Prostate-Specific Antigen and Testosterone Levels as Biochemical Indicators of Cognitive Function in Prostate Cancer Survivors and the Role of Diabetes
Abstract
:1. Introduction
2. Materials and Methods
Statistical Analysis
3. Results
4. Discussion
4.1. Prostate-Specific Antigen
4.2. Testosterone
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rawla, P. Epidemiology of Prostate Cancer. World J. Oncol. 2019, 10, 63–89. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef]
- Patasius, A.; Smailyte, G. All-Cause Mortality Risk in National Prostate Cancer Cohort: An Impact of Population-Based Prostate Cancer Screening. J. Clin. Med. 2021, 10, 2459. [Google Scholar] [CrossRef]
- Lange, M.; Joly, F.; Vardy, J.; Ahles, T.; Dubois, M.; Tron, L.; Winocur, G.; De Ruiter, M.; Castel, H. Cancer-related cognitive impairment: An update on state of the art, detection, and management strategies in cancer survivors. Ann. Oncol. 2019, 30, 1925–1940. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ryan, C.; Wefel, J.S.; Morgans, A.K. A review of prostate cancer treatment impact on the CNS and cognitive function. Prostate Cancer Prostatic Dis. 2019, 23, 207–219. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Treanor, C.; Li, J.; Donnelly, M. Cognitive impairment among prostate cancer patients: An overview of reviews. Eur. J. Cancer Care 2017, 26. [Google Scholar] [CrossRef] [Green Version]
- Jarzemski, P.; Brzoszczyk, B.; Popiołek, A.; Stachowicz-Karpińska, A.; Gołota, S.; Bieliński, M.; Borkowska, A. Cognitive function, depression, and anxiety in patients undergoing radical prostatectomy with and without adjuvant treatment. Neuropsychiatr. Dis. Treat. 2019, 15, 819–829. [Google Scholar] [CrossRef] [Green Version]
- Hardy, S.J.; Krull, K.R.; Wefel, J.S.; Janelsins, M. Cognitive Changes in Cancer Survivors. Am. Soc. Clin. Oncol. Educ. Book 2018, 23, 795–806. [Google Scholar] [CrossRef]
- Cascella, M.; Di Napoli, R.; Carbone, D.; Cuomo, G.F.; Bimonte, S.; Mbolla, B.F.E.; Muzio, M.R. Chemotherapy-related cognitive impairment: Mechanisms, clinical features and research perspectives. Recent. Prog. Med. 2018, 109, 523–530. [Google Scholar] [CrossRef]
- Toh, Y.L.; Mujtaba, J.S.; Bansal, S.; Yeo, A.; Shwe, M.; Lau, A.J.; Chan, A. Prechemotherapy Levels of Plasma Dehydroepiandrosterone and Its Sulfated Form as Predictors of Cancer-Related Cognitive Impairment in Patients with Breast Cancer Receiving Chemotherapy. Pharmacother. J. Hum. Pharmacol. Drug Ther. 2019, 39, 553–563. [Google Scholar] [CrossRef]
- Bertram, S.; Brixius, K.; Brinkmann, C. Exercise for the diabetic brain: How physical training may help prevent dementia and Alzheimer’s disease in T2DM patients. Endocrine 2016, 53, 350–363. [Google Scholar] [CrossRef]
- Cai, Z.; Li, H. An Updated Review: Androgens and Cognitive Impairment in Older Men. Front. Endocrinol. 2020, 11, 586909. [Google Scholar] [CrossRef]
