Cancer Patients at Risk for Medication-Related Osteonecrosis of the Jaw. A Case and Control Study Analyzing Predictors of MRONJ Onset
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Data Source
2.2. Study Population
2.3. Study Variables
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Drug Classes | Drugs |
---|---|
Chemotherapy | Docetaxel (Taxotere) |
Paclitaxel (Taxol) | |
Doxorubicin (available as a generic drug) | |
Epirubicin (Ellence) | |
Pegylated liposomal doxorubicin (Caelyx) | |
Capecitabine (Xeloda) | |
Carboplatin (available as a generic drug) | |
Cisplatin (available as a generic drug) | |
Cyclophosphamide (available as a generic drug) | |
Eribulin (Halaven) | |
Fluorouracil (5-FU) | |
Gemcitabine (Gemzar) | |
Methotrexate (Methorexate) | |
Protein-bound paclitaxel (Abraxane) | |
Vinorelbine (Navelbine) | |
Cabazitaxel (Jevtana) | |
Mitoxantrone (Novantrone) | |
Estramustine (Emcyt) | |
Melphalan (Alkeran) | |
Etoposide | |
Carmustine (BiCNU) | |
Bendamustine (Bendeka) | |
Nab-paclitaxel (Abraxane) | |
Pemetrexed (Alimta) | |
Combination of chemotherapy | AC (doxorubicin and cyclophosphamide) |
EC (epirubicin, cyclophosphamide) | |
AC or EC followed by T (paclitaxel or docetaxel) | |
FAC (cyclophosphamide, doxorubicin, and 5-FU) | |
FEC (cyclophosphamide, epirubicin, and 5-FU) | |
CMF (cyclophosphamide, methotrexate, and 5-FU) | |
TAC (docetaxel, doxorubicin, and cyclophosphamide) | |
TC (docetaxel and cyclophosphamide) | |
Hormonal therapy | Tamoxifen |
Anastrozole (Arimidex) | |
Exemestane (Aromasin) | |
Letrozole (Femara) | |
Leuprolide acetate (Enantone, Eligard) | |
Goserelin (Zoladex) | |
Triptorelin (Decapeptyl) | |
Degarelix (Firmagon) | |
Abiraterone (Zytiga) | |
Flutamide (Eulexin) | |
Bicalutamide (Casodex) | |
Enzalutamide (Xtandi) | |
Target therapy | Trastuzumab |
Pertuzumab (Perjeta) | |
Ado-trastuzumab emtansine or T-DM1 (Kadcyla) | |
Lapatinib (Tyverb) | |
Bortezomib (Velcade) | |
Osimertinib (Tagrisso) | |
Erlotinib (Tarceva) | |
Afatinib (Giotrif) | |
Gefitinib (Iressa) | |
Alectinib (Alecensa) | |
Crizotinib (Xalkori) | |
Dabrafenib (Tafinlar) | |
Trametinib (Mekinist) | |
Bevacizumab (Avastin) | |
Combination of target therapies | Pertuzumab, trastuzumab |
Combination of chemotherapy and target therapy | AC-TH (doxorubicin, cyclophosphamide, paclitaxel or docetaxel, trastuzumab) |
AC-THP (doxorubicin, cyclophosphamide, paclitaxel or docetaxel, trastuzumab, pertuzumab) | |
TCH (paclitaxel or docetaxel, carboplatin, trastuzumab) | |
TCHP (paclitaxel or docetaxel, carboplatin, trastuzumab, pertuzumab) | |
TH (paclitaxel, trastuzumab) | |
Immunotherapy | Atezolizumab (Tecentriq) |
Atezolizumab (Tecentriq) | |
Durvalumab (Imfinzi) | |
Nivolumab (Opdivo) | |
Pembrolizumab (Keytruda) | |
Ipilimumab (Yervoy) | |
Radiopharmaceuticals | Radium-223 dichloride (Xofigo) |
References
- Bedogni, A.; Campisi, G.; Fusco, V. Medication Related Osteonecrosis of the Jaw (MRONJ). 2018. Available online: https://www.qeios.com/read/594095 (accessed on 1 September 2021).
- Ruggiero, S.L.; Dodson, T.B.; Fantasia, J.; Goodday, R.; Aghaloo, T.; Mehrotra, B.; O’Ryan, F. American association of oral and maxillofacial surgeons position paper on medication-related osteonecrosis of the jaw—2014 update. J. Oral Maxillofac. Surg. 2014, 72, 1938–1956. [Google Scholar] [CrossRef] [PubMed]
- Nicolatou-Galitis, O.; Schiødt, M.; Mendes, R.A.; Ripamonti, C.; Hope, S.; Drudge-Coates, L.; Niepel, D.; Van den Wyngaert, T. Medication-related osteonecrosis of the jaw: Definition and best practice for prevention, diagnosis, and treatment. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2019, 127, 117–135. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wat, W.Z.M. Current Controversies on the Pathogenesis of Medication-Related Osteonecrosis of the Jaw. Dent. J. 2016, 4, 38. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fisher, J.E.; Rodan, G.A.; Reszka, A.A. In vivo effects of bisphosphonates on the osteoclast mevalonate pathway. Endocrinology 2000, 141, 4793–4796. [Google Scholar] [CrossRef] [PubMed]
- Chiu, Y.G.; Ritchlin, C.T. Denosumab: Targeting the RANKL pathway to treat rheumatoid arthritis. Expert Opin. Biol. Ther. 2016, 17, 119–128. [Google Scholar] [CrossRef] [Green Version]
- Kennel, K.A.; Drake, M.T. Adverse effects of bisphosphonates: Implications for osteoporosis management. Mayo Clin. Proc. 2009, 84, 632–638. [Google Scholar] [CrossRef] [Green Version]
- Linee Guida AIOM (Associazione Italiana Oncologia Medica) sul Trattamento Delle Metastasi Ossee. 2019. Available online: https://www.aiom.it/linee-guida-aiom-trattamento-delle-metastasi-ossee-2019/ (accessed on 1 September 2021).
