [Google Scholar] [CrossRef]
- Grigg, M.E.; Dubey, J.P.; Nussenblatt, R.B. Ocular Toxoplasmosis: Lessons from Brazil. Am. J. Ophthalmol. 2015, 159, 999–1001. [Google Scholar] [CrossRef] [Green Version]
- Jones, J.L.; Holland, G.N. Annual burden of ocular toxoplasmosis in the US. Am. J. Trop. Med. Hyg. 2010, 82, 464–465. [Google Scholar] [CrossRef] [Green Version]
- Belk, K.; Connolly, M.P.; Schlesinger, L.; Ben-Harari, R.R. Patient and treatment pathways for toxoplasmosis in the United States: Data analysis of the Vizient Health Systems Data from 2011 to 2017. Pathog. Glob. Heal. 2018, 112, 428–437. [Google Scholar] [CrossRef]
- Elbaz, H.; Schulz, A.; Ponto, K.A.; Nickels, S.; Pfeiffer, N.; Mirshahi, A.; Peto, T. Posterior segment eye lesions: Prevalence and associations with ocular and systemic parameters: Results from the Gutenberg Health Study. Graefe’s Arch. Clin. Exp. Ophthalmol. 2019, 257, 2127–2135. [Google Scholar] [CrossRef] [PubMed]
- Brydak-Godowska, J.; Moskal, K.; Borkowski, P.K.; Przybyś, M.; Turczyńska, M.; Kęcik, D. A Retrospective Observational Study of Uveitis in a Single Center in Poland with a Review of Findings in Europe. Med. Sci. Monit. 2018, 24, 8734–8749. [Google Scholar] [CrossRef]
- Bigna, J.J.; Tochie, J.N.; Tounouga, D.N.; Bekolo, A.O.; Ymele, N.S.; Youda, E.L.; Sime, P.S.; Nansseu, J.R. Global, regional, and country seroprevalence of Toxoplasma gondii in pregnant women: A systematic review, modelling and meta-analysis. Sci. Rep. 2020, 10, 1–10. [Google Scholar] [CrossRef]
- de-la-Torre, A.; López-Castillo, C.A.; Gómez-Marín, J.E. Incidence and clinical characteristics in a Colombian cohort of ocular toxoplasmosis. Eye 2009, 23, 1090–1093. [Google Scholar] [CrossRef] [PubMed]
- Glasner, P.D.; Silveira, C.; Kruszon-Moran, D.; Martins, M.C.; Burnier, M.; Silveira, S.; Camargo, M.E.; Nussenblatt, R.B.; Kaslow, R.A.; Belfort, R. An Unusually High Prevalence of Ocular Toxoplasmosis in Southern Brazil. Am. J. Ophthalmol. 1992, 114, 136–144. [Google Scholar] [CrossRef]
- Silveira, C.; Belfort, R.; Muccioli, C.; Abreu, M.T.; Martins, M.C.; Victora, C.; Nussenblatt, R.B.; Holland, G.N. A follow-up study of Toxoplasma gondii infection in southern Brazil. Am. J. Ophthalmol. 2001, 131, 351–354. [Google Scholar] [CrossRef]
- de-la-Torre, A.; López-Castillo, C.A.; Rueda, J.C.; Mantilla, R.D.; Gómez-Marín, E.; Anaya, J.M. Clinical patterns of uveitis in two ophthalmology centres in Bogota, Colombia. Clin. Exp. Ophthalmol. 2009, 37, 458–466. [Google Scholar] [CrossRef]
- Velasco-Velásquez, S.; Celis-Giraldo, D.; Hincapié, A.B.; Erira, D.A.H.; López, S.S.C.; Orozco, N.M.; Gómez-Marín, J.E. Clinical, Socio-economic and Environmental Factors Related with Recurrences in Ocular Toxoplasmosis in Quindío, Colombia. Ophthalmic Epidemiol. 2020, 2020, 1–7. [Google Scholar] [CrossRef]
- Subilia-Guignier, A.; Villard, O.; Filisetti, D.; Escande, B.; Candolfi, E.; Speeg-Schatz, C.; Sauer, A. Intérêt du dépistage ophtalmologique systématique de la toxoplasmose congénitale: Étude d’une cohorte alsacienne entre 1990 et 2011. J. Français d’Ophtalmologie 2014, 37, 365–370. [Google Scholar] [CrossRef]
