Direct and Indirect Effects of SARS-CoV-2 Pandemic in Subjects with Familial Hypercholesterolemia: A Single Lipid-Center Real-World Evaluation
Abstract
:1. Introduction
2. Methods
2.1. Study Design and Population
2.2. Statistical Analysis
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization Coronavirus Disease (COVID-19). Available online: https://www.who.int/emergencies/diseases/novel-coronavirus-2019 (accessed on 20 July 2021).
- Guan, W.; Ni, Z.; Hu, Y.; Liang, W.; Ou, C.; He, J.; Liu, L.; Shan, H.; Lei, C.; Hui, D.S.C.; et al. Clinical Characteristics of Coronavirus Disease 2019 in China. N. Engl. J. Med. 2020, 382, 1708–1720. [Google Scholar] [CrossRef] [PubMed]
- Madjid, M.; Safavi-Naeini, P.; Solomon, S.D.; Vardeny, O. Potential Effects of Coronaviruses on the Cardiovascular System: A Review. JAMA Cardiol. 2020, 5, 831–840. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stefanini, G.G.; Azzolini, E.; Condorelli, G. Critical Organizational Issues for Cardiologists in the COVID-19 Outbreak. Circulation 2020, 141, 1597–1599. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scicali, R.; Di Pino, A.; Platania, R.; Purrazzo, G.; Ferrara, V.; Giannone, A.; Urbano, F.; Filippello, A.; Rapisarda, V.; Farruggia, E.; et al. Detecting familial hypercholesterolemia by serum lipid profile screening in a hospital setting: Clinical, genetic and atherosclerotic burden profile. Nutr. Metab. Cardiovasc. Dis. 2018, 28, 35–43. [Google Scholar] [CrossRef] [PubMed]
- Mandraffino, G.; Scicali, R.; Rodríguez-Carrio, J.; Savarino, F.; Mamone, F.; Scuruchi, M.; Cinquegrani, M.; Imbalzano, E.; Di Pino, A.; Piro, S.; et al. Arterial stiffness improvement after adding on PCSK9 inhibitors or ezetimibe to high-intensity statins in patients with familial hypercholesterolemia: A Two–Lipid Center Real-World Experience. J. Clin. Lipidol. 2020, 14, 231–240. [Google Scholar] [CrossRef] [PubMed]
- Basili, S.; Loffredo, L.; Pastori, D.; Proieti, M.; Farcomeni, A.; Vesti, A.R.; Pignatelli, P.; Davì, G.; Hiatt, W.R.; Lip, G.Y.H.; et al. Carotid plaque detection improves the predictve value of CHA2DS2-VASc score in patients with non-valvular atrial fibrilation: The ARAPACIS Study. Int. J. Cardiol. 2017, 231, 143–149. [Google Scholar] [CrossRef] [PubMed]
- Banach, M.; Penson, P.E.; Fras, Z.; Vrablik, M.; Pella, D.; Reiner, Ž.; Nabavi, S.M.; Sahebkar, A.; Kayikcioglu, M.; Daccord, M.; et al. Brief recommendations on the management of adult patients with familial hypercholesterolemia during the COVID-19 pandemic. Pharmacol. Res. 2020, 158, 104891. [Google Scholar] [CrossRef] [PubMed]
- Pirillo, A.; Garlaschelli, K.; Arca, M.; Averna, M.; Bertolini, S.; Calandra, S.; Tarugi, P.; Catapano, A.L.; Arca, M.; Averna, M.; et al. Spectrum of mutations in Italian patients with familial hypercholesterolemia: New results from the LIPIGEN study. Atheroscler. Suppl. 2017, 29, 17–24. [Google Scholar] [CrossRef] [PubMed]