- Fusco, V.; Santini, D.; Armento, G.; Tonini, G.; Campisi, G. Osteonecrosis of jaw beyond antiresorptive (bone-targeted) agents: New horizons in oncology. Expert Opin. Drug Saf. 2016, 15, 925–935. [Google Scholar] [CrossRef] [Green Version]
- Khan, A.; Morrison, A.; Cheung, A.; Hashem, W.; Compston, J. Osteonecrosis of the jaw (ONJ): Diagnosis and management in 2015. Osteoporos Int. 2016, 27, 853–859. [Google Scholar] [CrossRef]
- Khan, A.A.; Morrison, A.; Hanley, D.A.; Felsenberg, D.; McCauley, L.K.; O’Ryan, F.; Reid, I.R.; Ruggiero, S.L.; Taguchi, A.; Tetradis, S.; et al. Diagnosis and Management of Osteonecrosis of the Jaw: A Systematic Review and International Consensus. J. Bone Miner. Res. 2014, 30, 3–23. [Google Scholar] [CrossRef]
- Mavrokokki, T.; Cheng, A.; Stein, B.; Goss, A. Nature and Frequency of Bisphosphonate-Associated Osteonecrosis of the Jaws in Australia. J. Oral Maxillofac. Surg. 2007, 65, 415–423. [Google Scholar] [CrossRef]
- Ueda, N.; Aoki, K.; Shimotsuji, H.; Nakashima, C.; Kawakami, M.; Imai, Y.; Kirita, T. Oral risk factors associated with medication-related osteonecrosis of the jaw in patients with cancer. J. Bone Miner. Metab. 2021, 39, 623–630. [Google Scholar] [CrossRef] [PubMed]
- Dimopoulos, M.A.; Kastritis, E.; Bamia, C.; Melakopoulos, I.; Gika, D.; Roussou, M.; Migkou, M.; Eleftherakis-Papaiakovou, E.; Christoulas, D.; Terpos, E.; et al. Reduction of osteonecrosis of the jaw (ONJ) after implementation of preventive measures in patients with multiple myeloma treated with zoledronic acid. Ann. Oncol. 2008, 20, 117–120. [Google Scholar] [CrossRef] [PubMed]
- Karna, H.; Gonzalez, J.; Radia, H.S.; Sedghizadeh, P.P.; Enciso, R. Risk-reductive dental strategies for medication related osteonecrosis of the jaw among cancer patients: A systematic review with meta-analyses. Oral Oncol. 2018, 85, 15–23. [Google Scholar] [CrossRef] [PubMed]
- Smidt-Hansen, T.; Folkmar, T.B.; Fode, K.; Agerbaek, M.; Donskov, F. Combination of Zoledronic Acid and Targeted Therapy Is Active But May Induce Osteonecrosis of the Jaw in Patients With Metastatic Renal Cell Carcinoma. J. Oral Maxillofac. Surg. 2013, 71, 1532–1540. [Google Scholar] [CrossRef] [PubMed]
- Saad, F.; Brown, J.E.; Van Poznak, C.; Ibrahim, T.; Stemmer, S.M.; Stopeck, A.T.; Diel, I.J.; Takahashi, S.; Shore, N.; Henry, D.H.; et al. Incidence, risk factors, and outcomes of osteonecrosis of the jaw: Integrated analysis from three blinded active-controlled phase III trials in cancer patients with bone metastases. Ann. Oncol. 2011, 23, 1341–1347. [Google Scholar] [CrossRef]
- King, R.; Tanna, N.; Patel, V. Medication-related osteonecrosis of the jaw unrelated to bisphosphonates and denosumab—a review. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2019, 127, 289–299. [Google Scholar] [CrossRef]
- Eguia, A.; Bagán-Debón, L.; Cardona, F. Review and update on drugs related to the development of osteonecrosis of the jaw. Med. Oral Patol. Oral Y Cir. Bucal 2020, 25, e71–e83. [Google Scholar] [CrossRef]
- Nicolatou-Galitis, O.; Kouri, M.; Papadopoulou, E.; Vardas, E.; Galiti, D.; Epstein, J.B.; Elad, S.; Campisi, G.; Tsoukalas, N.; Bektas-Kayhan, K.; et al. Osteonecrosis of the jaw related to non-antiresorptive medications: A systematic review. Support. Care Cancer 2018, 27, 383–394. [Google Scholar] [CrossRef] [Green Version]
- Brauner, E.; Mezi, S.; Ciolfi, A.; Ciolfi, C.; Pucci, R.; Cassoni, A.; Battisti, A.; Piesco, G.; De Felice, F.; Pranno, N.; et al. A New Medical Record Proposal to the Prognostic Risk Assessment for MRONJ in Oncologic Patients: “Sapienza Head and Neck Unit” Proposal. Int. J. Environ. Res. Public Health 2021, 18, 1851. [Google Scholar] [CrossRef]