- Lin, H.-C.; Kao, L.-T.; Chung, S.-D.; Huang, C.-C.; Shia, B.-C.; Huang, C.-Y. Alzheimer’s disease is associated with prostate cancer: A population-based study. Oncotarget 2018, 9, 7616–7622. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spratt, D.E.; Shore, N.; Sartor, O.; Rathkopf, D.; Olivier, K. Treating the patient and not just the cancer: Therapeutic burden in prostate cancer. Prostate Cancer Prostatic Dis. 2021, 24, 647–661. [Google Scholar] [CrossRef] [PubMed]
- Burke, M.A.; Lowrance, W.; Perczek, R. Emotional and cognitive burden of prostate cancer. Urol. Clin. 2003, 30, 295–304. [Google Scholar] [CrossRef]
- Chung, N.-C.; Walker, A.K.; Dhillon, H.M.; Vardy, J.L. Mechanisms and Treatment for Cancer-and Chemotherapy-Related Cog-nitive Impairment in Survivors of Non-CNS Malignancies. Oncology 2018, 32, 591–598. [Google Scholar] [PubMed]
- Janelsins, M.C.; Kesler, S.R.; Ahles, T.A.; Morrow, G.R. Prevalence, mechanisms, and management of cancer-related cognitive impairment. Int. Rev. Psychiatry 2014, 26, 102–113. [Google Scholar] [CrossRef] [Green Version]
- Cui, M.Y.; Lin, Y.; Sheng, J.Y.; Zhang, X.; Cui, R.J. Exercise Intervention Associated with Cognitive Improvement in Alzheimer’s Disease. Neural Plast. 2018, 2018, 9234105. [Google Scholar] [CrossRef]
- Leidi-Maimone, B.; Notter-Bielser, M.-L.; Laouadi, M.-H.; Perrin, S.; Métraux, H.; Damian, D.; Chavan, C.F.; Nsir, M.; Cibelli, G.; Tâche, M.-J.; et al. How non-drug interventions affect the quality of life of patients suffering from progressive cognitive decline and their main caregiver. Aging 2020, 12, 10754–10771. [Google Scholar] [CrossRef] [PubMed]
- Ferraro, S.; Bussetti, M.; Bassani, N.; Rossi, R.; Incarbone, G.; Bianchi, F.; Maggioni, M.; Runza, L.; Ceriotti, F.; Panteghini, M. Definition of Outcome-Based Prostate-Specific Antigen (PSA) Thresholds for Advanced Prostate Cancer Risk Prediction. Cancers 2021, 13, 3381. [Google Scholar] [CrossRef] [PubMed]
- Sternberg, Z.; Podolsky, R.; Nir, A.; Yu, J.; Nir, R.; Halvorsen, S.W.; Chadha, K.; Quinn, J.F.; Kaye, J.; Kolb, C. Increased free prostate specific antigen serum levels in Alzheimer’s disease, correlation with Cognitive Decline. J. Neurol. Sci. 2019, 400, 188–193. [Google Scholar] [CrossRef]
- Giagulli, V.A.; Guastamacchia, E.; Licchelli, B.; Triggiani, V. Serum Testosterone and Cognitive Function in Ageing Male: Updating the Evidence. Recent Pat. Endocr. Metab. Immune Drug Discov. 2016, 10, 22–30. [Google Scholar] [CrossRef] [PubMed]
- van Leenders, G.J.; van der Kwast, T.H.; Grignon, D.J.; Evans, A.J.; Kristiansen, G.; Kweldam, C.F.; Litjens, G.; McKenney, J.K.; Melamed, J.; Mottet, N.; et al. The 2019 International Society of Urological Pathology (ISUP) Consensus Conference on Grading of Prostatic Carcinoma. Am. J. Surg. Pathol. 2020, 44, e87–e99. [Google Scholar] [CrossRef] [PubMed]
