Myocardial Involvement Detected Using Cardiac Magnetic Resonance Imaging in Patients with Systemic Sclerosis: A Prospective Observational Study
Abstract
:1. Introduction
2. Methods
2.1. Study Population
2.2. CMR Protocol
2.3. CMR Analysis
2.4. ECHO
2.5. Biomarkers
2.6. Assessment of SSc Disease Severity
2.7. Statistical Analysis
3. Results
3.1. Characteristics of the Study Population
3.2. Cardiac Magnetic Resonance
3.3. Biomarkers and Their Correlation with CMR and Disease Activity
3.4. The Effect of RAAS
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Abraham, D.J.; Krieg, T.; Distler, J.; Distler, O. Overview of Pathogenesis of Systemic Sclerosis. Rheumatology 2009, 48, iii3–iii7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Simeón-Aznar, C.P.; Fonollosa-Plá, V.; Tolosa-Vilella, C.; Espinosa-Garriga, G.; Campillo-Grau, M.; Ramos-Casals, M.; García-Hernández, F.J.; Castillo-Palma, M.J.; Sánchez-Román, J.; Callejas-Rubio, J.L.; et al. Registry of the Spanish Network for Systemic Sclerosis: Survival, Prognostic Factors, and Causes of Death. Medicine 2015, 94, e1728. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fernández-Codina, A.; Simeón-Aznar, C.P.; Pinal-Fernandez, I.; Rodríguez-Palomares, J.; Pizzi, M.N.; Hidalgo, C.E.; Guillén-Del Castillo, A.; Prado-Galbarro, F.J.; Sarria-Santamera, A.; Fonollosa-Plà, V.; et al. Cardiac Involvement in Systemic Sclerosis: Differences between Clinical Subsets and Influence on Survival. Rheumatol. Int. 2017, 37, 75–84. [Google Scholar] [CrossRef]
- Feher, A.; Boutagy, N.E.; Oikonomou, E.K.; Thorn, S.; Liu, Y.-H.; Miller, E.J.; Sinusas, A.J.; Hinchcliff, M. Impaired Myocardial Flow Reserve on 82Rubidium Positron Emission Computed Tomography in Patients with Systemic Sclerosis. J. Rheumatol. 2021, 48, 1574–1582. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, F.; Ramires, F.J.A.; Arteaga, E.; Ianni, B.M.; Bonfá, E.S.D.O.; Mady, C. Cardiac Remodeling in Patients with Systemic Sclerosis with No Signs or Symptoms of Heart Failure: An Endomyocardial Biopsy Study. J. Card. Fail. 2003, 9, 311–317. [Google Scholar] [CrossRef]
- Rodríguez-Reyna, T.S.; Morelos-Guzman, M.; Hernández-Reyes, P.; Montero-Duarte, K.; Martínez-Reyes, C.; Reyes-Utrera, C.; Vazquez-La Madrid, J.; Morales-Blanhir, J.; Núñez-Álvarez, C.; Cabiedes-Contreras, J. Assessment of Myocardial Fibrosis and Microvascular Damage in Systemic Sclerosis by Magnetic Resonance Imaging and Coronary Angiotomography. Rheumatology 2015, 54, 647–654. [Google Scholar] [CrossRef] [Green Version]
- Germain, P.; Ghannudi, S.E.; Jeung, M.-Y.; Ohlmann, P.; Epailly, E.; Roy, C.; Gangi, A. Native T1 Mapping of the Heart—A Pictorial Review. Clin. Med. Insights Cardiol. 2014, 8, CMC–S19005. [Google Scholar] [CrossRef] [Green Version]
- Perea, R.J.; Ortiz-Perez, J.T.; Sole, M.; Cibeira, M.T.; de Caralt, T.M.; Prat-Gonzalez, S.; Bosch, X.; Berruezo, A.; Sanchez, M.; Blade, J. T1 Mapping: Characterisation of Myocardial Interstitial Space. Insights Imaging 2014, 6, 189–202. [Google Scholar] [CrossRef] [Green Version]