- Bacci, C.; Cerrato, A.; Dotto, V.; Zambello, R.; Barilà, G.; Liço, A.; Semenzato, G.; Stellini, E.; Zanette, G. The Importance of Alliance between Hematologists and Dentists: A Retrospective Study on the Development of Bisphosphonates Osteonecrosis of the Jaws (Bronj) in Multiple Myeloma Patients. Dent. J. 2021, 9, 11. [Google Scholar] [CrossRef]
- Jarnbring, F.; Kashani, A.T.; Björk, A.; Hoffman, T.; Krawiec, K.; Ljungman, P.; Lund, B. Role of intravenous dosage regimens of bisphosphonates in relation to other aetiological factors in the development of osteonecrosis of the jaws in patients with myeloma. Br. J. Oral Maxillofac. Surg. 2015, 53, 1007–1011. [Google Scholar] [CrossRef]
- Drudge-Coates, L.; Wyngaert, T.V.D.; Schiødt, M.; Van Muilekom, H.A.M.; Demonty, G.; Otto, S. Preventing, identifying, and managing medication-related osteonecrosis of the jaw: A practical guide for nurses and other allied healthcare professionals. Support. Care Cancer 2020, 28, 4019–4029. [Google Scholar] [CrossRef]
- Van Poznak, C.H.; Darke, A.; Moinpour, C.M.; Bagramian, R.A.; Schubert, M.M.; Gralow, J.R.; Wade, J.L., 3rd; Unger, J.M. Dental health status and patient-reported outcomes at baseline in patients participating in the osteonecrosis of the jaw registry study, SWOG S0702. Support. Care Cancer 2017, 25, 1191–1199. [Google Scholar] [CrossRef] [Green Version]
- Kyrgidis, A.; Vahtsevanos, K.; Koloutsos, G.; Andreadis, C.; Boukovinas, I.; Teleioudis, Z.; Patrikidou, A.; Triaridis, S. Bisphosphonate-Related Osteonecrosis of the Jaws: A Case- Control Study of Risk Factors in Breast Cancer Patients. J. Clin. Oncol. 2008, 26, 4634–4638. [Google Scholar] [CrossRef]
- D’Agostino, R.B. Propensity score methods for bias reduction in the comparison of a treatment to a non-randomized control group. Stat. Med. 1998, 17, 2265–2281. [Google Scholar] [CrossRef]
- Calvo-Alen, J.; McGwin, G.; Toloza, S.; Fernández, M.; Roseman, J.M.; Bastian, H.M.; Cepeda, E.J.; González, E.B.; A Baethge, B.; Fessler, B.J.; et al. Systemic lupus erythematosus in a multiethnic US cohort (LUMINA): XXIV. Cytotoxic treatment is an additional risk factor for the development of symptomatic osteonecrosis in lupus patients: Results of a nested matched case-control study. Ann. Rheum. Dis. 2006, 65, 785–790. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bedogni, A.; Fusco, V.; Agrillo, A.; Campisi, G. Learning from experience. Proposal of a refined definition and staging system for bisphosphonate-related osteonecrosis of the jaw (BRONJ). Oral Dis. 2012, 18, 621–623. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- DeSesa, C.R.; Appugounder, S.; Haberland, C.; Johnson, M.P. Osteonecrosis of the Jaw in Association with Chemotherapy in the Setting of Cutaneous T-Cell Lymphoma. J. Oral Maxillofac. Surg. 2015, 74, 292–301. [Google Scholar] [CrossRef] [PubMed]
- Beuselinck, B.; Wolter, P.; Karadimou, A.; ElAidi, R.; Dumez, H.; Rogiers, A.; Van Cann, T.; Willems, L.; Body, J.-J.; Berkers, J.; et al. Concomitant oral tyrosine kinase inhibitors and bisphosphonates in advanced renal cell carcinoma with bone metastases. Br. J. Cancer 2012, 107, 1665–1671. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fusco, V.; Porta, C.; Saia, G.; Paglino, C.; Bettini, G.; Scoletta, M.; Bonacina, R.; Vescovi, P.; Merigo, E.; Re, G.L.; et al. Osteonecrosis of the Jaw in Patients With Metastatic Renal Cell Cancer Treated With Bisphosphonates and Targeted Agents: Results of an Italian Multicenter Study and Review of the Literature. Clin. Genitourin. Cancer 2014, 13, 287–294. [Google Scholar] [CrossRef]
- Woo, S.-B.; Hellstein, J.W.; Kalmar, J.R. Systematic Review: Bisphosphonates and Osteonecrosis of the Jaws. Ann. Intern. Med. 2006, 144, 753. [Google Scholar] [CrossRef] [Green Version]
- Akintoye, S.; Hersh, E.V. Risks for Jaw Osteonecrosis Drastically Increases after 2 Years of Bisphosphonate Therapy. J. Évid. Based Dent. Pract. 2012, 12, 251–253. [Google Scholar] [CrossRef]
