Use of a Pre-Trained Neural Network for Automatic Classification of Arterial Doppler Flow Waveforms: A Proof of Concept
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reference Classification
2.2. Network Choice and Settings
2.3. Network Training and Validation
2.4. Comparison with Humans
2.5. Statistics
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fowkes, F.G.R.; Rudan, D.; Rudan, I.; Aboyans, V.; Denenberg, J.O.; McDermott, M.M.; Norman, P.E.; Sampson, U.K.; Williams, L.J.; Mensah, G.A.; et al. Comparison of Global Estimates of Prevalence and Risk Factors for Peripheral Artery Disease in 2000 and 2010: A Systematic Review and Analysis. Lancet 2013, 382, 1329–1340. [Google Scholar] [CrossRef]
- Hirsch, A.T.; Criqui, M.H.; Treat-Jacobson, D.; Regensteiner, J.G.; Creager, M.A.; Olin, J.W.; Krook, S.H.; Hunninghake, D.B.; Comerota, A.J.; Walsh, M.E.; et al. Peripheral Arterial Disease Detection, Awareness, and Treatment in Primary Care. JAMA 2001, 286, 1317–1324. [Google Scholar] [CrossRef]
- Riviere, A.B.; Bouée, S.; Laurendeau, C.; Torreton, E.; Gourmelen, J.; Thomas-Delecourt, F. Outcomes and Management Costs of Peripheral Arterial Disease in France. J. Vasc. Surg. 2018, 67, 1834–1843. [Google Scholar] [CrossRef]
- Hirsch, A.T.; Hartman, L.; Town, R.J.; Virnig, B.A. National Health Care Costs of Peripheral Arterial Disease in the Medicare Population. Vasc. Med. 2008, 13, 209–215. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mahoney, E.M.; Wang, K.; Keo, H.H.; Duval, S.; Smolderen, K.G.; Cohen, D.J.; Steg, G.; Bhatt, D.L.; Hirsch, A.T. Vascular Hospitalization Rates and Costs in Patients with Peripheral Artery Disease in the United States. Circ. Cardiovasc. Qual. Outcomes 2010, 3, 642–651. [Google Scholar] [CrossRef] [Green Version]
- Scully, R.E.; Smith, A.D.; Arnaoutakis, D.J.; Semel, M.; Nguyen, L.L. Annual Health Care Expenditures in Individuals with Peripheral Arterial Disease. J. Vasc. Surg. 2016, 64, 1180–1181. [Google Scholar] [CrossRef] [Green Version]
- Aboyans, V.; Ricco, J.-B.; Bartelink, M.-L.E.L.; Björck, M.; Brodmann, M.; Cohnert, T.; Collet, J.-P.; Czerny, M.; De Carlo, M.; Debus, S.; et al. 2017 ESC Guidelines on the Diagnosis and Treatment of Peripheral Arterial Diseases, in Collaboration with the European Society for Vascular Surgery (ESVS)Document Covering Atherosclerotic Disease of Extracranial Carotid and Vertebral, Mesenteric, Renal, Upper and Lower Extremity Arteries Endorsed by: The European Stroke Organization (ESO)The Task Force for the Diagnosis and Treatment of Peripheral Arterial Diseases of the European Society of Cardiology (ESC) and of the European Society for Vascular Surgery (ESVS). Eur. Heart J. 2018, 39, 763–816. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gerhard-Herman, M.D.; Gornik, H.L.; Barrett, C.; Barshes, N.R.; Corriere, M.A.; Drachman, D.E.; Fleisher, L.A.; Fowkes, F.G.R.; Hamburg, N.M.; Kinlay, S.; et al. 2016 AHA/ACC Guideline on the Management of Patients with Lower Extremity Peripheral Artery Disease: Executive Summary: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. J. Am. Coll. Cardiol. 2017, 69, 1465–1508. [Google Scholar] [CrossRef]
- Mahé, G.; Boge, G.; Bura-Rivière, A.; Chakfé, N.; Constans, J.; Goueffic, Y.; Lacroix, P.; Le Hello, C.; Pernod, G.; Perez-Martin, A.; et al. Disparities between International Guidelines (AHA/ESC/ESVS/ESVM/SVS) Concerning—Lower Extremity Arterial Disease: Consensus of the French Society of Vascular Medicine (SFMV) and the French Society for Vascular and Endovascular Surgery (SCVE). Ann. Vasc. Surg. 2020, S0890–S5096. [Google Scholar] [CrossRef]