- Guenter, W.; Bieliński, M.; Bonek, R.; Borkowska, A. Neurochemical Changes in the Brain and Neuropsychiatric Symptoms in Clinically Isolated Syndrome. J. Clin. Med. 2020, 9, 3909. [Google Scholar] [CrossRef]
- Ferraro, S.; Bussetti, M.; Panteghini, M. Serum Prostate-Specific Antigen Testing for Early Detection of Prostate Cancer: Managing the Gap between Clinical and Laboratory Practice. Clin. Chem. 2021, 67, 602–609. [Google Scholar] [CrossRef]
- Quiñones, H.J.A.; Stish, B.J.; Hagen, C.; Petersen, R.C.; Mielke, M.M. Prostate Cancer, Use of Androgen Deprivation Therapy, and Cognitive Impairment: A Population-Based Study. Alzheimer Dis. Assoc. Disord. 2020, 34, 118–121. [Google Scholar] [CrossRef]
- Orphanos, G.; Ioannidis, G.; Michael, M.; Kitrou, G. Prostate-specific antigen in the cerebrospinal fluid: A marker of local disease. Med. Oncol. 2008, 26, 143–146. [Google Scholar] [CrossRef]
- Sahin, H.; Aflay, U.; Batun, S.; Bircan, M.K. Cerebrospinal fluid prostate specific antigen (CSF PSA) in prostate cancer patients with lower spine metastasis. Int. Urol. Nephrol. 2005, 37, 727–730. [Google Scholar] [CrossRef]
- Schaller, B.; Merlo, A.; Kirsch, E.; Lehmann, K.; Huber, P.R.; Lyrer, P.; Steck, A.J.; Gratzl, O. Prostate-specific antigen in the cerebrospinal fluid leads to diagnosis of solitary cauda equina metastasis: A unique case report and review of the literature. Br. J. Cancer 1998, 77, 2386–2389. [Google Scholar] [CrossRef] [Green Version]
- Jim, H.S.L.; Small, B.J.; Patterson, S.; Salup, R.; Jacobsen, P.B. Cognitive impairment in men treated with luteinizing hormone–releasing hormone agonists for prostate cancer: A controlled comparison. Support. Care Cancer 2009, 18, 21–27. [Google Scholar] [CrossRef]
- Yiannopoulou, K.G.; Anastasiou, A.I.; Kontoangelos, K.; Papageorgiou, C.; Anastasiou, I.P. Cognitive and Psychological Impacts of Different Treatment Options for Prostate Cancer: A Critical Analysis. Curr. Urol. 2020, 14, 169–177. [Google Scholar] [CrossRef] [PubMed]
- Zarghami, N.; Grass, L.; Diamandis, E. Steroid hormone regulation of prostate-specific antigen gene expression in breast cancer. Br. J. Cancer 1997, 75, 579–588. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soo, A.; O’Callaghan, M.E.; Kopsaftis, T.; Vatandoust, S.; Moretti, K.; Kichenadasse, G. PSA response to antiandrogen withdrawal: A systematic review and meta-analysis. Prostate Cancer Prostatic Dis. 2021, 24, 826–836. [Google Scholar] [CrossRef] [PubMed]
- Saad, F.; Bögemann, M.; Suzuki, K.; Shore, N. Treatment of nonmetastatic castration-resistant prostate cancer: Focus on second-generation androgen receptor inhibitors. Prostate Cancer Prostatic Dis. 2021, 24, 323–334. [Google Scholar] [CrossRef]
- Tarantino, G.; Crocetto, F.; Di Vito, C.; Martino, R.; Pandolfo, S.D.; Creta, M.; Aveta, A.; Buonerba, C.; Imbimbo, C. Clinical factors affecting prostate-specific antigen levels in prostate cancer patients undergoing radical prostatectomy: A retrospective study. Future Sci. OA 2021, 7, FSO643. [Google Scholar] [CrossRef]
