FMR1 and AKT/mTOR Signaling in Human Granulosa Cells: Functional Interaction and Impact on Ovarian Response
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design and Patients
2.2. Ovarian Stimulation
2.3. Retrieval of Granulosa Cells
2.4. RNA Extraction
2.5. Gene Expression Analysis
2.6. Statistical Analysis
2.7. CGG Repeat Analysis
2.8. Non-PM Allele Length Classification
3. Results
3.1. General Study Population
3.2. Gene Expression Analyses, Correlation and Regression Curve Models
3.3. CGG Repeat Analysis and Gene Expression Values
4. Discussion
Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tal, R.; Seifer, D.B. Ovarian reserve testing: A user’s guide. Am. J. Obstet. Gynecol. 2017, 217, 129–140. [Google Scholar] [CrossRef] [Green Version]
- Barad, D.H.; Weghofer, A.; Gleicher, N. Age-specific levels for basal follicle-stimulating hormone assessment of ovarian function. Obstet. Gynecol. 2007, 109, 1404–1410. [Google Scholar] [CrossRef]
- Ferraretti, A.P.; La Marca, A.; Fauser, B.C.; Tarlatzis, B.; Nargund, G.; Gianaroli, L. ESHRE consensus on the definition of ‘poor response’ to ovarian stimulation for in vitro fertilization: The Bologna criteria. Hum. Reprod. 2011, 26, 16161624. [Google Scholar] [CrossRef] [Green Version]
- Sobinoff, A.P.; Sutherland, J.M.; McLaughlin, E.A. Intracellular signalling during female gametogenesis. Mol. Hum. Reprod. 2013, 19, 265–278. [Google Scholar] [CrossRef] [Green Version]
- Eichler, E.E.; Richards, S.; Gibbs, R.A.; Nelson, D.L. Fine structure of the human FMR1 gene. Hum. Mol. Genet. 1993, 2, 1147–1153. [Google Scholar] [CrossRef] [PubMed]
- Schuettler, J.; Peng, Z.; Zimmer, J.; Sinn, H.-P.; Von Hagens, C.; Strowitzki, T.; Vogt, P.H. Variable expression of the Fragile X Mental Retardation 1 (FMR1) gene in patients with premature ovarian failure syndrome is not dependent on number of (CGG)n triplets in exon 1. Hum. Reprod. 2011, 26, 1241–1251. [Google Scholar] [CrossRef] [Green Version]
- Fu, Y.-H.; Kuhl, D.P.; Pizzuti, A.; Pieretti, M.; Sutcliffe, J.S.; Richards, S.; Verkert, A.J.; Holden, J.J.; Fenwick, R.G.; Warren, S.T.; et al. Variation of the CGG repeat at the fragile X site results in genetic instability: Resolution of the Sherman paradox. Cell 1991, 67, 1047–1058. [Google Scholar] [CrossRef]
- Lubs, H.A.; Stevenson, R.E.; Schwartz, C.E. Fragile X and X-linked intellectual disability: Four decades of discovery. Am. J. Hum. Genet. 2012, 90, 579–590. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Conway, G.S.; Payne, N.N.; Webb, J.; Murray, A.; Jacobs, P.A. Fragile X premutation screening in women with premature ovarian failure. Hum. Reprod. 1998, 13, 1184–1187. [Google Scholar] [CrossRef]
- Bretherick, K.L.; Fluker, M.R.; Robinson, W.P. FMR1 repeat sizes in the gray zone and high end of the normal range are associated with premature ovarian failure. Hum. Genet. 2005, 117, 376–382. [Google Scholar] [CrossRef]
- Dean, D.D.; Agarwal, S.; Kapoor, D.; Singh, K.; Vati, C. Molecular characterization of FMR1 gene by TP-PCR in women of reproductive age and women with premature ovarian insufficiency. Mol. Diagn. Ther. 2018, 22, 91. [Google Scholar] [CrossRef]
- Webber, L.; Davies, M.; Anderson, R.; Bartlett, J.; Braat, D.; Cartwright, B.; Cífková, R.; Keizer-Schrama, S.D.M.; Hogervorst, E.; Janse, F.; et al. European Society for Human R, Embryology Guideline Group on POI, ESHRE Guideline: Management of women with premature ovarian insufficiency. Hum. Reprod. 2016, 31, 926–937. [Google Scholar]