- Pleyer, U.; Groß, U.; Schlüter, D.; Wilking, H.; Seeber, F. Toxoplasmosis in Germany: Epidemiology, Diagnosis, Risk Factors, and Treatment. Dtsch. Aerzteblatt Online 2019, 116, 435–444. [Google Scholar] [CrossRef]
- Sagel, U.; Krämer, A.; Mikolajczyk, R.T. Incidence of maternal Toxoplasma infections in pregnancy in Upper Austria, 2000–2007. BMC Infect. Dis. 2011, 11, 348. [Google Scholar] [CrossRef] [Green Version]
- Pradhan, E.; Bhandari, S.; Gilbert, R.E.; Stanford, M. Antibiotics versus no treatment for toxoplasma retinochoroiditis. Cochrane Database Syst. Rev. 2016, 2016, CD002218. [Google Scholar] [CrossRef] [Green Version]
- Jasper, S.; Vedula, S.S.; John, S.S.; Horo, S.; Sepah, Y.J.; Nguyen, Q.D. Corticosteroids as adjuvant therapy for ocular toxoplasmosis. Cochrane Database Syst. Rev. 2017, 1, CD007417. [Google Scholar] [CrossRef]
- Kim, S.J.; Scott, I.U.; Brown, G.C.; Brown, M.M.; Ho, A.C.; Recchia, F.M. Interventions for toxoplasma retinochoroiditis: A report by the American Academy of Ophthalmology. Ophthalmology 2013, 120, 371–378. [Google Scholar] [CrossRef]
- Garweg, J.G. Determinants of immunodiagnostic success in human ocular toxoplasmosis. Parasite Immunol. 2005, 27, 61–68. [Google Scholar] [CrossRef]
- Sauer, A.; Rochet, E.; Lahmar, I.; Brunet, J.; Sabou, M.; Bourcier, T.; Candolfi, E.; Pfaff, A.W. The local immune response to intraocular Toxoplasma re-challenge: Less pathology and better parasite control through Treg/Th1/Th2 induction. Int. J. Parasitol. 2013, 43, 721–728. [Google Scholar] [CrossRef]
- Thieme, C.; Schlickeiser, S.; Metzner, S.; Dames, C.; Pleyer, U. Immune Mediator Profile in Aqueous Humor Differs in Patients with Primary Acquired Ocular Toxoplasmosis and Recurrent Acute Ocular Toxoplasmosis. Mediat. Inflamm. 2019, 2019, 9356728. [Google Scholar] [CrossRef] [Green Version]
- Garweg, J.G.; Stanford, M.R. Therapy for ocular toxoplasmosis-the future. Ocul. Immunol. Inflamm. 2013, 21, 300–305. [Google Scholar] [CrossRef]
- Silveira, C.; Belfort, R.; Muccioli, C.; Holland, G.N.; Victora, C.G.; Horta, B.L.; Yu, F.; Nussenblatt, R.B. The effect of long-term intermittent trimethoprim/sulfamethoxazole treatment on recurrences of toxoplasmic retinochoroiditis. Am. J. Ophthalmol. 2002, 134, 41–46. [Google Scholar] [CrossRef]
- Silveira, C.; Muccioli, C.; Nussenblatt, R.; Belfort, R. The Effect of Long-term Intermittent Trimethoprim/Sulfamethoxazole Treatment on Recurrences of Toxoplasmic Retinochoroiditis: 10 Years of Follow-up. Ocul. Immunol. Inflamm. 2014, 23, 246–247. [Google Scholar] [CrossRef] [Green Version]
- Felix, J.P.F.; Lira, R.P.C.; Cosimo, A.B.; da Costa, R.L.C.; Nascimento, M.A.; Arieta, C.E.L. Trimethoprim-Sulfamethoxazole versus Placebo in Reducing the Risk of Toxoplasmic Retinochoroiditis Recurrences: A Three-Year Follow-up. Am. J. Ophthalmol. 2016, 170, 176–182. [Google Scholar] [CrossRef]
- Felix, J.P.F.; Lira, R.P.C.; Grupenmacher, A.T.; Filho, H.L.G.D.A.; Cosimo, A.B.; Nascimento, M.A.; Arieta, C.E.L. Long-term Results of Trimethoprim-Sulfamethoxazole versus Placebo to Reduce the Risk of Recurrent Toxoplasma gondii Retinochoroiditis. Am. J. Ophthalmol. 2020, 213, 195–202. [Google Scholar] [CrossRef]
- Perkins, E.S.; Smith, C.H.; Schofield, P.B. Treatment of Uveitis with Pyrimethamine (Daraprim). Br. J. Ophthalmol. 1956, 40, 577–586. [Google Scholar] [CrossRef] [Green Version]