- Bamias, A.; Kastritis, E.; Bamia, C.; Moulopoulos, L.A.; Melakopoulos, I.; Bozas, G.; Koutsoukou, V.; Gika, D.; Anagnostopoulos, A.; Papadimitriou, C.; et al. Osteonecrosis of the Jaw in Cancer after Treatment with Bisphosphonates: Incidence and Risk Factors. J. Clin. Oncol. 2005, 23, 8580–8587. [Google Scholar] [CrossRef] [PubMed]
- E Coleman, R.; Rubens, R.D. The clinical course of bone metastases from breast cancer. Br. J. Cancer 1987, 55, 61–66. [Google Scholar] [CrossRef]
- Berruti, A.; Tucci, M.; Mosca, A.; Tarabuzzi, R.; Gorzegno, G.; Terrone, C.; Vana, F.; Lamanna, G.; Tampellini, M.; Porpiglia, F.; et al. Predictive factors for skeletal complications in hormone-refractory prostate cancer patients with metastatic bone disease. Br. J. Cancer 2005, 93, 633–638. [Google Scholar] [CrossRef] [Green Version]
- Van Poznak, C.H.; Unger, J.M.; Darke, A.K.; Moinpour, C.; Bagramian, R.A.; Schubert, M.M.; Hansen, L.K.; Floyd, J.D.; Dakhil, S.R.; Lew, D.L.; et al. Osteonecrosis of the jaw in patients with cancer receiving zoledronic acid for bone metastases: SWOG S0702, NCT00874211. American Society of Clinical Oncology (ASCO) 2019 Annual Meeting. J. Clin. Oncol. 2019, 37, 11502. [Google Scholar] [CrossRef]
- Rugani, P.; Walter, C.; Kirnbauer, B.; Acham, S.; Begus-Nahrman, Y.; Jakse, N. Prevalence of Medication-Related Osteonecrosis of the Jaw in Patients with Breast Cancer, Prostate Cancer, and Multiple Myeloma. Dent. J. 2016, 4, 32. [Google Scholar] [CrossRef] [Green Version]
- Kizub, D.A.; Miao, J.; Schubert, M.M.; Paterson, A.H.G.; Clemons, M.; Dees, E.C.; Ingle, J.N.; Falkson, C.I.; Barlow, W.E.; Hortobagyi, G.N.; et al. Risk factors for bisphosphonate-associated osteonecrosis of the jaw in the prospective randomized trial of adjuvant bisphosphonates for early-stage breast cancer (SWOG 0307). Support. Care Cancer 2020, 29, 2509–2517. [Google Scholar] [CrossRef] [PubMed]
- Walter, C.; Al-Nawas, B.; Du Bois, A.; Buch, L.; Harter, P.; Grötz, K.A. Incidence of bisphosphonate-associated osteonecrosis of the jaws in breast cancer patients. Cancer 2009, 115, 1631–1637. [Google Scholar] [CrossRef] [PubMed]
- Eleutherakis-Papaiakovou, E.; Bamias, A. Antiresorptive treatment-associated ONJ. Eur. J. Cancer Care 2017, 26, e12787. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.-F.; Shen, J.; Li, X.; Rengan, R.; Silvestris, N.; Wang, M.; DeRosa, L.; Zheng, X.; Belli, A.; Zhang, X.-L.; et al. Incidence of patients with bone metastases at diagnosis of solid tumors in adults: A large population-based study. Ann. Transl. Med. 2020, 8, 482. [Google Scholar] [CrossRef]
- Ottoa, S.; Pautkea, C.; van den Wyngaert, T.; Niepeld, D.; Schiødte, M. Medication-related osteonecrosis of the jaw: Prevention, diagnosis and T management in patients with cancer and bone metastases. Cancer Treat. Rev. 2018, 69, 177–187. [Google Scholar] [CrossRef]
- Qi, W.X.; Tang, L.N.; He, A.N.; Yao, Y.; Shen, Z. Risk of osteonecrosis of the jaw in cancer patients receiving denosumab: A meta-analysis of seven randomized controlled trials. Int. J. Clin. Oncol. 2014, 19, 403–410. [Google Scholar] [CrossRef]
- Ikesue, H.; Mouri, M.; Tomita, H.; Hirabatake, M.; Ikemura, M.; Muroi, N.; Yamamoto, S.; Takenobu, T.; Tomii, K.; Kawakita, M.; et al. Associated characteristics and treatment outcomes of medication-related osteonecrosis of the jaw in patients receiving denosumab or zoledronic acid for bone metastases. Support. Care Cancer 2021, 29, 4763–4772. [Google Scholar] [CrossRef] [PubMed]