- Kobayashi, M.; Mizuno, T.; Yuki, H.; Kambara, T.; Betsunoh, H.; Nukui, A.; Abe, H.; Fukabori, Y.; Yashi, M.; Kamai, T. Association between serum prostate-specific antigen level and diabetes, obesity, hypertension, and the laboratory parameters related to glucose tolerance, hepatic function, and lipid profile: Implications for modification of prostate-specific antigen threshold. Int. J. Clin. Oncol. 2020, 25, 472–478. [Google Scholar] [CrossRef]
- Zilliox, L.A.; Chadrasekaran, K.; Kwan, J.Y.; Russell, J.W. Diabetes and Cognitive Impairment. Curr. Diabetes Rep. 2016, 16, 87. [Google Scholar] [CrossRef] [Green Version]
- Elabbady, A.; Hashad, M.M.; Kotb, A.; Ghanem, A.E. Studying the effect of type 2 diabetes mellitus on prostate-related parameters: A prospective single institutional study. Prostate Int. 2016, 4, 156–159. [Google Scholar] [CrossRef] [Green Version]
- Cherrier, M.M.; Matsumoto, A.M.; Amory, J.K.; Asthana, S.; Bremner, W.; Peskind, E.R.; Raskind, M.A.; Craft, S. Testosterone improves spatial memory in men with Alzheimer disease and mild cognitive impairment. Neurology 2005, 64, 2063–2068. [Google Scholar] [CrossRef]
- Okamoto, K.; Sekine, Y.; Nomura, M.; Koike, H.; Matsui, H.; Shibata, Y.; Ito, K.; Suzuki, K. Effects of a luteinizing hormone-releasing hormone agonist on cognitive, sexual, and hormonal functions in patients with prostate cancer: Relationship with testicular and adrenal androgen levels. Basic Clin. Androl. 2015, 25, 3. [Google Scholar] [CrossRef] [Green Version]
- Pintana, H.; Chattipakorn, N.; Chattipakorn, S. Testosterone deficiency, insulin-resistant obesity and cognitive function. Metab. Brain Dis. 2015, 30, 853–876. [Google Scholar] [CrossRef]
- Matsumoto, A.M. Testosterone Replacement in Men with Age-Related Low Testosterone: What Did We Learn from the Testosterone Trials? Curr. Opin. Endocr. Metab. Res. 2019, 6, 34–41. [Google Scholar] [CrossRef] [PubMed]
- Jamadar, R.J.; Winters, M.J.; Maki, P.M. Cognitive changes associated with ADT: A review of the literature. Asian J. Androl. 2012, 14, 232–238. [Google Scholar] [CrossRef] [Green Version]
- Cherrier, M.; Rose, A.; Higano, C. The effects of combined androgen blockade on cognitive function during the first cycle of intermittent androgen suppression in patients with prostate cancer. J. Urol. 2003, 170, 1808–1811. [Google Scholar] [CrossRef]
- Nelson, C.J.; Bs, J.S.L.; Ba, M.C.G.; Roth, A.J. Cognitive effects of hormone therapy in men with prostate cancer. Cancer 2008, 113, 1097–1106. [Google Scholar] [CrossRef]
- Andela, C.D.; Matte, R.; Jazet, I.M.; Zonneveld, W.C.; Schoones, J.W.; Meinders, A.E. Effect of androgen deprivation therapy on cognitive functioning in men with prostate cancer: A systematic review. Int. J. Urol. 2021, 28, 786–798. [Google Scholar] [CrossRef]