- Acers, T.E. Toxoplasmic Retinochoroiditis: A Double Blind Therapeutic Study. Arch. Ophthalmol. 1964, 71, 58–62. [Google Scholar] [CrossRef]
- Ghosh, M.; Levy, P.M.; Leopold, I.H. Therapy of Toxoplasmosis Uveitis. Am. J. Ophthalmol. 1965, 59, 55–61. [Google Scholar] [CrossRef]
- Nolan, J.; Rosen, E.S. Treatment of active toxoplasmic retino-choroiditis. Br. J. Ophthalmol. 1968, 52, 396–399. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Colin, J.; Harie, J.C. Choriorétinites présumées toxoplasmiques: Etude comparative des traitements par pyriméthamine et sul-fadiazine ou clindamycine. J. Fr. Ophtalmol. 1989, 12, 161–165. [Google Scholar]
- Soheilian, M.; Sadoughi, M.-M.; Ghajarnia, M.; Dehghan, M.H.; Yazdani, S.; Behboudi, H.; Anisian, A.; Peyman, G.A. Prospective Randomized Trial of Trimethoprim/Sulfamethoxazole versus Pyrimethamine and Sulfadiazine in the Treatment of Ocular Toxoplasmosis. Ophthalmology 2005, 112, 1876–1882. [Google Scholar] [CrossRef]
- Zamora, Y.F.; Arantes, T.; Reis, F.A.; Garcia, C.R.; Saraceno, J.J.F.; Muccioli, C. Local treatment of toxoplasmic retinochoroiditis with intravitreal clindamycin and dexamethasone. Arq. Bras. Oftalmol. 2015, 78, 216–219. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lashay, A.; Mirshahi, A.; Parandin, N.; Esfahani, H.R.; Mazloumi, M.; Lashay, M.R.; Johari, M.K.; Ashrafi, E. A prospective randomized trial of azithromycin versus trimethoprim/sulfamethoxazole in treatment of toxoplasmic retinochoroiditis. J. Curr. Ophthalmol. 2017, 29, 120–125. [Google Scholar] [CrossRef] [PubMed]
- Yates, W.B.; Chiong, F.; Zagora, S.; Post, J.J.; Wakefield, D.; McCluskey, P. Ocular Toxoplasmosis in a Tertiary Referral Center in Sydney Australia—Clinical Features, Treatment, and Prognosis. Asia-Pac. J. Ophthalmol. 2019, 8, 280–284. [Google Scholar] [CrossRef] [PubMed]
- Casoy, J.; Nascimento, H.; Silva, L.M.P.; Fernández-Zamora, Y.; Muccioli, C.; Dias, J.R.D.O.; Nóbrega, M.J.; Nóbrega, H.A.J.; Zummo, J. Effectiveness of Treatments for Ocular Toxoplasmosis. Ocul. Immunol. Inflamm. 2019, 28, 249–255. [Google Scholar] [CrossRef] [PubMed]
- Reich, M.; Becker, M.D.; Mackensen, F. Influence of drug therapy on the risk of recurrence of ocular toxoplasmosis. Br. J. Ophthalmol. 2015, 100, 195–199. [Google Scholar] [CrossRef]
- Borkowski, P.K.; Brydak-Godowska, J.; Basiak, W.; Świtaj, K.; Żarnowska-Prymek, H.; Olszyńska-Krowicka, M.; Kajfasz, P.; Rabczenko, D. The Impact of Short-Term, Intensive Antifolate Treatment (with Pyrimethamine and Sulfadoxine) and Antibiotics Followed by Long-Term, Secondary Antifolate Prophylaxis on the Rate of Toxoplasmic Retinochoroiditis Recurrence. PLoS Negl. Trop. Dis. 2016, 10, e0004892. [Google Scholar] [CrossRef]
- Arantes, T.E.; Silveira, C.; Holland, G.N.; Muccioli, C.; Yu, F.; Jones, J.L.; Goldhardt, R.; Lewis, K.G.; Belfort, R. Ocular Involvement Following Postnatally Acquired Toxoplasma gondii Infection in Southern Brazil: A 28-Year Experience. Am. J. Ophthalmol. 2015, 159, 1002–1012.e2. [Google Scholar] [CrossRef]
- Holland, G.N.; Lewis, K.G. An update on current practices in the management of ocular toxoplasmosis 1, 2 1InternetAdvance publication at ajo.com April 12, 2002. 2Additional information is available online at ajo.com. Am. J. Ophthalmol. 2002, 134, 102–114. [Google Scholar] [CrossRef]