- Scicali, R.; Russo, G.I.; Di Mauro, M.; Manuele, F.; Di Marco, G.; Di Pino, A.; Ferrara, V.; Rabuazzo, A.M.; Piro, S.; Morgia, G.; et al. Analysis of Arterial Stiffness and Sexual Function after Adding on PCSK9 Inhibitor Treatment in Male Patients with Familial Hypercholesterolemia: A Single Lipid Center Real-World Experience. J. Clin. Med. 2020, 9, 3597. [Google Scholar] [CrossRef] [PubMed]
- Puccinelli, P.J.; da Costa, T.S.; Seffrin, A.; de Lira, C.A.B.; Vancini, R.L.; Nikolaidis, P.T.; Knechtle, B.; Rosemann, T.; Hill, L.; Andrade, M.S. Reduced level of physical activity during COVID-19 pandemic is associated with depression and anxiety levels: An internet-based survey. BMC Public Healhth 2021, 21, 1–11. [Google Scholar] [CrossRef]
- Bakaloudi, D.R.; Barazzoni, R.; Bischoff, S.C.; Breda, J.; Wickramasinghe, K.; Chourdakis, M. Impact of the first COVID-19 lockdown on body weight: A combined systematic review and a meta-analysis. Clin. Nutr. 2021, in press. [Google Scholar] [CrossRef]
- Cori, L.; Curzio, O.; Adorni, F.; Prinelli, F.; Noale, M.; Trevisan, C.; Fortunato, L.; Giacomelli, A.; Bianchi, F. Fear of COVID-19 for Individuals and Family Members: Indications from the National Cross-Sectional Study of the EPICOVID19 Web-Based Survey. Int. J. Environ. Res. Public Health 2021, 18, 3248. [Google Scholar] [CrossRef] [PubMed]
- Pessoa-Amorim, G.; Camm, C.F.; Gajendragadkar, P.; De Maria, G.L.; Arsac, C.; Laroche, C.; Zamorano, J.L.; Weidinger, F.; Achenbach, S.; Maggioni, A.P.; et al. Admission of patients with STEMI since the outbreak of the COVID-19 pandemic: A survey by the European Society of Cardiology. Eur. Heart J. Qual. Care Clin. Outcomes 2020, 6, 210–216. [Google Scholar] [CrossRef] [PubMed]
- WHO Coronavirus (COVID-19) Dashboard|WHO Coronavirus (COVID-19) Dashboard with Vaccination Data. Available online: https://covid19.who.int/ (accessed on 13 July 2021).
- Hilser, J.R.; Han, Y.; Biswas, S.; Gukasyan, J.; Cai, Z.; Zhu, R.; Tang, W.H.W.; Deb, A.; Lusis, A.J.; Hartiala, J.A.; et al. Association of serum HDL-cholesterol and apolipoprotein A1 levels with risk of severe SARS-CoV-2 infection. J. Lipid Res. 2021, 62, 100061. [Google Scholar] [CrossRef] [PubMed]
- de Lusignan, S.; Dorward, J.; Correa, A.; Jones, N.; Akinyemi, O.; Amirthalingam, G.; Andrews, N.; Byford, R.; Dabrera, G.; Elliot, A.; et al. Risk factors for SARS-CoV-2 among patients in the Oxford Royal College of General Practitioners Research and Surveillance Centre primary care network: A cross-sectional study. Lancet. Infect. Dis. 2020, 20, 1034. [Google Scholar] [CrossRef]
- Chacko, S.R.; DeJoy, R.; Lo, K.B.; Albano, J.; Peterson, E.; Bhargav, R.; Gu, F.; Salacup, G.; Pelayo, J.; Azmaiparashvili, Z.; et al. Association of Pre-Admission Statin Use With Reduced In-Hospital Mortality in COVID-19. Am. J. Med. Sci. 2021, 361, 725–730. [Google Scholar] [CrossRef] [PubMed]