- Cherrier, M.M.; Cross, D.J.; Higano, C.S.; Minoshima, S. Changes in cerebral metabolic activity in men undergoing androgen deprivation therapy for non-metastatic prostate cancer. Prostate Cancer Prostatic Dis. 2018, 21, 394–402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chao, H.H.; Uchio, E.; Zhang, S.; Hu, S.; Bednarski, S.R.; Luo, X.; Rose, M.; Concato, J.; Li, C.-S.R. Effects of androgen deprivation on brain function in prostate cancer patients–a prospective observational cohort analysis. BMC Cancer 2012, 12, 371. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McGinty, H.L.; Phillips, K.M.; Jim, H.S.L.; Cessna, J.M.; Asvat, Y.; Cases, M.; Small, B.; Jacobsen, P.B. Cognitive functioning in men receiving androgen deprivation therapy for prostate cancer: A systematic review and meta-analysis. Support. Care Cancer 2014, 22, 2271–2280. [Google Scholar] [CrossRef]
- Salminen, E.K.; Portin, R.I.; Koskinen, A.; Helenius, H.; Nurmi, M. Associations between serum testosterone fall and cognitive function in prostate cancer patients. Clin. Cancer Res. 2004, 10, 7575–7582. [Google Scholar] [CrossRef] [Green Version]
- Etgen, T.; Sander, D.; Bickel, H.; Förstl, H. Mild cognitive impairment and dementia. Dtsch. Aerztebl. Int. 2011, 108, 743–750. [Google Scholar] [CrossRef] [PubMed]
Test | Patient’s Task | Evaluated Parameters |
---|---|---|
Simple reaction time test (SRT) | to press the button after seeing a green circle appearing on the computer screen; the stimulus is presented five times, and the number of correct answers and the average response time (ms) are measured | speed and correctness of reactions to stimuli; general vigilance and psychomotor speed |
Verbal memory test (VM test) | to remember as many words as possible from the list of 10 words read by a researcher five times; the patient has to recall words in any order after each reading and 20 min later; the number of correctly repeated words, the number of words outside the list and the number of repetitions are counted (for each attempt) | efficiency of the working memory (VM1), short-term memory (VM2, VM3, VM4, and VM5, VM1–VM5 are successive attempts when patients recall the memorized words during the test), and deferred memory (verbal memory deferred test; VMDT), immediate auditory memory (number of words saved), learning (improvement of results in subsequent repetitions), and deferred memory (remembering repeating words) |
GoNoGo test | to press a key when a green square appears on the computer screen (“Go” part) and to refrain from pressing a key when a blue square appears on the screen (“NoGo” part); stimuli are presented in a random manner; the time (ms) of correct “Go” reactions and the number and percentage of correct and incorrect “Go” and “NoGo” reactions are listed | response time under the conditions of the need to control reactions–actions and inhibitions (cognitive control and cognitive inhibition); executive functions |