- Campbell, W.B. Doppler Waveform Analysis in the Management of Lower Limb Arterial Disease. Ann. R. Coll. Surg. Engl. 1986, 68, 103–106. [Google Scholar]
- Poe, P. Lower-Extremity Arterial Continuous-Wave Doppler Evaluation. J. Vasc. Ultrasound 2012, 36, 123–134. [Google Scholar] [CrossRef]
- Strandness, D.E., Jr.; Schultz, R.D.; Sumner, D.S.; Rushmer, R.F. Ultrasonic Flow Detection a Useful Technic in the Evaluation of Peripheral Vascular Disease. Am. J. Surg. 1967, 113, 311–320. [Google Scholar] [CrossRef]
- Dean, R.H.; Yao, J.S.T. Hemodynamic Measurements in Peripheral Vascular Disease. Curr. Probl. Surg. 1976, 13, 1–76. [Google Scholar] [CrossRef]
- Boulon, C.; Desormais, I.; Boissier, C.; Bressollette, L.; Constans, J.; Lacroix, P.; Guilmot, J.L.; Le Hello, C.; Sevestre, M.-A.; Pernod, G.; et al. Analyse des Flux Doppler: Classification de Saint-Bonnet. J. Des Mal. Vasc. 2015, 40, 305. [Google Scholar] [CrossRef]
- Spronk, S.; den Hoed, P.T.; de Jonge, L.C.W.; van Dijk, L.C.; Pattynama, P.M.T. Value of the Duplex Waveform at the Common Femoral Artery for Diagnosing Obstructive Aortoiliac Disease. J. Vasc. Surg. 2005, 42, 236–242. [Google Scholar] [CrossRef] [Green Version]
- Descotes, J.; Cathignol, D. Classification des Altérations du Profil de Vitesse Ultra-Sonore dans Les Artères des Membres Inférieurs. Nouv. Presse Med. 1975, 4, 2091–2093. [Google Scholar]
- Kim, E.S.; Sharma, A.M.; Scissons, R.; Dawson, D.; Eberhardt, R.T.; Gerhard-Herman, M.; Hughes, J.P.; Knight, S.; Marie Kupinski, A.; Mahe, G.; et al. Interpretation of Peripheral Arterial and Venous Doppler Waveforms: A Consensus Statement from the Society for Vascular Medicine and Society for Vascular Ultrasound. Vasc. Med. 2020, 484–506. [Google Scholar] [CrossRef]
- Lau, J.F.; Weinberg, M.D.; Olin, J.W. Peripheral Artery Disease. Part 1: Clinical Evaluation and Noninvasive Diagnosis. Nat. Rev. Cardiol. 2011, 8, 405–418. [Google Scholar] [CrossRef]
- Scissons, R. Characterizing Triphasic, Biphasic, and Monophasic Doppler Waveforms: Should a Simple Task Be So Difficult? J. Diagn. Med. Sonogr. 2008, 24, 269–276. [Google Scholar] [CrossRef]
- Scissons, R.; Comerota, A. Confusion of Peripheral Arterial Doppler Waveform Terminology. J. Diagn. Med. Sonogr. 2009, 25, 185–194. [Google Scholar] [CrossRef]
- Omarjee, L.; Stivalet, O.; Hoffmann, C.; Scissons, R.; Bressollette, L.; Mahé, G.; Jaquinandi, V. Heterogeneity of Doppler Waveform Description Is Decreased with the Use of a Dedicated Classification. Vasa 2018, 47, 471–474. [Google Scholar] [CrossRef] [PubMed]
- Yamashita, R.; Nishio, M.; Do, R.K.G.; Togashi, K. Convolutional Neural Networks: An Overview and Application in Radiology. Insights Imaging 2018, 9, 611–629. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ara, L.; Luo, X.; Sawchuk, A.; Rollins, D. Automate the Peripheral Arterial Disease Prediction in Lower Extremity Arterial Doppler Study Using Machine Learning and Neural Networks. In Proceedings of the 10th ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, Association for Computing Machinery, New York, NY, USA, 4 September 2019; pp. 130–135. [Google Scholar]
- Jana, B.; Oswal, K.; Mitra, S.; Saha, G.; Banerjee, S. Detection of Peripheral Arterial Disease Using Doppler Spectrogram Based Expert System for Point-of-Care Applications. Biomed. Signal Process. Control. 2019, 54, 101599. [Google Scholar] [CrossRef]
- Russakovsky, O.; Deng, J.; Su, H.; Krause, J.; Satheesh, S.; Ma, S.; Huang, Z.; Karpathy, A.; Khosla, A.; Bernstein, M.; et al. ImageNet Large Scale Visual Recognition Challenge. Int. J. Comput. Vis. 2015, 115, 211–252. [Google Scholar] [CrossRef] [Green Version]