- Vigarios, E.; Epstein, J.B.; Sibaud, V. Oral mucosal changes induced by anticancer targeted therapies and immune checkpoint inhibitors. Support. Care Cancer 2017, 25, 1713–1739. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, X.; Hamadeh, I.S.; Song, S.; Katz, J.; Moreb, J.S.; Langaee, T.Y.; Lesko, L.J.; Gong, Y. Osteonecrosis of the Jaw in the United States Food and Drug Administration’s Adverse Event Reporting System (FAERS). J. Bone Miner. Res. 2015, 31, 336–340. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mohamed, H.A.M.; Nielsen, C.E.N.; Schiodt, M. Medication related osteonecrosis of the jaws associated with targeted therapy as monotherapy and in combination with antiresorptives. A report of 7 cases from the Copenhagen Cohort. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2018, 125, 157–163. [Google Scholar] [CrossRef] [PubMed]
- Vanneman, M.; Dranoff, G. Combining immunotherapy and targeted therapies in cancer treatment. Nat. Rev. Cancer 2012, 12, 237–251. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Neha, R.; Beulah, E.; Anusha, B.; Vasista, S.; Stephy, C.; Subeesh, V. Aromatase inhibitors associated osteonecrosis of jaw: Signal refining to identify pseudo safety signals. Int. J. Clin. Pharm. 2020, 42, 721–727. [Google Scholar] [CrossRef]
- Teoh, L.; Moses, G.; Nguyen, A.P.; McCullough, M.J. Medication-related osteonecrosis of the jaw: Analysing the range of implicated drugs from the Australian database of adverse event notifications. Br. J. Clin. Pharmacol. 2020, 87, 2767–2776. [Google Scholar] [CrossRef]
- Hasegawa, T.; Hayashida, S.; Kondo, E.; Takeda, Y.; Miyamoto, H.; Kawaoka, Y.; Ueda, N.; Iwata, E.; Nakahara, H.; Kobayashi, M.; et al. Medication-related osteonecrosis of the jaw after tooth extraction in cancer patients: A multicenter retrospective study. Osteoporos Int. 2019, 30, 231–239. [Google Scholar] [CrossRef]
- Shim, K.; MacKenzie, M.J.; Winquist, E. Chemotherapy-associated osteonecrosis in cancer patients with solid tumours: A systematic review. Drug Saf. 2008, 31, 359–371. [Google Scholar] [CrossRef]
- Banfi, A.; Podestà, M.; Fazzuoli, L.; Sertoli, M.R.; Venturini, M.; Santini, G.; Cancedda, R.; Quarto, R. High-dose chemotherapy shows a dose-dependent toxicity to bone marrow osteoprogenitors: A mechanism for post-bone marrow transplantation osteopenia. Cancer 2001, 92, 2419–2428. [Google Scholar] [CrossRef]
- Zervas, K.; Verrou, E.; Teleioudis, Z.; Vahtsevanos, K.; Banti, A.; Mihou, D.; Krikelis, D.; Terpos, E. Incidence, risk factors and management of osteonecrosis of the jaw in patients with multiple myeloma: A single-centre experience in 303 patients. Br. J. Haematol. 2006, 134, 620–623. [Google Scholar] [CrossRef]
- Guida, A.; Grimaldi, A.; Ionna, F.; Perri, F.; Ascierto, P.A. New-generation anticancer drugs and medication-related osteonecrosis of the jaw (MRONJ): Review of the literature and single-center experience. Qeios 2021. [Google Scholar] [CrossRef]
- Guida, A.; Perri, F.; Ionna, F.; Ascierto, P.A.; Grimaldi, A.M. New-generation anticancer drugs and medication-related osteonecrosis of the jaw (MRONJ): Late onset 3 years after ipilimumab endovenous administration with a possible role of target therapy. Clin. Case Rep. 2020, 9, 61–66. [Google Scholar] [CrossRef] [PubMed]
- Nifosì, A.F.; Zuccarello, M.; Nifosì, L.; Saus, V.H.; Nifosì, G. Osteonecrosis of the jaw in the era of targeted therapy and immunotherapy in oncology. J. Korean Assoc. Oral Maxillofac. Surg. 2019, 45, 3–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, Y.; Yu, Y.; Shi, Y.; Li, M.; Yang, C.; Wang, S. Combined Administration of Bisphosphonates, Chemotherapeutic Agents, and/or Targeted Drugs Increases the Risk for Stage 3 Medication-Related Osteonecrosis of the Jaw: A 4-Year Retrospective Study. BioMed Res. Int. 2020, 2020, 5847429. [Google Scholar] [CrossRef] [PubMed]
