Effects of Perioperative Inflammatory Response in Cervical Cancer: Laparoscopic versus Open Surgery
Abstract
:1. Introduction
2. Methods
2.1. Study Design and Patient Population
2.2. Clinical Data Collection and Outcome Assessments
2.3. Statistical Analysis
3. Results
3.1. Primary Outcomes
3.2. Secondary Outcomes
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wu, Y.; Chen, Y.; Li, L.; Yu, G.; Zhang, Y.; He, Y. Associations of high-risk HPV types and viral load with cervical cancer in China. J. Clin. Virol. 2006, 35, 264–269. [Google Scholar] [CrossRef]
- Arbyn, M.; Weiderpass, E.; Bruni, L.; de Sanjosé, S.; Saraiya, M.; Ferlay, J.; Bray, F. Estimates of incidence and mortality of cervical cancer in 2018: A worldwide analysis. Lancet Glob. Health 2020, 8, e191–e203. [Google Scholar] [CrossRef] [Green Version]
- Wu, J.; Ye, T.; Lv, J.; He, Z.; Zhu, J. Laparoscopic nerve-sparing radical hysterectomy vs. laparoscopic radical hysterectomy in cervical cancer: A systematic review and meta-analysis of clinical efficacy and bladder dysfunction. J. Minim. Invasive Gynecol. 2018, 26, 417–426.e6. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.-L.; Wu, K.-Y.; Huang, K.-G.; Lee, P.-S.; Yen, C.-F. Long-term survival outcomes of laparoscopically assisted radical hysterectomy in treating early-stage cervical cancer. Am. J. Obstet. Gynecol. 2010, 203, 165.e1–165.e7. [Google Scholar] [CrossRef]
- Sobiczewski, P.; Bidzinski, M.; Derlatka, P.; Panek, G.; Danska-Bidzinska, A.; Gmyrek, L.; Michalski, W. Early cervical cancer managed by laparoscopy and conventional surgery: Comparison of treatment results. Int. J. Gynecol. Cancer 2009, 19, 1390–1395. [Google Scholar] [CrossRef] [PubMed]
- Diaz-Padilla, I.; Monk, B.J.; Mackay, H.J.; Oaknin, A. Treatment of metastatic cervical cancer: Future directions involving targeted agents. Crit. Rev. Oncol. 2013, 85, 303–314. [Google Scholar] [CrossRef]
- Holub, K.; Biete, A. Impact of systemic inflammation biomarkers on the survival outcomes of cervical cancer patients. Clin. Transl. Oncol. 2019, 21, 836–844. [Google Scholar] [CrossRef]
- Chen, B.; Liu, L.; Xu, H.; Yang, Y.; Zhang, L.; Zhang, F. Effectiveness of immune therapy combined with chemotherapy on the immune function and recurrence rate of cervical cancer. Exp. Ther. Med. 2015, 9, 1063–1067. [Google Scholar] [CrossRef]
- Prabawa, I.P.Y.; Bhargah, A.; Liwang, F.; Tandio, D.; Tandio, A.L.; Lestari, A.A.W.; Budiana, I.N.G.; Manuaba, A. Pretreatment neutrophil-to-lymphocyte ratio (NLR) and platelet-to-lymphocyte ratio (PLR) as a predictive value of hematological markers in cervical cancer. Asian Pac. J. Cancer Prev. 2019, 20, 863–868. [Google Scholar] [CrossRef] [Green Version]