- Thuny, F.; Lovric, D.; Schnell, F.; Bergerot, C.; Ernande, L.; Cottin, V.; Derumeaux, G.; Croisille, P. Quantification of Myocardial Extracellular Volume Fraction with Cardiac MR Imaging for Early Detection of Left Ventricle Involvement in Systemic Sclerosis. Radiology 2014, 271, 373–380. [Google Scholar] [CrossRef] [Green Version]
- Hromádka, M.; Seidlerová, J.; Suchý, D.; Rajdl, D.; Lhotský, J.; Ludvík, J.; Rokyta, R.; Baxa, J. Myocardial Fibrosis Detected by Magnetic Resonance in Systemic Sclerosis Patients—Relationship with Biochemical and Echocardiography Parameters. Int. J. Cardiol. 2017, 249, 448–453. [Google Scholar] [CrossRef]
- Dumitru, R.B.; Bissell, L.-A.; Erhayiem, B.; Fent, G.; Kidambi, A.; Swoboda, P.; Abignano, G.; Donica, H.; Burska, A.; Greenwood, J.P.; et al. Predictors of Subclinical Systemic Sclerosis Primary Heart Involvement Characterised by Microvasculopathy and Myocardial Fibrosis. Rheumatology 2021, 60, 2934–2945. [Google Scholar] [CrossRef]
- Bosello, S.; de Luca, G.; Berardi, G.; Canestrari, G.; de Waure, C.; Gabrielli, F.A.; di Mario, C.; Forni, F.; Gremese, E.; Ferraccioli, G. Cardiac Troponin T and NT-ProBNP as Diagnostic and Prognostic Biomarkers of Primary Cardiac Involvement and Disease Severity in Systemic Sclerosis: A Prospective Study. Eur. J. Intern. Med. 2019, 60, 46–53. [Google Scholar] [CrossRef]
- Gao, Q.; Li, Y.; Li, M. The Potential Role of IL-33/ST2 Signaling in Fibrotic Diseases. J. Leukoc. Biol. 2015, 98, 15–22. [Google Scholar] [CrossRef]
- Utsunomiya, A.; Oyama, N.; Hasegawa, M. Potential Biomarkers in Systemic Sclerosis: A Literature Review and Update. J. Clin. Med. 2020, 9, 3388. [Google Scholar] [CrossRef] [PubMed]
- Avouac, J.; Meune, C.; Chenevier-Gobeaux, C.; Borderie, D.; Lefevre, G.; Kahan, A.; Allanore, Y. Cardiac Biomarkers in Systemic Sclerosis: Contribution of High-Sensitivity Cardiac Troponin in Addition to N-Terminal pro-Brain Natriuretic Peptide. Arthritis Care Res. 2015, 67, 1022–1030. [Google Scholar] [CrossRef] [PubMed]
- Affandi, A.J.; Radstake, T.R.D.J.; Marut, W. Update on Biomarkers in Systemic Sclerosis: Tools for Diagnosis and Treatment. Semin. Immunopathol. 2015, 37, 475–487. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xue, H.; Greiser, A.; Zuehlsdorff, S.; Jolly, M.-P.; Guehring, J.; Arai, A.E.; Kellman, P. Phase-Sensitive Inversion Recovery for Myocardial T1 Mapping with Motion Correction and Parametric Fitting. Magn. Reson. Med. 2013, 69, 1408–1420. [Google Scholar] [CrossRef] [Green Version]
- Pokeerbux, M.R.; Giovannelli, J.; Dauchet, L.; Mouthon, L.; Agard, C.; Lega, J.C.; Allanore, Y.; Jego, P.; Bienvenu, B.; Berthier, S.; et al. Survival and Prognosis Factors in Systemic Sclerosis: Data of a French Multicenter Cohort, Systematic Review, and Meta-Analysis of the Literature. Arthritis Res. Ther. 2019, 21, 86. [Google Scholar] [CrossRef] [Green Version]