- Engstrom, R.E., Jr.; Holland, G.N.; Nussenblatt, R.B.; Jabs, D.A. Current practices in the management of ocular toxoplasmosis. Am. J. Ophthalmol. 1991, 111, 601–610. [Google Scholar] [CrossRef]
- Torun, N.; Sherif, Z.; Garweg, J.; Pleyer, U. Diagnosis and treatment of ocular toxoplasmosis: A survey of German-speaking oph-thalmologists. Ophthalmologe 2008, 105, 1023–1028. [Google Scholar] [CrossRef]
- Basu, S.; Biswas, J.; Pleyer, U.; Pathangay, A.; Manohar-Babu, B. An ophthalmologist survey-based study of the atypical presenta-tions and current treatment practices of ocular toxoplasmosis in India. J. Parasit Dis. 2011, 35, 148–154. [Google Scholar] [CrossRef] [Green Version]
- Morais, F.B.; Arantes, T.E.F.E.; Muccioli, C. Current Practices in Ocular Toxoplasmosis: A Survey of Brazilian Uveitis Specialists. Ocul. Immunol. Inflamm. 2016, 26, 317–323. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Lin, X.; Lu, F. Current treatment of ocular toxoplasmosis in immunocompetent patients: A network meta-analysis. Acta Trop. 2018, 185, 52–62. [Google Scholar] [CrossRef] [PubMed]
- Montazeri, M.; Mehrzadi, S.; Sharif, M.; Sarvi, S.; Shahdin, S.; Daryani, A. Activities of anti-Toxoplasma drugs and compounds against tissue cysts in the last three decades (1987 to 2017), a systematic review. Parasitol. Res. 2018, 117, 3045–3057. [Google Scholar] [CrossRef] [PubMed]
- Dunay, I.R.; Gajurel, K.; Dhakal, R.; Liesenfeld, O.; Montoya, J.G. Treatment of Toxoplasmosis: Historical Perspective, Animal Models, and Current Clinical Practice. Clin. Microbiol. Rev. 2018, 31, e00057-17. [Google Scholar] [CrossRef] [Green Version]
- Ozgonul, C.; Besirli, C.G. Recent Developments in the Diagnosis and Treatment of Ocular Toxoplasmosis. Ophthalmic Res. 2016, 57, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Vishnevskia-Dai, V.; Achiron, A.; Buhbut, O.; Berar, O.V.; Musika, A.A.; Elyashiv, S.M.; Hecht, I. Chorio-retinal toxoplasmosis: Treatment outcomes, lesion evolution and long-term follow-up in a single tertiary center. Int. Ophthalmol. 2019, 40, 811–821. [Google Scholar] [CrossRef] [PubMed]
- Scherrer, J.; Iliev, M.E.; Halberstadt, M.; Kodjikian, L.; Garweg, J.G. Visual function in human ocular toxoplasmosis. Br. J. Ophthalmol. 2007, 91, 233–236. [Google Scholar] [CrossRef] [Green Version]
- Harrell, M.; Carvounis, P.E. Current Treatment of Toxoplasma Retinochoroiditis: An Evidence-Based Review. J. Ophthalmol. 2014, 2014, 273506. [Google Scholar] [CrossRef]
- Ben-Harari, R.R.; Goodwin, E.; Casoy, J. Adverse Event Profile of Pyrimethamine-Based Therapy in Toxoplasmosis: A Systematic Review. Drugs R&D 2017, 17, 523–544. [Google Scholar] [CrossRef] [Green Version]
- Rajapakse, S.; Shivanthan, M.C.; Samaranayake, N.; Rodrigo, C.; Fernando, S.D. Antibiotics for human toxoplasmosis: A systematic review of randomized trials. Pathog. Glob. Heal. 2013, 107, 162–169. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soheilian, M.; Ramezani, A.; Azimzadeh, A.; Sadoughi, M.M.; Dehghan, M.H.; Shahghadami, R.; Yaseri, M.; Peyman, G.A. Random-ized trial of intravitreal clindamycin and dexamethasone versus pyrimethamine, sulfadiazine, and prednisolone in treatment of ocular toxoplasmosis. Ophthalmology 2011, 118, 134–141. [Google Scholar] [CrossRef] [PubMed]