- Masana, L.; Correig, E.; Rodríguez-Borjabad, C.; Anoro, E.; Arroyo, J.A.; Jericó, C.; Pedragosa, A.; Miret, M.; Näf, S.; Pardo, A.; et al. Effect of statin therapy on SARS-CoV-2 infection-related mortality in hospitalized patients. Eur. Heart J. Cardiovasc. Pharmacother. 2020, pvaa128. [Google Scholar] [CrossRef] [PubMed]
- Vahedian-Azimi, A.; Mohammadi, S.M.; Beni, F.H.; Banach, M.; Guest, P.C.; Jamialahmadi, T.; Sahebkar, A. Improved COVID-19 ICU admission and mortality outcomes following treatment with statins: A systematic review and meta-analysis. Arch. Med. Sci. 2021, 17, 579–595. [Google Scholar] [CrossRef] [PubMed]
- Radenkovic, D.; Chawla, S.; Pirro, M.; Sahebkar, A.; Banach, M. Cholesterol in Relation to COVID-19: Should We Care about It? J. Clin. Med. 2020, 9, 1909. [Google Scholar] [CrossRef] [PubMed]
FH (n = 260) | |
---|---|
Demographic Characteristics Age, years | 49.4 ± 6.22 |
Men, n (%) | 129 (49.6) |
ASCVD, n (%) | 80 (30.8) |
Body mass index, kg/m2 | 25.3 ± 2.24 |
FH Genotype | |
Pathogenic variants, n (%) | 267 (100.0) |
LDLR, n (%) | 261 (97.7) |
ApoB, n (%) | 4 (1.5) |
PCSK9, n (%) | 1 (0.4) |
ApoE, n (%) | 1 (0.4) |
FH Phenotype | |
Heterozygous, n (%) | 254 (97.7) |
Double heterozygous, n (%) | 3 (1.1) |
Compound heterozygous, n (%) | 2 (0.8) |
Homozygous, n (%) | 1 (0.4) |
Pretreated Lipid Profile TC, mg/dL | 362.38 ± 19.48 |
HDL-C, mg/dL | 51.38 ± 10.5 |
TG, mg/dL | 96.5 (71.5–115.5) |
LDL-C, mg/dL | 257.53 ± 18.15 |
Non-HDL-C, mg/dL | 301.51 ± 19.12 |
Risk Factors Type 2 diabetes, n (%) | 6 (2.3) |
Hypertension, n (%) | 72 (27.7) |
Smokers, n (%) | 59 (22.7) |
≥2 risk factors, n (%) | 34 (13.1) |
Treatments | |
High-intensity statin, n (%) | 191 (73.5) |
Moderate-intensity statin, n (%) | 64 (24.6) |
Low-intensity statin, n (%) | - |
Statin intolerant, n (%) | 5 (1.9) |
Ezetimibe, n (%) | 225 (86.5) |
PCSK9 inhibitor, n (%) | 62 (23.8) |
Statin plus ezetimibe, n (%) | 195 (75.0) |
Statin plus ezetimibe plus PCSK9 inhibitor, n (%) | 57 (21.9) |
Antiplatelet therapy, n (%) | 80 (30.8) |
FH (n = 260) before Lockdown | FH (n = 260) after Lockdown | p Value | |
---|---|---|---|
Indirect Effect | |||
Lipid Profile, n (%) | 260 (100.0) | 147 (56.5) | <0.01 |
TC, mg/dL * | 169.61 ± 18.75 | 177.83 ± 18.91 | 0.43 |
HDL-C, mg/dL * | 53.2 ± 10.38 | 47.78 ± 10.12 | <0.05 |
TG, mg/dL * | 90.5 (68.25–114.5) | 97.5 (70.5–121.25) | 0.11 |
LDL-C, mg/dL * | 103.13 ± 18.02 | 111.32 ± 18.14 | 0.25 |
Non-HDL-C, mg/dL * | 117.24 ± 18.83 | 133.09 ± 19.01 | <0.05 |
LDL-C target, n (%) * | 105 (40.4) | 81 (31.2) | 0.09 |
Lipidologist consultation, n (%) | 260 (100.0) | 87 (33.5) | <0.001 |
Cardiologist consultation, n (%) | 158 (60.8) | 58 (22.3) | <0.01 |
Vascular imaging, n (%) | 260 (100.0) | 51 (19.6) | <0.001 |