- Christodoulou, C.; Pervena, A.; Klouvas, G.; Galani, E.; Falagas, M.; Tsakalos, G.; Visvikis, A.; Nikolakopoulou, A.; Acholos, V.; Karapanagiotidis, G.; et al. Combination of Bisphosphonates and Antiangiogenic Factors Induces Osteonecrosis of the Jaw More Frequently than Bisphosphonates Alone. Oncology 2009, 76, 209–211. [Google Scholar] [CrossRef] [PubMed]
- Gadiwalla, Y.; Patel, V. Osteonecrosis of the jaw unrelated to medication or radiotherapy. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2018, 125, 446–453. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, D.; Tsubota, Y.; Utsunomiya, T.; Sueoka, N.; Ueda, A.; Endo, K.; Yoshikawa, K.; Kon, M. Osteonecrosis of the jaw associated with everolimus: A case report. Mol. Clin. Oncol. 2016, 6, 255–257. [Google Scholar] [CrossRef] [Green Version]
- Lee, C.Y. Medication-Related Osteonecrosis of the Jaw with the mTOR Inhibitor Everolimus in a Patient with Estrogen-Receptor Positive Breast Cancer: A Case Report. Int. J. Oral Dent. Health 2016, 2. [Google Scholar] [CrossRef]
- Reid, I.R.; Bolland, M.J.; Grey, A.B. Is bisphosphonate-associated osteonecrosis of the jaw caused by soft tissue toxicity? Bone 2007, 41, 318–320. [Google Scholar] [CrossRef]
- Landesberg, R.; Cozin, M.; Cremers, S.; Woo, V.; Kousteni, S.; Sinha, S.; Garrett-Sinha, L.; Raghavan, S. Inhibition of oral mucosal cell wound healing by bisphosphonates. J. Oral Maxillofac. Surg. 2008, 66, 839–847. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haber, S.L.; McNatty, D. An Evaluation of the Use of Oral Bisphosphonates and Risk of Esophageal Cancer. Ann. Pharmacother. 2012, 46, 419–423. [Google Scholar] [CrossRef] [PubMed]
- Wehrhan, F.; Stockmann, P.; Nkenke, E.; Schlegel, K.A.; Guentsch, A.; Wehrhan, T.; Neukam, F.W.; Amann, K. Differential impairment of vascularization and angiogenesis in bisphosphonate-associated osteonecrosis of the jaw-related mucoperiosteal tissue. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endodontol. 2011, 112, 216–221. [Google Scholar] [CrossRef]
- Walter, C.; Pabst, A.; Ziebart, T.; Klein, M.; Al-Nawas, B. Bisphosphonates affect migration ability and cell viability of HUVEC, fibroblasts and osteoblasts in vitro. Oral Dis. 2010, 17, 194–199. [Google Scholar] [CrossRef]
- Filleul, O.; Crompot, E.; Saussez, S. Bisphosphonate-induced osteonecrosis of the jaw: A review of 2400 patient cases. J. Cancer Res. Clin. Oncol. 2010, 136, 1117–1124. [Google Scholar] [CrossRef]
- Kikuiri, T.; Kim, I.; Yamaza, T.; Akiyama, K.; Zhang, Q.; Li, Y.; Chen, C.; Chen, W.; Wang, S.; Le, A.D.; et al. Cell-based immunotherapy with mesenchymal stem cells cures bisphosphonate-related osteonecrosis of the jaw-like disease in mice. J. Bone Miner. Res. 2010, 25, 1668–1679. [Google Scholar] [CrossRef] [Green Version]
- Lombard, T.; Neirinckx, V.; Rogister, B.; Gilon, Y.; Wislet, S. Medication-Related Osteonecrosis of the Jaw: New Insights into Molecular Mechanisms and Cellular Therapeutic Approaches. Stem Cells Int. 2016, 2016, 8768162. [Google Scholar] [CrossRef] [Green Version]
- Aghaloo, T.; Hazboun, R.; Tetradis, S. Pathophysiology of Osteonecrosis of the Jaws. Oral Maxillofac. Surg. Clin. 2015, 27, 489–496. [Google Scholar] [CrossRef] [Green Version]
- Ogasawara, T.; Katagiri, M.; Yamamoto, A.; Hoshi, K.; Takato, T.; Nakamura, K.; Tanaka, S.; Okayama, H.; Kawaguchi, H. Osteoclast Differentiation by RANKL Requires NF-κB-Mediated Downregulation of Cyclin-Dependent Kinase 6 (Cdk6). J. Bone Miner. Res. 2004, 19, 1128–1136. [Google Scholar] [CrossRef]
- Sankar, U.; Patel, K.; Rosol, T.; Ostrowski, M.C. RANKL Coordinates Cell Cycle Withdrawal and Differentiation in Osteoclasts through the Cyclin-Dependent Kinase Inhibitors p27KIP1and p21CIP1. J. Bone Miner. Res. 2004, 19, 1339–1348. [Google Scholar] [CrossRef] [PubMed]