- Baharivand, N.; Mahdavifard, A.; Fouladi, R.F. Intravitreal clindamycin plus dexamethasone versus classic oral therapy in toxoplasmic retinochoroiditis: A prospective randomized clinical trial. Int. Ophthalmol. 2013, 33, 39–46. [Google Scholar] [CrossRef] [PubMed]
- Oray, M.; Ozdal, P.C.; Cebeci, Z.; Kir, N.; Tugal-Tutkun, I. Fulminant Ocular Toxoplasmosis: The Hazards of Corticosteroid Monotherapy. Ocul. Immunol. Inflamm. 2015, 24, 637–646. [Google Scholar] [CrossRef]
- Wakefield, D.; Cunningham, E.T.; Pavesio, C.; Garweg, J.G.; Zierhut, M. Controversies in Ocular Toxoplasmosis. Ocul. Immunol. Inflamm. 2011, 19, 2–9. [Google Scholar] [CrossRef]
- Vedula, S.S.; Nguyen, Q.D. Corticosteroids for ocular toxoplasmosis. Cochrane Database Syst. Rev. 2008. [Google Scholar] [CrossRef] [Green Version]
- Friedmann, C.T.; Knox, D.L. Variations in Recurrent Active Toxoplasmic Retinochoroiditis. Arch. Ophthalmol. 1969, 81, 481–493. [Google Scholar] [CrossRef]
- Gilbert, R.E.; Dunn, D.T.; Lightman, S.; Murray, P.I.; Pavésio, C.E.; Gormley, P.D.; Masters, J.; Parker, S.P.; Stanford, M.R. Incidence of symptomatic toxoplasma eye disease: Aetiology and public health implications. Epidemiol. Infect. 1999, 123, 283–289. [Google Scholar] [CrossRef] [PubMed]
- Bosch-Driessen, L.E.; Berendschot, T.T.; Ongkosuwito, J.V.; Rothova, A. Ocular toxoplasmosis: Clinical features and prognosis of 154 patients. Ophthalmology 2002, 109, 869–878. [Google Scholar] [CrossRef]
- Garweg, J.G.; Scherrer, J.N.; Halberstadt, M. Recurrence characteristics in European patients with ocular toxoplasmosis. Br. J. Ophthalmol. 2008, 92, 1253–1256. [Google Scholar] [CrossRef]
- Dutra, M.S.; Béla, S.R.; Peixoto-Rangel, A.L.; Fakiola, M.; Cruz, A.G.; Gazzinelli, A.; Quites, H.F.; Bahia-Oliveira, L.M.G.; Peixe, R.G.; Campos, W.R.; et al. Association of a NOD2 Gene Polymorphism and T-Helper 17 Cells with Presumed Ocular Toxoplasmosis. J. Infect. Dis. 2012, 207, 152–163. [Google Scholar] [CrossRef] [Green Version]
- Portillo, J.-A.C.; Okenka, G.; Reed, E.; Subauste, A.; van Grol, J.; Gentil, K.; Komatsu, M.; Tanaka, K.; Landreth, G.; Levine, B.; et al. The CD40-Autophagy Pathway Is Needed for Host Protection Despite IFN-Γ-Dependent Immunity and CD40 Induces Autophagy via Control of P21 Levels. PLoS ONE 2010, 5, e14472. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Norose, K.; Kikumura, A.; Luster, A.D.; Hunter, C.A.; Harris, T.H. CXCL10 Is Required to Maintain T-Cell Populations and to Control Parasite Replication during Chronic Ocular Toxoplasmosis. Investig. Opthalmol. Vis. Sci. 2011, 52, 389–398. [Google Scholar] [CrossRef] [PubMed]
- Reich, M.; Ruppenstein, M.; Becker, M.D.; Mackensen, F. Time patterns of recurrences and factors predisposing for a higher risk of recurrence of ocular toxoplasmosis. Retina 2015, 35, 809–819. [Google Scholar] [CrossRef] [PubMed]
- Pleyer, U.; Ness, T.; Garweg, J. Rezidivprophylaxe bei okulärer Toxoplasmose. Klin. Mon. Augenheilkd. 2020, 237, 599–604. [Google Scholar] [CrossRef] [PubMed]