Visuospatial working memory task (VWMT) | to remember the layout of the seven playing cards that were previously presented in different places on the monitor screen | visuospatial memory—correct and incorrect answer and time of reaction |
Parameter | All n = 118 | Postoperative PSA < 0.1 ng/mL (n = 97) | Postoperative PSA > 0.1 ng/mL (n = 21) | d-Cohen | p | |
---|---|---|---|---|---|---|
Age (y) | 66.0 (60–70) | 66.0 (60.0–70.0) | 67.0 (65.0–71.0) | 0.82 | 0.29 | |
BMI (kg/m2) | 27.2 (25.6–29.7) | 26.8 (25.4–29.7) | 27.5 (26.0–29.0) | 0.16 | 0.54 | |
Months from surgery (m) | 19.0 (13.0–33.0) | 19.0 (14.0–33.0) | 23.0 (12.0–33.0) | 0.03 | 0.70 | |
Diabetes (n, %) | 19 (16%) | 14 (14.5%) | 5 (24%) | 0.50 | ||
Hypertension (n, %) | 65 (55%) | 59 (61%) | 6 (28.5%) | 0.02 | ||
MI (n, %) | 10 (8.5%) | 8 (8%) | 2 (9.5%) | 0.92 | ||
Stroke (n, %) | 7 (6%) | 7 (7%) | 0 (0%) | 0.60 | ||
Education | Basic (n, %) | 6 (5%) | 5 (5%) | 1 (5%) | 0.31 | |
Vocational (n, %) | 33 (28%) | 27 (28%) | 6 (28.5%) | |||
Secondary (n, %) | 36 (30.5%) | 26 (27%) | 10 (47.5%) | |||
Higher (n, %) | 43 (36.5%) | 39 (40%) | 4 (19%) | |||
Physical activity | None (n, %) | 40 (34%) | 37 (38%) | 3 (14%) | 0.09 | |
<1x/week (n, %) | 24 (20.5%) | 17 (17.5%) | 7 (33.5%) | |||
<3x/week | 54 (45.5%) | 43 (44.5%) | 11 (52.5%) | |||
GRADE | 1 (n, %) | 70 (59.5%) | 63 (65%) | 7 (33.5%) | 0.005 | |
2 (n, %) | 35 (29.5%) | 27 (28%) | 8 (38%) | |||
3 (n, %) | 5 (4%) | 5 (5%) | 0 (0.0%) | |||
4 (n, %) | 4 (3.5%) | 1 (1%) | 3 (14.25%) | |||
5 (n, %) | 4 (3.5%) | 1 (1%) | 3 (14.25%) | |||
Nicotinism (n, %) | 53 (45%) | 44 (45%) | 9 (43%) | 0.86 |
Parameter | Preoperative PSA | p | Post-Surgery PSA | p | Current PSA | p |
---|---|---|---|---|---|---|
SRT_C | 0.062 | ns. | 0.019 | ns. | 0.016 | ns. |
SRT_RT | −0.118 | ns. | 0.043 | ns. | 0.249 | 0.007 |
VM_1 | 0.003 | ns. | −0.214 | 0.017 | −0.193 | 0.036 |
VM_2 | 0.114 | ns. | −0.049 | ns. | −0.235 | 0.01 |
VM_3 | 0.055 | ns. | −0.017 | ns. | −0.218 | 0.017 |
VM_4 | −0.092 | ns. | 0.080 | ns. | −0.266 | 0.003 |
VM_5 | −0.098 | ns. | 0.078 | ns. | −0.267 | 0.003 |
VMDT_C | −0.123 | ns. | −0.084 | ns. | −0.187 | 0.047 |
GoNoGo_C | 0.116 | ns. | 0.017 | ns. | −0.156 | ns. |
GoNoGo_RT | 0.057 | ns. | −0.048 | ns. | −0.194 | 0.035 |
GoNoGo IncGO | −0.132 | ns. | −0.069 | ns. | 0.131 | ns. |
GoNoGo IncNoGo | 0.087 | ns. | −0.016 | ns. | 0.108 | ns. |
VWMT_C | −0.061 | ns. | −0.039 | ns. | 0.131 | ns. |
VWMT_CRT | 0.023 | ns. | −0.029 | ns. | 0.224 | 0.014 |
VWMT_IRT | 0.060 | ns. | −0.039 | ns. | 0.244 | 0.007 |
Parameter | Current PSA in NONdiabetes Group | p | Current PSA in Diabetes Group | p |
---|---|---|---|---|
SRT_C | 0.044846 | ns. | 0.003714 | ns. |
SRT_RT | −0.119912 | ns. | 0.703496 | 0.0007 |
VM_1 | 0.048692 | ns. | −0.510703 | 0.025 |