Cause of Indirect Effect | |||
Contagion fear, n (%) | - | 218 (83.8) | - |
Long-wait consultation, n (%) | - | 42 (16.2) | - |
Direct Effect | |||
SARS-CoV-2 infection, n (%) | - | 19 (7.3) | - |
Hospitalization | |||
COVID-19, n (%) | - | - | - |
Other causes, n (%) | - | - | - |
SARS-CoV-2 FH (n = 19) | |
---|---|
Demographic Characteristics | |
Age, years | 58.7 ± 5.18 |
Male, n (%) | 10 (52.6) |
Body mass index, kg/m2 | 26.1 ± 1.52 |
ASCVD, n (%) | 15 (78.9) |
FH Phenotype | |
Heterozygote, n (%) | 15 (78.8) |
Double heterozygote, n (%) | 1 (5.3) |
Compound heterozygote, n (%) | 2 (10.6) |
Homozygote, n (%) | 1 (5.3) |
Lipid Profile Before Lockdown | |
TC, mg/dL | 162.45 ± 10.24 |
HDL-C, mg/dL | 49.8 ± 10.13 |
TG, mg/dL | 97.25 (66.0–113.5) |
LDL-C, mg/dL | 93.34 ± 10.11 |
Non-HDL-C, mg/dL | 113.36 ± 10.43 |
LDL-C target, n (%) | 8 (42.1) |
Risk Factors | |
Type 2 diabetes, n (%) | 3 (15.8) |
Hypertension, n (%) | 16 (84.2) |
Smokers, n (%) | 7 (36.8) |
≥2 risk factors, n (%) | 10 (52.6) |
Treatments | |
High-intensity statin, n (%) | 17 (89.5) |
Moderate-intensity statin, n (%) | 2 (10.5) |
Low-intensity statin, n (%) | - |
Statin intolerant, n (%) | - |
Ezetimibe, n (%) | 19 (100) |
PCSK9 inhibitor, n (%) | 12 (63.2) |
Statin + ezetimibe + PCSK9 inhibitor, n (%) | 12 (63.2) |
Antiplatelet therapy, n (%) | 15 (78.9) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Scicali, R.; Piro, S.; Ferrara, V.; Di Mauro, S.; Filippello, A.; Scamporrino, A.; Romano, M.; Purrello, F.; Di Pino, A. Direct and Indirect Effects of SARS-CoV-2 Pandemic in Subjects with Familial Hypercholesterolemia: A Single Lipid-Center Real-World Evaluation. J. Clin. Med. 2021, 10, 4363. https://doi.org/10.3390/jcm10194363
Scicali R, Piro S, Ferrara V, Di Mauro S, Filippello A, Scamporrino A, Romano M, Purrello F, Di Pino A. Direct and Indirect Effects of SARS-CoV-2 Pandemic in Subjects with Familial Hypercholesterolemia: A Single Lipid-Center Real-World Evaluation. Journal of Clinical Medicine. 2021; 10(19):4363. https://doi.org/10.3390/jcm10194363
Chicago/Turabian StyleScicali, Roberto, Salvatore Piro, Viviana Ferrara, Stefania Di Mauro, Agnese Filippello, Alessandra Scamporrino, Marcello Romano, Francesco Purrello, and Antonino Di Pino. 2021. "Direct and Indirect Effects of SARS-CoV-2 Pandemic in Subjects with Familial Hypercholesterolemia: A Single Lipid-Center Real-World Evaluation" Journal of Clinical Medicine 10, no. 19: 4363. https://doi.org/10.3390/jcm10194363
APA StyleScicali, R., Piro, S., Ferrara, V., Di Mauro, S., Filippello, A., Scamporrino, A., Romano, M., Purrello, F., & Di Pino, A. (2021). Direct and Indirect Effects of SARS-CoV-2 Pandemic in Subjects with Familial Hypercholesterolemia: A Single Lipid-Center Real-World Evaluation. Journal of Clinical Medicine, 10(19), 4363. https://doi.org/10.3390/jcm10194363