- Heringer, G.C.; Oueghlani, E.; Dell’Omo, R.; Curi, A.L.L.; Oréfice, F.; Pavésio, C.E. Risk of reactivation of toxoplasmic retinitis following intraocular procedures without the use of prophylactic therapy. Br. J. Ophthalmol. 2014, 98, 1218–1220. [Google Scholar] [CrossRef] [Green Version]
- Barb, S.M.; Patel, A.V.; Young, L.H. Toxoplasmic Retinitis: To Treat or Not to Treat and with What Drug? Int. Ophthalmol. Clin. 2015, 55, 137–145. [Google Scholar] [CrossRef]
- Park, J.H.; Lee, S.-Y.; Lee, E.K. Morphological characteristics of ocular toxoplasmosis and its regression pattern on swept-source optical coherence tomography angiography: A case report. BMC Ophthalmol. 2019, 19, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Ouyang, Y.; Pleyer, U.; Shao, Q.; Keane, P.A.; Stübiger, N.; Joussen, A.M.; Sadda, S.R.; Heussen, F.M. Evaluation of cystoid change phe-notypes in ocular toxoplasmosis using optical coherence tomography. PLoS ONE 2014, 9, e86626. [Google Scholar] [CrossRef] [PubMed]
- Ammar, F.; Mahjoub, A.; Ben Abdesslam, N.; Knani, L.; Ghorbel, M.; Mahjoub, H. Spectral optical coherence tomography findings in patients with ocular toxoplasmosis: A case series study. Ann. Med. Surg. 2020, 54, 125–128. [Google Scholar] [CrossRef]
- de Oliveira Dias, J.R.; Campelo, C.; Novais, E.A.; de Andrade, G.C.; Marinho, P.; Zamora, Y.F.; Peixoto, L.F.; Maia, M.; Nascimento, H. New findings useful for clinical practice using swept-source optical coherence tomography angiography in the follow-up of active ocular toxoplasmosis. Int. J. Retin. Vitr. 2020, 6, 30. [Google Scholar] [CrossRef] [PubMed]
- Lima, G.S.C.; Saraiva, P.G.C.; Saraiva, F.P. Current Therapy of Acquired Ocular Toxoplasmosis: A Review. J. Ocul. Pharmacol. Ther. 2015, 31, 511–517. [Google Scholar] [CrossRef] [PubMed]
- Garweg, J.G. Ocular Toxoplasmosis: An Update. Klin. Mon. Augenheilkd. 2016, 233, 534–539. [Google Scholar] [CrossRef] [PubMed]
Reference Number | First Author | Year of Publication | n (Cases) | Country of Origin | Treatment | BCVA | Recurrence Events | Time to Recurrence | Lesion Size | Change in Inflammation | Time to Healing | Safety and Side Effects | Remarks |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
[45] | Perkins ES | 1956 | 164 | Great Britain | PY vs. placebo | + | − | − | − | + | − | + | comparison of dye-test positive and negative uveitis, toxoplasmosis in ~25% |
[46] | Acers TE | 1964 | 20 | USA | PY/SA/steroids vs. steroids alone | + | + | − | − | + | + | + | active and inactive lesions included |
[47] | Ghosh M | 1965 | 114 | USA | PY/SA/steroids | + | + | − | − | − | + | + | lesions in 76% within 11 weeks inactive |
[48] | Nolan J | 1968 | 69 | Great Britain | PY vs. Spiramycin vs. nothing + steroids | − | + | − | − | − | + | − | results indicate AB effect |
[49] | Colin J | 1989 | 29 | France | PY/SA vs. Clindamycin subconjunctivally | + | + | − | − | − | + | + | subconjunctival clindamycin as effective as systemic PY/SA, but no untreated control group |
[50] | Soheilian M | 2005 | 59 | Iran | PY/SA vs. TMP/SMZ | + | + | − | + | − | − | + | reduction in lesion size and improvement in VA comparable between TMP/SMZ and PY/SA |
[51] | Zamora YF | 2015 | 16 | Brazil | intravitreal clindamycin + dexamethasone | + | − | − | − | − | + | − | five eyes were systemically pre-treated, no control |