- Zhu, M.; Feng, M.; He, F.; Han, B.; Ma, K.; Zeng, X.; Liu, Z.; Liu, X.; Li, J.; Cao, H.; et al. Pretreatment neutrophil-lymphocyte and platelet-lymphocyte ratio predict clinical outcome and prognosis for cervical Cancer. Clin. Chim. Acta 2018, 483, 296–302. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, K.; Nishida, T.; Haruma, T.; Haraga, J.; Omichi, C.; Ogawa, C.; Kusumoto, T.; Seki, N.; Masuyama, H.; Hiramatsu, Y. Pretreatment platelet-lymphocyte ratio is an independent predictor of cervical cancer recurrence following concurrent chemoradiation therapy. Mol. Clin. Oncol. 2015, 3, 1001–1006. [Google Scholar] [CrossRef] [Green Version]
- An, X.; Ding, P.-R.; Li, Y.-H.; Wang, F.-H.; Shi, Y.-X.; Wang, Z.-Q.; He, Y.-J.; Xu, R.-H.; Jiang, W.-Q. Elevated neutrophil to lymphocyte ratio predicts survival in advanced pancreatic cancer. Biomarkers 2010, 15, 516–522. [Google Scholar] [CrossRef]
- Jung, M.R.; Park, Y.K.; Jeong, O.; Seon, J.W.; Ryu, S.Y.; Kim, D.Y.; Kim, Y.J. Elevated preoperative neutrophil to lymphocyte ratio predicts poor survival following resection in late stage gastric cancer. J. Surg. Oncol. 2011, 104, 504–510. [Google Scholar] [CrossRef]
- Mallappa, S.; Sinha, A.; Gupta, S.; Chadwick, S.J.D. Preoperative neutrophil to lymphocyte ratio >5 is a prognostic factor for recurrent colorectal cancer. Colorectal Dis. 2013, 15, 323–328. [Google Scholar] [CrossRef]
- Walsh, S.R.; Cook, E.J.; Goulder, F.; Justin, T.A.; Keeling, N.J. Neutrophil-lymphocyte ratio as a prognostic factor in colorectal cancer. J. Surg. Oncol. 2005, 91, 181–184. [Google Scholar] [CrossRef] [PubMed]
- Feng, Z.; Wen, H.; Bi, R.; Ju, X.; Chen, X.; Yang, W.; Wu, X. Preoperative neutrophil-to-lymphocyte ratio as a predictive and prognostic factor for high-grade serous ovarian cancer. PLoS ONE 2016, 11, e0156101. [Google Scholar] [CrossRef] [PubMed]
- Cummings, M.; Merone, L.; Keeble, C.; Burland, L.; Grzelinski, M.; Sutton, K.; Begum, N.; Thacoor, A.; Green, B.; Sarveswaran, J.; et al. Preoperative neutrophil: Lymphocyte and platelet: Lymphocyte ratios predict endometrial cancer survival. Br. J. Cancer 2015, 113, 311–320. [Google Scholar] [CrossRef] [Green Version]
- Wu, M.; Yang, S.; Feng, X.; Yu, F.; Liu, X.; Dong, J. Preoperative plus postoperative neutrophil-lymphocyte ratio for predicting overall survival following partial hepatectomy for hepatocellular carcinoma. Oncol. Lett. 2020, 20, 375. [Google Scholar] [CrossRef]
- Jin, F.; Han, A.; Shi, F.; Kong, L.; Yu, J. The postoperative neutrophil-to-lymphocyte ratio and changes in this ratio predict survival after the complete resection of stage I non-small cell lung cancer. OncoTargets Ther. 2016, 9, 6529–6537. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.; Hu, X.; Su, M.-C.; Che, G.-W.; Wang, Y.-W. Postoperative elevations of neutrophil-to-lymphocyte and platelet-to-lymphocyte ratios predict postoperative pulmonary complications in non-small cell lung cancer patients: A retrospective cohort study. Curr. Med. Sci. 2020, 40, 339–347. [Google Scholar] [CrossRef] [PubMed]
- Grivennikov, S.I.; Greten, F.; Karin, M. Immunity, inflammation, and cancer. Cell 2010, 140, 883–899. [Google Scholar] [CrossRef] [Green Version]
- Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: The next generation. Cell 2011, 144, 646–674. [Google Scholar] [CrossRef] [Green Version]
- Lee, Y.-Y.; Choi, C.H.; Kim, H.-J.; Kim, T.-J.; Lee, J.-W.; Lee, J.-H.; Bae, D.-S.; Kim, B.-G. Pretreatment neutrophil: Lymphocyte ratio as a prognostic factor in cervical carcinoma. Anticancer. Res. 2012, 32, 1555–1561. [Google Scholar] [PubMed]
- Smith, R.A.; Bosonnet, L.; Ghaneh, P.; Sutton, R.; Evans, J.; Healey, P.; Garvey, C.; Hughes, M.; Raraty, M.; Campbell, F.; et al. The platelet-lymphocyte ratio improves the predictive value of serum CA19-9 levels in determining patient selection for staging laparoscopy in suspected periampullary cancer. Surgery 2008, 143, 658–666. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Huang, H.-Z.; He, Y.; Yu, Y.-J.; Zhou, Q.-M.; Wang, R.-J.; He, J.-B.; Han, S.-L. A new nomogram based on early postoperative NLR for predicting infectious complications after gastrectomy. Cancer Manag. Res. 2020, 12, 881–889. [Google Scholar] [CrossRef]
- Xu, Q.; Dong, M.; Dong, W.; Yang, D.; Zhang, J.; Liu, J.; Ren, L.; Feng, Y. Postoperative comparison of laparoscopic radical resection and open abdominal radical hysterectomy for cervical cancer patient. Arch. Gynecol. Obstet. 2020, 302, 473–479. [Google Scholar] [CrossRef]
- Cook, E.J.; Walsh, S.R.; Farooq, N.; Alberts, J.C.; Justin, T.A.; Keeling, N.J. Post-operative neutrophil-lymphocyte ratio predicts complications following colorectal surgery. Int. J. Surg. 2007, 5, 27–30. [Google Scholar] [CrossRef] [Green Version]
- Inose, H.; Kobayashi, Y.; Yuasa, M.; Hirai, T.; Yoshii, T.; Okawa, A. Postoperative lymphocyte percentage and neutrophil–lymphocyte ratio are useful markers for the early prediction of surgical site infection in spinal decompression surgery. J. Orthop. Surg. 2020, 28, 2309499020918402. [Google Scholar] [CrossRef]
- Shen, C.-J.; Miao, T.; Wang, Z.-F.; Li, Z.-F.; Huang, L.-Q.; Chen, T.-T.; Yan, W.-H. Predictive value of post-operative neutrophil/lymphocyte count ratio for surgical site infection in patients following posterior lumbar spinal surgery. Int. Immunopharmacol. 2019, 74, 105705. [Google Scholar] [CrossRef] [PubMed]
- Fretland, A.A.; Sokolov, A.; Postriganova, N.; Kazaryan, A.M.; Pischke, S.E.; Nilsson, P.H.; Rognes, I.N.; Bjornbeth, B.A.; Fagerland, M.W.; Mollnes, T.E.; et al. Inflammatory response after laparoscopic versus open resection of colorectal liver metastases: Data from the oslo-comet trial. Medicine 2015, 94, e1786. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.; Deng, L.; Xu, H.-C.; Zhang, Y.; Liang, Z.-Q. Laparoscopy versus laparotomy for the management of early stage cervical cancer. BMC Cancer 2015, 15, 928. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramirez, P.T.; Frumovitz, M.; Pareja, R.; Lopez, A.; Vieira, M.; Ribeiro, R.; Buda, A.; Yan, X.; Shuzhong, Y.; Chetty, N.; et al. Minimally invasive versus abdominal radical hysterectomy for cervical cancer. N. Engl. J. Med. 2018, 379, 1895–1904. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Ouyang, Y.; Tao, Y.; Wang, L.; Li, M.; Gao, L.; Cao, X. Small cell carcinoma of the uterine cervix: A multi-institutional experience. Int. J. Gynecol. Cancer 2020, 30, 174–180. [Google Scholar] [CrossRef] [PubMed]