- Miller, K.D.; Nogueira, L.; Mariotto, A.B.; Rowland, J.H.; Yabroff, K.R.; Alfano, C.M.; Jemal, A.; Kramer, J.L.; Siegel, R.L. Cancer treatment and survivorship statistics, 2019. CA Cancer J. Clin. 2019, 69, 363–385. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hernandez, R.K.; Wade, S.W.; Reich, A.; Pirolli, M.; Liede, A.; Lyman, G.H. Incidence of bone metastases in patients with solid tumors: Analysis of oncology electronic medical records in the United States. BMC Cancer 2018, 18, 44. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Owosho, A.A.; Liang, S.T.Y.; Sax, A.Z.; Wu, K.; Yom, S.; Huryn, J.; Estilo, C.L. Medication-related osteonecrosis of the jaw: An update on the memorial sloan kettering cancer center experience and the role of premedication dental evaluation in prevention. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2018, 125, 440–445. [Google Scholar] [CrossRef] [PubMed]
- King, R.; Zebic, L.; Patel, V. Deciphering novel chemotherapy and its impact on dentistry. Br. Dent. J. 2020, 228, 415–421. [Google Scholar] [CrossRef]
- Fortunato, L.; Amato, M.; Simeone, M.; Bennardo, F.; Barone, S.; Giudice, A. Numb chin syndrome: A reflection of malignancy or a harbinger of MRONJ? A multicenter experience. J. Stomatol. Oral Maxillofac. Surg. 2018, 119, 389–394. [Google Scholar] [CrossRef]
- Ibrahim, M.F.K.; Mazzarello, S.; Shorr, R.; Vandermeer, L.; Jacobs, C.; Hilton, J.; Hutton, B.; Clemons, M. Should de-escalation of bone-targeting agents be standard of care for patients with bone metastases from breast cancer? A systematic review and meta-analysis. Ann. Oncol. 2015, 26, 2205–2213. [Google Scholar] [CrossRef] [Green Version]
- Awan, A.A.; Paterson, A.; Clemons, M. De-Escalation of Bone-Modifying Agents in Patients with Bone Metastases: The Best of Times and the Worst of Times? J. Oncol. Pract. 2018, 14, 465–467. [Google Scholar] [CrossRef]
- Ottewell, P.; Wilson, C. Bone-Targeted Agents in Breast Cancer: Do We Now Have All the Answers? Breast Cancer Basic Clin. Res. 2019, 13. [Google Scholar] [CrossRef] [PubMed]
- Amadori, D.; Aglietta, M.; Alessi, B.; Gianni, L.; Ibrahim, T.; Farina, G.; Gaion, F.; Bertoldo, F.; Santini, D.; Rondena, R.; et al. Efficacy and safety of 12-weekly versus 4-weekly zoledronic acid for prolonged treatment of patients with bone metastases from breast cancer (ZOOM): A phase 3, open-label, randomised, non-inferiority trial. Lancet Oncol. 2013, 14, 663–670. [Google Scholar] [CrossRef]
- Limones, A.; Sáez-Alcaide, L.; Díaz-Parreño, S.; Helm, A.; Bornstein, M.; Molinero-Mourelle, P. Medication-related osteonecrosis of the jaws (MRONJ) in cancer patients treated with denosumab vs. zoledronic acid: A systematic review and meta-analysis. Med. Oral Patol. Oral Y Cir. Buccal 2020, 25, e326–e336. [Google Scholar] [CrossRef]
- Harpaz, R.; Chase, H.S.; Friedman, C. Mining multi-item drug adverse effect associations in spontaneous reporting systems. Breast Cancer 2010, 11, S7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
MRONJ Group | Controls Group | p-Value | MRONJ Group | Controls Group | p-Value | |
---|---|---|---|---|---|---|
N = 75 (%) | N = 171 (%) | N = 75 | N = 75 | |||
(After Adjustment) | (After Adjustment) | |||||
Age-Mean (SD) | 68.3 (9.7) | 60.5 (12.7) | < 0.001 | 68.3 (9.7) | 68.8 (10.3) | 0.757 |
Sex | ||||||
Male | 30 (40.0) | 34 (19.9) | 0.002 | 30 (40.0) | 22 (29.3) | 0.230 |
Female | 45 (60.0) | 137 (80.1) | 45 (60.0) | 53 (70.7) | ||
Primary cancer type | ||||||
Multiple myeloma | 14 (18.7) | 11 (6.4) | 0.007 | 14 (18.7) | 9 (12.0) | 0.365 |
Metastatic breast cancer | 38 (50.7) | 128 (74.9) | <0.001 | 38 (50.7) | 46 (61.3) | 0.250 |
Metastatic prostate cancer | 20 (26.7) | 20 (11.7) | 0.006 | 20 (26.7) | 13 (17.3) | 0.237 |
Metastatic lung cancer | 3 (4.0) | 12 (7.0) | 0.535 | 3 (4.0) | 7 (9.3) | 0.326 |
Bone metastasis treatment drugs | ||||||
Denosumab | 20 (26.7) | 27 (15.8) | 0.069 | 20 (26.7) | 11 (14.7) | 0.107 |