[52] | Lashay A | 2016 | 27 | Iran | Azithromycin vs. TMP/SMZ for 6–12 weeks | + | − | − | + | + | + | − | reduction in lesion size and improvement in VA comparable between TMP/SMZ and azithromycin |
[53] | Yates WB | 2019 | 48 | Australia | different treatments; Clindamycin in 71%, steroids after 1 week, PY/SA, if macula at risk | + | + | − | + | − | − | − | fewer recurrences and better BCVA compared to published series |
[54] | Casoy J | 2020 | 451 | Brazil | Six different AB regimens, no steroids, TMP/SMZ and PY/SA most frequent | + | − | − | − | − | + | + | all AB treatment combinations similarly effective and supportable regarding their side effects |
Reference Number | First Author | Year of Publication | Design | Country of Origin | n (Cases) | Follow Up (Months) | Treatment | Primary Outcome | AB Effect on Primary Outcome |
---|---|---|---|---|---|---|---|---|---|
[45] | Perkins ES | 1956 | RCT | Great Britain | 164 | 1 | PY vs. placebo | Effect of ABs on BCVA and uveitis | no effect of ABs on BCVA, but shorter time to healing compared to placebo. Active AND inactive cases were included |
[46] | Acers TE | 1964 | RCT | USA | 20 | 24 | PY/SA/steroids vs. steroids alone | Effect of ABs and steroids on BCVA and time to healing | no effect of AB + corticosteroids on BCVA and time to healing compared to corticosteroids alone |
[47] | Ghosh M | 1965 | non-comparative case series | USA | 114 | 24 | PY/SA/steroids | Time to healing under ABs and steroids | effect of ABs and steroids on time to healing |
[48] | Nolan J | 1968 | retrospective case series | Great Britain | 69 | 108 | PY vs. Spiramycin vs. nothing + steroids | Effect of ABs and steroids on time to healing and recurrences | shorter time to healing, less recurrences |
[49] | Colin J | 1989 | RCT | France | 29 | 14 | PY/SA vs. Clindamycin subconjunctivally | Effect of ABs on BCVA | no difference between ABs on BCVA and time to healing |
[50] | Soheilian M | 2005 | RCT | Iran | 59 | 24 | PY/SA vs. TMP/SMZ | Difference of 2 different ABs on lesion size reduction | no difference between ABs on reduction in lesion size and BCVA |
[51] | Zamora YF | 2015 | non-comparative case series | Brazil | 16 | 12 | intravitreal clindamycin + dexamethasone | Effect of ABs on time to healing and changes in BCVA | ABs and steroids improve time to healing and BCVA |
[52] | Lashay A | 2016 | RCT | Iran | 27 | 3 | Azithromycin vs. TMP/SMZ | Effect of ABs on time to healing | no difference of ABs on time to healing, lesion size and BCVA |
[53] | Yates WB | 2019 | retrospectivecase series | Australia | 48 | 26 | different treatments; Clindamycin in 71%, steroids after 1 week, PY/SA, if macula at risk | Effect of ABs and steroids on BCVA | effect of ABs and steroids on BCVA and time to healing |
[54] | Casoy J | 2020 | retrospective case series | Brazil | 451 | nr | 6 regimens, no steroids, TMP/SMZ and PY/SA most frequent | Comparative effect of different ABs | no difference between ABs on time to healing and BCVA |
Reference Number | First Author | Year of Publication | n (Cases) | Country of Origin | Treatment | BCVA | Recurrence Events | Time to Recurrence | Lesion Size | Change in Inflammation | Time to Healing | Safety and Side Effects | Remarks |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