- Viswaanathan, A.; Deavers, M.T.; Jhingran, A.; Ramirez, P.T.; Levenback, C.; Eifel, P.J. Small cell neuroendocrine carcinoma of the cervix: Outcome and patterns of recurrence. Gynecol. Oncol. 2004, 93, 27–33. [Google Scholar] [CrossRef]
Unmatched Sample | Matched Sample | |||||||
---|---|---|---|---|---|---|---|---|
Unmatched Sample: Lapa (n = 721) | Unmatched Sample: Open (n = 208) | p | SMD | Matched Sample: Lapa (n = 160) | Matched Sample: Open (n = 160) | p | SMD | |
Preoperative data | ||||||||
Age; year | 47.20 ± 11.33 | 49.09 ± 11.89 | 0.037 | 0.162 | 48.14 ± 11.06 | 48.62 ± 11.91 | 0.708 | 0.042 |
Weight | 57.80 ± 8.29 | 57.79 ± 8.75 | 0.982 | −0.002 | 57.39 ± 7.89 | 57.88 ± 8.66 | 0.601 | 0.059 |
Height | 157.36 ± 5.54 | 156.42 ± 5.84 | 0.034 | −0.164 | 156.23 ± 5.61 | 156.31 ± 5.81 | 0.903 | 0.014 |
BMI; kg·m−2 | 23.36 ± 3.24 | 23.63 ± 3.48 | 0.300 | 0.080 | 23.52 ± 3.03 | 23.70 ± 3.42 | 0.614 | 0.056 |
DM | 33 (4.6) | 12 (5.8) | 0.480 | 0.054 | 12 (7.5) | 9 (5.6) | 0.498 | −0.076 |
HTN | 89 (12.3) | 33 (15.9) | 0.185 | 0.101 | 26 (16.2) | 24 (15.0) | 0.758 | −0.034 |
ASA status | 0.363 | 0.101 | 0.900 | 0.052 | ||||
ASA 1 | 182 (25.2) | 50 (24.0) | 42 (26.2) | 43 (26.9) | ||||
ASA 2 | 531 (73.6) | 153 (73.6) | 115 (71.9) | 115 (71.9) | ||||
ASA 3 | 8 (1.1) | 70 (2.6) | 3 (1.9) | 2 (1.2) | ||||
Surgeons | <0.001 | 0.814 | 0.969 | 0.083 | ||||
Surgeon 1 | 247 (34.3) | 14 (6.7) | 15 (9.4) | 13 (8.1) | ||||
Surgeon 2 | 124 (17.2) | 81 (38.9) | 57 (35.6) | 59 (36.9) | ||||
Surgeon 3 | 114 (15.8) | 32 (15.4) | 22 (13.8) | 24 (15.0) | ||||
Surgeon 4 | 67 (9.3) | 32 (15.4) | 24 (15.0) | 26 (16.2) | ||||
Surgeon 5 | 169 (23.4) | 49 (23.6) | 42 (26.2) | 38 (23.8) | ||||
FIGO | <0.001 | 0.436 | ||||||
Precancerous lesion | 5 (0.7) | 2 (1.0) | 1 (0.6) | 1 (0.6) | ||||
Stage 1A1 | 48 (10.8) | 8 (3.8) | 8 (5.0) | 6 (3.8) | ||||
Stage 1A2 | 53 (7.4) | 9 (4.3) | 13 (8.1) | 9 (5.6) | ||||
Stage 1B1 | 418 (58.0) | 79 (38.0) | 69 (43.1) | 72 (45.0) | ||||
Stage 1B2 | 89 (12.3) | 29 (13.9) | 22 (13.8) | 24 (15.0) | ||||
Stage 2A | 63 (8.7) | 31 (14.9) | 25 (15.6) | 14 (8.8) | ||||
Stage 2B | 40 (5.5) | 41 (19.7) | 18 (11.3) | 31 (19.4) | ||||
Stage 3 | 3 (0.4) | 2 (1.0) | 2 (1.2) | 1 (0.6) | ||||
Stage 4 | 2 (0.3) | 7 (3.4) | 2 (1.2) | 2 (1.2) | ||||
Lymph node metastasis | 144 (20.0) | 58 (27.9) | 0.015 | 33 (20.6) | 39 (24.4) | 0.423 | ||
WBC, 103/uL | 6.35 ± 1.85 | 6.73 ± 2.69 | 0.050 | 0.142 | 6.33 ± 1.70 | 6.33 ± 1.94 | 0.993 | 0.013 |
Hemoglobin, g/dL | 12.41 ± 1.32 | 11.93 ± 1.54 | <0.001 | −0.331 | 12.22 ± 1.31 | 12.12 ± 1.38 | 0.504 | −0.075 |
Platelets, 109/L | 255.15 ± 61.87 | 265.10 ± 72.36 | 0.050 | 0.148 | 259.39 ± 61.65 | 260.04 ± 62.81 | 0.926 | 0.010 |