VM_2 | 0.089762 | ns. | −0.616001 | 0.005 |
VM_3 | −0.030882 | ns. | −0.558431 | 0.012 |
VM_4 | −0.066766 | ns. | −0.615173 | 0.005 |
VM_5 | −0.009472 | ns. | −0.625363 | 0.004 |
VMDT_C | 0.175397 | ns. | −0.474987 | 0.03 |
GoNoGo_C | 0.069103 | ns. | −0.231986 | ns. |
GoNoGo_RT | 0.117830 | ns. | −0.486785 | 0.03 |
GoNoGo IncGO | −0.054729 | ns. | 0.311612 | ns. |
GoNoGo IncNoGo | −0.048036 | ns. | 0.211985 | ns. |
VWMT_C | 0.175397 | ns. | −0.458971 | 0.048 |
VWMT_CRT | −0.113569 | ns. | 0.789822 | 0.00005 |
VWMT_IRT | −0.083593 | ns. | 0.739536 | 0.0002 |
Parameter | Free Testosterone | Current PSA | ||||||
---|---|---|---|---|---|---|---|---|
No Hormone Therapy Group (n = 104) | p | Hormone Therapy Group (n = 14) | p | No Hormone Therapy Group (n = 14) | p | Hormone Therapy Group (n = 104) | p | |
SRT_C | 0.020066 | ns. | 0.012728 | ns. | 0.0184537 | ns. | −0.030253 | ns. |
SRT_RT | −0.183624 | 0.06 | 0.167365 | ns. | 0.261116 | ns. | 0.001209 | ns. |
VM_1 | −0.216214 | 0.02 | 0.377769 | ns. | −0.236645 | ns. | 0.080332 | ns. |
VM_2 | −0.166072 | ns. | 0.311832 | ns. | −0.542544 | 0.04 | −0.073243 | ns. |
VM_3 | −0.001777 | ns. | 0.148310 | ns. | −0.445146 | ns. | −0.126351 | ns. |
VM_4 | 0.022967 | ns. | 0.395777 | ns. | −0.336402 | ns. | −0.218489 | 0.02 |
VM_5 | 0.031529 | ns. | 0.493676 | 0.07 | −0.191995 | ns. | −0.219604 | 0.02 |
VMDT_C | 0.004462 | ns. | 0.667309 | 0.01 | 0.077626 | ns. | −0.163046 | ns. |
GoNoGo_C | 0.066962 | ns. | 0.779579 | 0.001 | −0.090094 | ns. | 0.022998 | ns. |
GoNoGo_RT | −0.082913 | ns. | 0.485360 | 0.07 | −0.417786 | ns. | 0.047521 | ns. |
GoNoGo IncGO | −0.065987 | ns. | −0.711890 | 0.004 | 0.090094 | ns. | −0.023911 | ns. |
GoNoGo IncNoGo | −0.043903 | ns. | −0.765654 | 0.001 | 0.418701 | ns. | −0.029561 | ns. |
VWMT_C | −0.093605 | ns. | 0.487308 | 0.07 | 0.066111 | ns. | −0.163046 | ns. |
VWMT_CRT | 0.044880 | ns. | −0.393309 | ns. | 0.681656 | 0.007 | 0.263424 | 0.007 |
VWMT_IRT | 0.078058 | ns. | −0.178738 | ns. | 0.739830 | 0.002 | 0.075388 | ns. |
Age | Duration from Surgery | Pre-Treatment PSA | Post-Surgery PSA | Current PSA | Free Testosterone | Total Testosterone | Diabetes | GRADE | Hormone Therapy | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Wald | p | Wald | p | Wald | p | Wald | p | Wald | p | Wald | p | Wald | p | Wald | p | Wald | p | Wald | p | |
SRT_C | 0.8 | 0.34 | 26.0 | <0.001 | 17.2 | <0.001 | 2.7 | 0.09 | 16.2 | <0.001 | 1.5 | 0.22 | 21.8 | <0.001 | 2.9 | 0.08 | 14.5 | 0.002 | 3.5 | 0.06 |
SRT_RT | 0.2 | 0.61 | 0.01 | 0.91 | 0.002 | 0.95 | 0.5 | 0.47 | 4.5 | 0.03 | 0.36 | 0.54 | 9.1 | 0.001 | 0.03 | 0.84 | 1.27 | 0.73 | 0.005 | 0.94 |
VM_1 | 3.0 | 0.08 | 0.05 | 0.80 | 1.4 | 0.23 | 1.64 | 0.19 | 2.08 | 0.14 | 2.9 | 0.08 | 0.34 | 0.59 | 0.56 | 0.45 | 0.84 | 0.83 | 0.95 | 0.32 |
VM_2 | 0.4 | 0.52 | 0.64 | 0.42 | 0.05 | 0.81 | 0.02 | 0.87 | 0.89 | s0.34 | 3.41 | 0.06 | 0.03 | 0.84 | 5.7 | 0.01 | 0.95 | 0.81 | 0.22 | 0.64 |