[41,42] | Silveira C | 2002/15 | 124 | Brazil | treatment and recurrence prophylaxis with TMP/SMZ 2×/week over 20 months | − | + | + | − | + | − | + | After 2 years, fewer recurrences in the prophylaxis group. After 10 years, recurrence rate identical in both groups. |
[55] | Reich M | 2016 | 84 | Germany | 20 different AB regimen +/− steroids | − | + | + | − | − | − | − | time to recurrence not longer after ABs than without therapy, faster recurrence after steroids without AB |
[56] | Borkowski PK | 2016 | 352 | Poland | treatment and recurrence prophylaxis for 6 months with Pyrimethamine and Sulfadoxine (Fansidar®) | − | + | + | − | − | − | − | Pyrimethamin/Sulfadoxine treatment and prophylaxis for 6 months prevented recurrences over 3.5 years |
[43,44] | Fernandes-Felix JP | 2016/20 | 141 | Brazil | treatment and recurrence prophylaxis with TMP/SMZ 3×/week for 12 months | + | + | + | − | − | − | − | Effect of TMP/SMZ treatment and prophylaxis over 12 months on recurrences over 5 years |
Reference Number | First Author | Year of Publication | Design | Origin | n (Cases) | Follow Up (Months) | Treatment | Primary Outcome | AB Effect on Primary Outcome |
---|---|---|---|---|---|---|---|---|---|
[41,42] | Silveira C | 2002/15 | RCT | Brazil | 124 | 120 | treatment and recurrence prophylaxis with TMP/SMZ 2×/week over 20 months | Effect of AB treatment and prophylaxis on recurrences | recurrences under therapy and prophylaxis for 12 months less frequent |
[55] | Reich M | 2016 | observational case series | Germany | 84 | 36 | 20 different AB regimen +/− steroids | recurrence-free survival after ABs and steroids | no difference in recurrence risk for treated and untreated OT. Recurrences more frequent under steroids without AB coverage |
[56] | Borkowski PK | 2016 | non-comparative case series | Poland | 352 | 42 | treatment and recurrence prophylaxis for 6 months with Pyrimethamine and Sulfadoxine (Fansidar®) | recurrence behaviour | recurrences under therapy and prophylaxis for 6 months less frequent |
[43,44] | Fernandes-Felix JP | 2016/20 | RCT | Brazil | 141 | 72 | treatment and recurrence prophylaxis with TMP/SMZ 3x/week for 12 months | no recurrences over 3, single over 5 years after prophylaxis | recurrences under therapy and prophylaxis for 12 months less frequent |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Garweg, J.G.; Pleyer, U. Treatment Strategy in Human Ocular Toxoplasmosis: Why Antibiotics Have Failed. J. Clin. Med. 2021, 10, 1090. https://doi.org/10.3390/jcm10051090
Garweg JG, Pleyer U. Treatment Strategy in Human Ocular Toxoplasmosis: Why Antibiotics Have Failed. Journal of Clinical Medicine. 2021; 10(5):1090. https://doi.org/10.3390/jcm10051090
Chicago/Turabian StyleGarweg, Justus G., and Uwe Pleyer. 2021. "Treatment Strategy in Human Ocular Toxoplasmosis: Why Antibiotics Have Failed" Journal of Clinical Medicine 10, no. 5: 1090. https://doi.org/10.3390/jcm10051090
APA StyleGarweg, J. G., & Pleyer, U. (2021). Treatment Strategy in Human Ocular Toxoplasmosis: Why Antibiotics Have Failed. Journal of Clinical Medicine, 10(5), 1090. https://doi.org/10.3390/jcm10051090