Neutrophil | 2.21 ± 1.37 | 2.70 ± 2.40 | <0.001 | 0.073 | 2.25 ± 1.48 | 2.29 ± 1.38 | 0.791 | 0.062 |
Lymphocyte | 31.66 ± 9.58 | 29.24 ± 10.56 | 0.002 | −0.240 | 31.25 ± 9.91 | 31.16 ± 9.93 | 0.939 | −0.009 |
NLR | 2.21 ± 1.37 | 2.70 ± 2.40 | <0.001 | 0.249 | 2.25 ± 1.48 | 2.29 ± 1.38 | 0.791 | 0.030 |
PLR | 146.86 ± 72.86 | 172.19 ± 105.10 | 0.001 | 0.304 | 136.75 ± 70.06 | 157.03 ± 78.13 | 0.580 | 0.023 |
Albumin; g·dL−1 | 4.02 ± 0.35 | 3.84 ± 0.40 | <0.001 | −0.469 | 3.91 ± 0.36 | 3.93 ± 0.34 | 0.645 | 0.052 |
Intraoperative data | ||||||||
Transfusion | 199 (27.6) | 122 (58.7) | <0.001 | 47 (29.4) | 85 (53.1) | <0.001 | ||
RBC unit | 0.60 ± 1.27 | 1.57 ± 1.96 | <0.001 | 0.67 ± 1.42 | 1.35 ± 1.79 | <0.001 | ||
Operation time; min | 284.76 ± 62.93 | 301.42 ± 61.16 | 0.001 | 302.32 ± 70.62 | 298.54 ± 61.05 | 0.609 | ||
Total fluids; mL/kg | 60.23 ± 23.77 | 68.20 ± 29.54 | <0.001 | 65.41 ± 24.99 | 66.95 ± 27.99 | 0.605 | ||
Colloid use | 452 (62.7) | 151 (72.6) | 0.008 | 103 (64.4) | 115 (71.9) | 0.150 | ||
Postoperative data | ||||||||
NLR at POD 0 | 12.48 ± 6.76 | 17.06 ± 11.51 | <0.001 | 12.70 ± 8.07 | 16.54 ± 7.43 | <0.001 | ||
NLR at POD 1 | 5.92 8.30 | 7.88 3.85 | <0.001 | 5.84 6.42 | 7.93 5.61 | <0.001 | ||
Histology | 0.009 | <0.001 | ||||||
Squamous | 490 (68.0) | 148 (71.2) | 111 (69.4) | 117 (73.1) | ||||
Adeno | 188 (26.1) | 36 (17.3) | 41 (25.6) | 28 (17.5) | ||||
Adenosquamous | 27 (3.7) | 17 (8.2) | 6 (3.8) | 11 (6.9) | ||||
Small cell | 9 (1.2) | 6 (2.9) | 1 (0.6) | 4 (2.5) | ||||
Neuroendocrine | 1 (0.1) | 0 (0.0) | 1 (0.6) | 0 (0.0) | ||||
Not reported | 6 (0.8) | 1 (0.5) | 0 (0.0) | 0 (0.0) | ||||
Postoperative CTx | 267 (37.0) | 124 (59.6) | <0.001 | 73 (45.6) | 88 (55.0) | 0.094 | ||
Postoperative RTx | 273 (37.9) | 135 (64.9) | <0.001 | 74 (46.2) | 103 (64.4) | 0.001 |
Univariate | Multivariate | |||||
---|---|---|---|---|---|---|
OR | 95% CI | p-Value | OR | 95% CI | p-Value | |
Age; year | 0.98 | 0.95–1.01 | 0.156 | |||
Weight | 0.98 | 0.93–1.02 | 0.269 | |||
Height | 1.04 | 0.98–1.10 | 0.234 | |||
BMI; kg·m−2 | 0.90 | 0.80–1.01 | 0.066 | |||
DM | 0.57 | 0.08–4.25 | 0.582 | |||
HTN | 1.11 | 0.42–2.91 | 0.837 | |||
ASA | 0.646 | |||||
ASA 1 | 1.00 | |||||
ASA 2 | 1.32 | 0.57–3.08 | 0.519 | |||
ASA 3 | 2.68 | 0.30–23.56 | 0.374 | |||
Surgeons | 0.825 | |||||
Surgeon 1 | 1.00 | |||||
Surgeon 2 | 0.95 | 0.39–2.31 | 0.915 | |||
Surgeon 3 | 0.74 | 0.25–2.13 | 0.572 | |||
Surgeon 4 | 0.65 | 0.18–2.35 | 0.509 | |||
Surgeon 5 | 0.59 | 0.22–1.59 | 0.295 | |||
FIGO | ||||||
Precancerous lesion and stage 1 | 1.00 | 1.00 | ||||
Stage 2, 3, and 4 | 2.11 | 1.03–4.33 | 0.041 | 1.16 | 0.52–2.60 | 0.709 |
Lymph node metastasis | 2.84 | 1.42–5.65 | 0.003 | 1.30 | 0.60–2.81 | 0.502 |
Transfusion | 1.44 | 0.73–2.86 | 0.294 | |||
Operation time; min | 1.00 | 1.00–1.01 | 0.135 | |||
Total fluids; mL/kg | 1.01 | 1.00–1.02 | 0.115 | |||
Colloids use | 1.19 | 0.57–2.45 | 0.644 | |||
Histology | <0.001 | <0.001 | ||||
Squamous | 1.00 | 1.00 | ||||