VM_3 | 0.4 | 0.50 | 0.03 | 0.86 | 0.57 | 0.44 | 0.91 | 0.33 | 1.1 | 0.29 | 0.01 | 0.93 | 3.22 | 0.07 | 8.8 | 0.002 | 8.2 | 0.04 | 0.28 | 0.59 |
VM_4 | 2.9 | 0.08 | 5.8 | 0.01 | 3.4 | 0.06 | 0.49 | 0.48 | 0.93 | 0.33 | 2.2 | 0.13 | 0.56 | 0.45 | 1.35 | 0.24 | 4.1 | 0.25 | 0.93 | 0.33 |
VM_5 | 2.9 | 0.08 | 5.7 | 0.01 | 3.4 | 0.06 | 0.5 | 0.48 | 0.9 | 0.33 | 2.24 | 0.13 | 0.56 | 0.45 | 1.3 | 0.24 | 4.1 | 0.25 | 0.93 | 0.33 |
VMDT_C | 19.4 | <0.001 | 16.5 | <0.001 | 18.3 | <0.001 | 0.28 | 0.59 | 0.12 | 0.72 | 15.8 | <0.001 | 0.56 | 0.45 | 1.01 | 0.31 | 23.3 | <0.001 | 7.4 | 0.006 |
GoNoGo_C | 1.22 | 0.26 | 1.4 | 0.22 | 2.5 | 0.11 | 3.8 | 0.05 | 6.4 | 0.01 | 0.14 | 0.70 | 12.3 | <0.001 | 0.7 | 0.38 | 11.4 | 0.009 | 0.5 | 0.46 |
GoNoGo_RT | 0.02 | 0.86 | 1.64 | 0.2 | 2.8 | 0.09 | 0.2 | 0.66 | 0.24 | 0.62 | 0.006 | 0.93 | 10.2 | <0.001 | 0.54 | 0.45 | 2.2 | 0.52 | 0.67 | 0.41 |
GoNoGo IncNoGo | 4.8 | 0.02 | 8.5 | 0.003 | 5.8 | 0.01 | 0.2 | 0.6 | 0.02 | 0.88 | 19.9 | <0.001 | 1.8 | 0.17 | <0.001 | 0.95 | 4.7 | 0.19 | 11.1 | <0.001 |
VWMT_C | 15.2 | <0.001 | 12.3 | <0.001 | 0.98 | 0.32 | 0.53 | 0.46 | 0.44 | 0.50 | 0.28 | 0.59 | 0.97 | 0.32 | 3.15 | 0.07 | 6.78 | 0.07 | 4.2 | 0.04 |
VWMT_CRT | 2.64 | 0.10 | 0.37 | 0.54 | 1.6 | 0.20 | 0.14 | 0.70 | 0.23 | 0.62 | 5.2 | 0.02 | 25.0 | <0.001 | 1.8 | 0.18 | 8.1 | 0.04 | 0.6 | 0.41 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Popiołek, A.; Brzoszczyk, B.; Jarzemski, P.; Chyrek-Tomaszewska, A.; Wieczór, R.; Borkowska, A.; Bieliński, M. Prostate-Specific Antigen and Testosterone Levels as Biochemical Indicators of Cognitive Function in Prostate Cancer Survivors and the Role of Diabetes. J. Clin. Med. 2021, 10, 5307. https://doi.org/10.3390/jcm10225307
Popiołek A, Brzoszczyk B, Jarzemski P, Chyrek-Tomaszewska A, Wieczór R, Borkowska A, Bieliński M. Prostate-Specific Antigen and Testosterone Levels as Biochemical Indicators of Cognitive Function in Prostate Cancer Survivors and the Role of Diabetes. Journal of Clinical Medicine. 2021; 10(22):5307. https://doi.org/10.3390/jcm10225307
Chicago/Turabian StylePopiołek, Alicja, Bartosz Brzoszczyk, Piotr Jarzemski, Aleksandra Chyrek-Tomaszewska, Radosław Wieczór, Alina Borkowska, and Maciej Bieliński. 2021. "Prostate-Specific Antigen and Testosterone Levels as Biochemical Indicators of Cognitive Function in Prostate Cancer Survivors and the Role of Diabetes" Journal of Clinical Medicine 10, no. 22: 5307. https://doi.org/10.3390/jcm10225307
APA StylePopiołek, A., Brzoszczyk, B., Jarzemski, P., Chyrek-Tomaszewska, A., Wieczór, R., Borkowska, A., & Bieliński, M. (2021). Prostate-Specific Antigen and Testosterone Levels as Biochemical Indicators of Cognitive Function in Prostate Cancer Survivors and the Role of Diabetes. Journal of Clinical Medicine, 10(22), 5307. https://doi.org/10.3390/jcm10225307