Zoledronic acid | 55 (73.3) | 144 (84.2) | 0.069 | 55 (73.3) | 64 (85.3) | 0.107 |
Mean number of doses administered (SD) | 23.5 (15.7) | 18.3 (12.6) | 0.006 | 23.5 (15.7) | 16.91 (12.6) | 0.005 |
Cancer medications | ||||||
Chemotherapy | 42 (56.0) | 144 (84.2) | <0.001 | 42 (56.0) | 60 (80.0) | 0.003 |
Hormonal therapy | 38 (50.7) | 116 (67.8) | 0.016 | 38 (50.7) | 47 (62.7) | 0.187 |
Novel molecules | 21 (28.0) | 70 (40.9) | 0.073 | 21 (28.0) | 23 (30.7) | 0.858 |
MRONJ Staging (AAOMS Classification) | MRONJ Group N = 75 (%) |
---|---|
0 | 3 (2.25) |
I | 11 (8.25) |
II | 48 (36) |
III | 13 (9.75) |
Presence of clinical signs of inflammation/suppuration at diagnosis stage | 62 (82.7) |
MRONJ staging (SIPMO classification) | |
Ia | 7 (5.25) |
Ib | 23 (17.25) |
IIa | 4 (3) |
IIb | 28 (21) |
IIIa | 2 (1.5) |
IIIb | 11 (8.25) |
Anatomic location | |
Mandible | 52 (69.3) |
Upper maxilla | 16 (21.3) |
Both jaws | 7 (9.3) |
Trigger | |
Tooth extraction | 16 (21.3) |
Peri-implantitis | 1 (1.3) |
Soft tissue injuries due dental prosthesis | 4 (5.3) |
Unidentified trigger | 54 (72) |
Covariate | OR (CI 95%) | p-Value |
---|---|---|
Age | 0.99 (0.96–1.03) | 0.755 |
Sex (male) | 1.60 (0.81–3.16) | 0.171 |
Lung cancer | 0.59 (0.16–2.17) | 0.430 |
Breast cancer | 0.65 (0.34–1.24) | 0.189 |
Multiple myeloma | 1.68 (0.68–4.16) | 0.261 |
Prostate cancer | 1.73 (0.79–3.80) | 0.170 |
Number of administered doses of zoledronic acid/denosumab | 1.03 (1.01–1.05) | 0.008 |
Chemotherapy | 0.35 (0.17–0.71) | 0.003 |
Novel molecules | 1.07 (0.52–2.19) | 0.855 |
Hormonal therapy | 0.65 (0.34–1.24) | 0.189 |
Covariate | OR (CI 95%) | p-Value |
---|---|---|
Age | 0.97 (0.93–1.02) | 0.234 |
Sex (male) | 2.05 (0.50–8.42) | 0.320 |
Cancer type (ref = lung cancer) | ||
Breast cancer | 17.56 (1.43–215.05) | 0.025 |
Multiple myeloma | 16.28(1.49–181.98) | 0.022 |
Prostate cancer | 17.99 (1.60–204.68) | 0.019 |
Number of administered doses of zoledronic acid/denosumab | 1.03 (1.01–1.06) | 0.032 |
Chemotherapy | 1.06 (0.20–5.54) | 0.944 |
Hormonal therapy | 1.35 (0.22–8.18) | 0.740 |
Novel molecules | 34.74 (1.39–868.11) | 0.030 |
Chemotherapy–hormonal therapy | 0.24 (0.03–1.71) | 0.156 |
Chemotherapy–novel molecules | 0.03 (0.01–1.08) | 0.055 |
Hormonal therapy–novel molecules | 0.64 (0.09–4.65) | 0.662 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marcianò, A.; Ingrasciotta, Y.; Isgrò, V.; L’Abbate, L.; Foti, S.S.; Picone, A.; Peditto, M.; Guzzo, G.M.; Alibrandi, A.; Oteri, G. Cancer Patients at Risk for Medication-Related Osteonecrosis of the Jaw. A Case and Control Study Analyzing Predictors of MRONJ Onset. J. Clin. Med. 2021, 10, 4762. https://doi.org/10.3390/jcm10204762
Marcianò A, Ingrasciotta Y, Isgrò V, L’Abbate L, Foti SS, Picone A, Peditto M, Guzzo GM, Alibrandi A, Oteri G. Cancer Patients at Risk for Medication-Related Osteonecrosis of the Jaw. A Case and Control Study Analyzing Predictors of MRONJ Onset. Journal of Clinical Medicine. 2021; 10(20):4762. https://doi.org/10.3390/jcm10204762
Chicago/Turabian StyleMarcianò, Antonia, Ylenia Ingrasciotta, Valentina Isgrò, Luca L’Abbate, Saveria Serena Foti, Antonio Picone, Matteo Peditto, Gian Marco Guzzo, Angela Alibrandi, and Giacomo Oteri. 2021. "Cancer Patients at Risk for Medication-Related Osteonecrosis of the Jaw. A Case and Control Study Analyzing Predictors of MRONJ Onset" Journal of Clinical Medicine 10, no. 20: 4762. https://doi.org/10.3390/jcm10204762
APA StyleMarcianò, A., Ingrasciotta, Y., Isgrò, V., L’Abbate, L., Foti, S. S., Picone, A., Peditto, M., Guzzo, G. M., Alibrandi, A., & Oteri, G. (2021). Cancer Patients at Risk for Medication-Related Osteonecrosis of the Jaw. A Case and Control Study Analyzing Predictors of MRONJ Onset. Journal of Clinical Medicine, 10(20), 4762. https://doi.org/10.3390/jcm10204762