- Bissell, L.-A.; Anderson, M.; Burgess, M.; Chakravarty, K.; Coghlan, G.; Dumitru, R.B.; Graham, L.; Ong, V.; Pauling, J.D.; Plein, S.; et al. Consensus Best Practice Pathway of the UK Systemic Sclerosis Study Group: Management of Cardiac Disease in Systemic Sclerosis. Rheumatology 2017, 56, 912–921. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Li, J.; Gao, J. Functions of Galectin-3 and Its Role in Fibrotic Diseases. J. Pharmacol. Exp. Ther. 2014, 351, 336–343. [Google Scholar] [CrossRef] [Green Version]
- Sundblad, V.; Gómez, R.; Stupirski, J.C.; Hockl, P.; Pino, M.; Laborde, H.; Rabinovich, G. Circulating Galectin-1 and Galectin-3 in Sera from Patients With Systemic Sclerosis: Associations With Clinical Features and Treatment. Front. Pharmacol. 2021, 12, 650605. [Google Scholar] [CrossRef]
- Taniguchi, T.; Asano, Y.; Akamata, K.; Noda, S.; Masui, Y.; Yamada, D.; Takahashi, T.; Ichimura, Y.; Toyama, T.; Tamaki, Z.; et al. Serum Levels of Galectin-3: Possible Association with Fibrosis, Aberrant Angiogenesis, and Immune Activation in Patients with Systemic Sclerosis. J. Rheumatol. 2012, 39, 539–544. [Google Scholar] [CrossRef] [PubMed]
- Mora, G.F.; Zubieta, M.R. Galectin-1 and Galectin-3 Expression in Lesional Skin of Patients with Systemic Sclerosis-Association with Disease Severity. J. Clin. Rheumatol. 2020. [Google Scholar] [CrossRef]
- Li, S.; Li, S.; Hao, X.; Zhang, Y.; Deng, W. Perindopril and a Galectin-3 Inhibitor Improve Ischemic Heart Failure in Rabbits by Reducing Gal-3 Expression and Myocardial Fibrosis. Front. Physiol. 2019, 10, 267. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lambrecht, S.; Smith, V.; de Wilde, K.; Coudenys, J.; Decuman, S.; Deforce, D.; de Keyser, F.; Elewaut, D. Growth Differentiation Factor 15, a Marker of Lung Involvement in Systemic Sclerosis, Is Involved in Fibrosis Development but Is Not Indispensable for Fibrosis Development. Arthritis Rheumatol. 2014, 66, 418–427. [Google Scholar] [CrossRef]
- Allanore, Y.; Borderie, D.; Avouac, J.; Zerkak, D.; Meune, C.; Hachulla, E.; Mouthon, L.; Guillevin, L.; Meyer, O.; Ekindjian, O.G.; et al. High N-Terminal pro-Brain Natriuretic Peptide Levels and Low Diffusing Capacity for Carbon Monoxide as Independent Predictors of the Occurrence of Precapillary Pulmonary Arterial Hypertension in Patients with Systemic Sclerosis. Arthritis Rheumatol. 2008, 58, 284–291. [Google Scholar] [CrossRef]
- Tanindi, A.; Cemri, M. Troponin Elevation in Conditions Other than Acute Coronary Syndromes. Vasc. Health Risk Manag. 2011, 7, 597–603. [Google Scholar] [CrossRef] [Green Version]
- AlQudah, M.; Hale, T.M.; Czubryt, M.P. Targeting the Renin-Angiotensin-Aldosterone System in Fibrosis. Matrix Biol. 2020, 91–92, 92–108. [Google Scholar] [CrossRef]
- Zhong, X.; Qian, X.; Chen, G.; Song, X. The Role of Galectin-3 in Heart Failure and Cardiovascular Disease. Clin. Exp. Pharmacol. Physiol. 2019, 46, 197–203. [Google Scholar] [CrossRef] [Green Version]
- Kennon, S.; Barakat, K.; Hitman, G.A.; Price, C.P.; Mills, P.G.; Ranjadayalan, K.; Cooper, J.; Clark, H.; Timmis, A.D. Angiotensin-Converting Enzyme Inhibition Is Associated with Reduced Troponin Release in Non-ST-Elevation Acute Coronary Syndromes. J. Am. Coll. Cardiol. 2001, 38, 724–728. [Google Scholar] [CrossRef] [Green Version]