Adeno | 1.27 | 0.61–2.62 | 0.524 | 1.65 | 0.68–4.01 | 0.266 |
Adenosquamous | 2.51 | 0.83–7.59 | 0.102 | 1.79 | 0.47–6.85 | 0.396 |
Small cell | 11.15 | 3.60–34.51 | <0.001 | 9.86 | 2.83–34.42 | <0.001 |
Neuroendocrine and not reported | 3.50 | 0.41–29.57 | 0.249 | Infinite | 0.998 | |
NLR change at POD 0 | 0.741 | 0.868 | ||||
1st quartile | 1.00 | 1.00 | ||||
2nd quartile | 1.06 | 0.42–2.66 | 0.898 | 1.55 | 0.56–4.29 | 0.401 |
3rd quartile | 0.63 | 0.22–1.80 | 0.391 | 0.90 | 0.29–2.82 | 0.869 |
4th quartile | 1.07 | 0.43–2.69 | 0.883 | 1.40 | 0.48–3.61 | 0.598 |
Albumin | 0.36 | 0.16–0.81 | 0.014 | |||
Preoperative NLR | 1.28 | 1.14–1.45 | <0.001 | 1.23 | 1.06–1.43 | 0.005 |
Preoperative PLR | 1.02 | 1.01–1.03 | <0.001 | |||
Laparoscopic surgery | 1.86 | 0.91–3.80 | 0.090 | 1.16 | 0.50–2.70 | 0.731 |
Postoperative CTx | 12.49 | 4.89–31.91 | <0.001 | 15.21 | 2.95–78.48 | 0.001 |
Postoperative RTx | 4.37 | 2.19–8.72 | <0.001 | 1.17 | 0.41–3.33 | 0.767 |
Unmatched Sample | Matched Sample | |||||
---|---|---|---|---|---|---|
Unmatched Sample: Lapa (n = 721) | Unmatched Sample: Open (n = 208) | p | Matched Sample: Lapa (n = 160) | Matched Sample: Open (n = 160) | p | |
Hospital stay, day | 9.8 ± 3.8 | 12.4 ± 7 | <0.001 | 10.6 ± 4.8 | 11.7 ± 6.1 | 0.080 |
ICU admission | 8 (1.2) | 3 (1.5) | 0.696 | 1 (0.7) | 2 (1.3) | 0.562 |
5-year mortality | 23 (3.2) | 12 (5.8) | 0.085 | 6 (3.8) | 7 (4.4) | 0.777 |
Overall mortality | 28 (3.9) | 17 (8.2) | 0.011 | 10 (6.3) | 11 (6.9) | 0.821 |
Unmatched | Matched | |||||||
---|---|---|---|---|---|---|---|---|
Unadjusted OR (95% CI) | p | Adjusted OR * (95% CI) | p | Unadjusted OR (95% CI) | p | Adjusted OR † (95% CI) | p | |
5-year mortality | 1.86 (0.91–3.80) | 0.085 | 0.92 (0.41–2.08) | 0.848 | 1.17 (0.39–3.57) | 0.777 | 1.02 (0.44–2.38) | 0.968 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sim, J.-H.; Lee, J.-S.; Jang, D.-M.; Kim, H.J.; Lee, S.-W.; Cho, H.-S.; Choi, W.-J. Effects of Perioperative Inflammatory Response in Cervical Cancer: Laparoscopic versus Open Surgery. J. Clin. Med. 2021, 10, 4198. https://doi.org/10.3390/jcm10184198
Sim J-H, Lee J-S, Jang D-M, Kim HJ, Lee S-W, Cho H-S, Choi W-J. Effects of Perioperative Inflammatory Response in Cervical Cancer: Laparoscopic versus Open Surgery. Journal of Clinical Medicine. 2021; 10(18):4198. https://doi.org/10.3390/jcm10184198
Chicago/Turabian StyleSim, Ji-Hoon, Ju-Seung Lee, Dong-Min Jang, Hwa Jung Kim, Shin-Wha Lee, Hyun-Seok Cho, and Woo-Jong Choi. 2021. "Effects of Perioperative Inflammatory Response in Cervical Cancer: Laparoscopic versus Open Surgery" Journal of Clinical Medicine 10, no. 18: 4198. https://doi.org/10.3390/jcm10184198
APA StyleSim, J.-H., Lee, J.-S., Jang, D.-M., Kim, H. J., Lee, S.-W., Cho, H.-S., & Choi, W.-J. (2021). Effects of Perioperative Inflammatory Response in Cervical Cancer: Laparoscopic versus Open Surgery. Journal of Clinical Medicine, 10(18), 4198. https://doi.org/10.3390/jcm10184198