- Mahé, G.; Boulon, C.; Désormais, I.; Lacroix, P.; Bressollette, L.; Guilmot, J.L.; Le Hello, C.; Sevestre, M.A.; Pernod, G.; Constans, J.; et al. Recommandations du Collège des enseignants de médecine vasculaire (CEMV): Analyse des flux artériels Doppler (classification de Saint-Bonnet simplifiée). JMV-J. Médecine Vasc. 2018, 43, 255–261. [Google Scholar] [CrossRef] [Green Version]
- Masters, D.; Luschi, C. Revisiting Small Batch Training for Deep Neural Networks. arXiv 2018, arXiv:1804.07612. [Google Scholar]
- Wong, S.C.; Gatt, A.; Stamatescu, V.; McDonnell, M.D. Understanding Data Augmentation for Classification: When to Warp? In Proceedings of the 2016 International Conference on Digital Image Computing: Techniques and Applications (DICTA), Gold Coast, QLD, Australia, 30 November–2 December 2016; pp. 1–6. [Google Scholar]
- Cunningham, P.; Carney, J.; Jacob, S. Stability Problems with Artificial Neural Networks and the Ensemble Solution. Artif. Intell. Med. 2000, 20, 217–225. [Google Scholar] [CrossRef] [Green Version]
- McHugh, M.L. Interrater Reliability: The Kappa Statistic. Biochem. Med. 2012, 22, 276–282. [Google Scholar] [CrossRef]
Category | Number | % |
---|---|---|
N | 145 | 34.2 |
N-CF | 15 | 3.5 |
A | 125 | 29.5 |
A-CF | 0 | 0.0 |
B | 19 | 4.5 |
B-CF | 29 | 6.8 |
CD | 29 | 6.8 |
CD-CF | 35 | 8.3 |
E | 13 | 3.1 |
E-CF | 14 | 3.3 |
Physician 1 | |||||||||
---|---|---|---|---|---|---|---|---|---|
ResNet-101 | N | N-CF | A | B | B-CF | CD | CD-CF | E | E-CF |
N | 126 | 1 | 4 | 0 | 0 | 0 | 0 | 0 | 0 |
N-CF | 7 | 6 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
A | 7 | 0 | 118 | 2 | 1 | 1 | 0 | 0 | 0 |
B | 0 | 0 | 1 | 13 | 0 | 4 | 0 | 0 | 0 |
B-CF | 2 | 3 | 0 | 1 | 20 | 0 | 4 | 0 | 0 |
CD | 3 | 0 | 2 | 3 | 0 | 21 | 2 | 2 | 0 |
CD-CF | 0 | 5 | 0 | 0 | 7 | 1 | 28 | 0 | 1 |
E | 0 | 0 | 0 | 0 | 1 | 2 | 0 | 10 | 0 |
E-CF | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 13 |
Agreement (%) | 86.9 | 40.0 | 94.4 | 68.4 | 69.0 | 72.4 | 80.0 | 76.9 | 92.9 |
Physician 1 | |||||||||
---|---|---|---|---|---|---|---|---|---|
Physician 2 | N | N-CF | A | B | B-CF | CD | CD-CF | E | E-CF |
N | 118 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 |
N-CF | 27 | 14 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
A | 0 | 0 | 123 | 0 | 0 | 0 | 0 | 0 | 0 |
B | 0 | 0 | 0 | 15 | 0 | 6 | 0 | 0 | 0 |
B-CF | 0 | 1 | 0 | 0 | 15 | 0 | 1 | 0 | 0 |
CD | 0 | 0 | 0 | 4 | 0 | 21 | 0 | 0 | 0 |
CD-CF | 0 | 0 | 0 | 0 | 14 | 1 | 34 | 0 | 0 |
E | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 13 | 0 |
E-CF | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 14 |
Agreement (%) | 81.4 | 93.3 | 98.4 | 78.9 | 51.7 | 72.4 | 97.1 | 100.0 | 100.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guilcher, A.; Laneelle, D.; Mahé, G. Use of a Pre-Trained Neural Network for Automatic Classification of Arterial Doppler Flow Waveforms: A Proof of Concept. J. Clin. Med. 2021, 10, 4479. https://doi.org/10.3390/jcm10194479
Guilcher A, Laneelle D, Mahé G. Use of a Pre-Trained Neural Network for Automatic Classification of Arterial Doppler Flow Waveforms: A Proof of Concept. Journal of Clinical Medicine. 2021; 10(19):4479. https://doi.org/10.3390/jcm10194479
Chicago/Turabian StyleGuilcher, Antoine, Damien Laneelle, and Guillaume Mahé. 2021. "Use of a Pre-Trained Neural Network for Automatic Classification of Arterial Doppler Flow Waveforms: A Proof of Concept" Journal of Clinical Medicine 10, no. 19: 4479. https://doi.org/10.3390/jcm10194479
APA StyleGuilcher, A., Laneelle, D., & Mahé, G. (2021). Use of a Pre-Trained Neural Network for Automatic Classification of Arterial Doppler Flow Waveforms: A Proof of Concept. Journal of Clinical Medicine, 10(19), 4479. https://doi.org/10.3390/jcm10194479