- Anand, I.S.; Rector, T.S.; Kuskowski, M.; Snider, J.; Cohn, J.N. Prognostic Value of Soluble ST2 in the Valsartan Heart Failure Trial. Circ. Heart Fail. 2014, 7, 418–426. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Baseline | Follow-Up | p | |
---|---|---|---|
Systolic blood pressure, mm Hg | 134.8 ± 17.4 | 135.6 ± 14.8 | 0.6800 |
Diastolic blood pressure, mm Hg | 82.6 ± 9.5 | 82.0 ± 9.3 | 0.7200 |
BMI, kg/m2 | 26.1 ± 4.4 | 26.7 ± 4.5 | 0.0090 |
Medication | |||
Use of RAAS blockers | 0 (0.0) | 12 (48.0) | <0.001 |
Corticosteroids | 16 (64.0) | 16 (64.0) | 1.0000 |
Anti-rheumatic drugs | 13 (52.0) | 14 (56.0) | 0.9870 |
Disease severity markers | |||
mRSS, points | 17.3 ± 4.3 | 17.9 ± 4.4 | 0.0020 |
DLCO, % | 80.7 ± 15.1 | 77.7 ± 13.9 | 0.0043 |
CMR | |||
Native T1, ms | 1253.4 ± 56.8 | 1251.5 ± 64.6 | 0.9500 |
ECV, % | 0.28 ± 0.03 | 0.29 ± 0.04 | 0.0730 |
ECHO | |||
LVEF, % | 63.1 ± 2.1 | 62.8 ± 2.5 | 0.5790 |
E/e’ | 9.26 ± 3.1 | 10.24 ± 4.8 | 0.3098 |
Biomarkers | |||
hsTnI, ng/L | 3.0 (2.0–5.8) | 2.8 (2.2–8.7) | 0.4800 |
NT-proBNP, ng/L | 141.88 ± 102.87 | 194.12 ± 218.46 | 0.6567 |
Galectin-3, ng/mL | 3.45 ± 1.88 | 3.51 ± 1.80 | 0.7000 |
sST2, ng/mL | 1358.6 ± 410.2 | 1645.8 ± 725.0 | 0.0078 |
GDF 15, pg/mL | 1042 (791–1525) | 1299 (1061–1843) | 0.0046 |
Changes In | Native T1 | ECV | DLCO | mRSS |
---|---|---|---|---|
hsTnI | 0.14 | 0.05 | −0.11 | 0.15 |
p | 0.52 | 0.83 | 0.60 | 0.48 |
Galectin-3 | 0.56 | 0.71 | −0.12 | 0.06 |
p | 0.0050 | 0.0001 | 0.57 | 0.77 |
sST2 | 0.05 | 0.07 | −0.09 | 0.14 |
p | 0.83 | 0.75 | 0.68 | 0.51 |
GDF 15 | 0.23 | 0.25 | −0.51 | 0.63 |
p | 0.29 | 0.24 | 0.011 | 0.0009 |
NT-proBNP | −0.0739 | 0.0569 | −0.1005 | 0.3819 |
p | 0.73 | 0.79 | 0.63 | 0.059 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hromadka, M.; Baxa, J.; Seidlerova, J.; Miklik, R.; Rajdl, D.; Sudova, V.; Suchy, D.; Rokyta, R. Myocardial Involvement Detected Using Cardiac Magnetic Resonance Imaging in Patients with Systemic Sclerosis: A Prospective Observational Study. J. Clin. Med. 2021, 10, 5364. https://doi.org/10.3390/jcm10225364
Hromadka M, Baxa J, Seidlerova J, Miklik R, Rajdl D, Sudova V, Suchy D, Rokyta R. Myocardial Involvement Detected Using Cardiac Magnetic Resonance Imaging in Patients with Systemic Sclerosis: A Prospective Observational Study. Journal of Clinical Medicine. 2021; 10(22):5364. https://doi.org/10.3390/jcm10225364
Chicago/Turabian StyleHromadka, Milan, Jan Baxa, Jitka Seidlerova, Roman Miklik, Dan Rajdl, Vendula Sudova, David Suchy, and Richard Rokyta. 2021. "Myocardial Involvement Detected Using Cardiac Magnetic Resonance Imaging in Patients with Systemic Sclerosis: A Prospective Observational Study" Journal of Clinical Medicine 10, no. 22: 5364. https://doi.org/10.3390/jcm10225364
APA StyleHromadka, M., Baxa, J., Seidlerova, J., Miklik, R., Rajdl, D., Sudova, V., Suchy, D., & Rokyta, R. (2021). Myocardial Involvement Detected Using Cardiac Magnetic Resonance Imaging in Patients with Systemic Sclerosis: A Prospective Observational Study. Journal of Clinical Medicine, 10(22), 5364. https://doi.org/10.3390/jcm10225364