- Qin, Y.; Jiao, X.; Simpson, J.L.; Chen, Z.J. Genetics of primary ovarian insufficiency: New developments and opportunities. Hum. Reprod. 2015, 21, 787–808. [Google Scholar] [CrossRef]
- Kenneson, A.; Zhang, F.; Hagedorn, C.H.; Warren, S.T. Reduced FMRP and increased FMR1 transcription is proportionally associated with CGG repeat number in intermediate-length and premutation carriers. Hum. Mol. Genet. 2001, 10, 1449–1454. [Google Scholar] [CrossRef] [Green Version]
- Kong, H.E.; Zhao, J.; Xu, S.; Jin, P.; Jin, Y. Fragile X-associated tremor/ataxia syndrome: From molecular pathogenesis to development of therapeutics. Front. Cell Neurosci. 2017, 11, 128. [Google Scholar] [CrossRef]
- Man, L.; Lekovich, J.; Rosenwaks, Z.; Gerhardt, J. Fragile X-associated diminished ovarian reserve and primary ovarian insufficiency from molecular mechanisms to clinical manifestations. Front. Mol. Neurosci. 2017, 10, 290. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rehnitz, J.; Alcoba, D.D.; Brum, I.S.; Dietrich, J.E.; Youness, B.; Hinderhofer, K.; Messmer, B.; Freis, A.; Strowitzki, T.; Germeyer, A. FMR1 expression in human granulosa cells increases with exon 1 CGG repeat length depending on ovarian reserve. Reprod. Biol. Endocrinol. 2018, 16, 65. [Google Scholar] [CrossRef] [Green Version]
- Gleicher, N.; Weghofer, A.; Oktay, K.; Barad, D. Relevance of triple CGG repeats in the FMR1 gene to ovarian reserve. Reprod Biomed. Online 2009, 19, 385–390. [Google Scholar] [CrossRef]
- Pastore, L.M.; Young, S.L.; Baker, V.L.; Karns, L.B.; Williams, C.D.; Silverman, L.M. Elevated prevalence of 35-44 FMR1 trinucleotide repeats in women with diminished ovarian reserve. Reprod. Sci. 2012, 19, 1226–1231. [Google Scholar] [CrossRef]
- Gustin, S.L.; Ding, V.Y.; Desai, M.; Leader, B.; Baker, V.L. Evidence of an age-related correlation of ovarian reserve and FMR1 repeat number among women with “normal” CGG repeat status. J. Assist. Reprod. Genet. 2015, 32, 1669–1676. [Google Scholar] [CrossRef] [Green Version]
- Rehnitz, J.; Youness, B.; Nguyen, X.P.; Dietrich, J.E.; Roesner, S.; Messmer, B.; Strowitzki, T.; Vogt, P.H. FMR1 expression in human granulosa cells and variable ovarian response: Control by epigenetic mechanisms. Mol. Hum. Reprod. 2021, 27, gaab001. [Google Scholar] [CrossRef]
- Sanchez, F.; Smitz, J. Molecular control of oogenesis. Biochim. Biophys. Acta 2012, 1822, 1896–1912. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zuccotti, M.; Merico, V.; Cecconi, S.; Redi, C.A.; Garagna, S. What does it take to make a developmentally competent mammalian egg? Hum. Reprod. Update 2011, 17, 525–540. [Google Scholar] [CrossRef] [Green Version]
- Correia, B.; Sousa, M.I.; Ramalho-Santosm, J. The mTOR pathway in reproduction: From gonadal function to developmental coordination. Reproduction 2020, 159, R173–R188. [Google Scholar] [CrossRef] [PubMed]
- Kayampilly, P.P.; Menon, K.M.J. Follicle-Stimulating Hormone Increases Tuberin Phosphorylation and Mammalian Target of Rapamycin Signaling through an Extracellular Signal-Regulated Kinase-Dependent Pathway in Rat Granulosa Cells. Endocrinology 2007, 148, 3950–3957. [Google Scholar] [CrossRef]
- Guo, Z.; Yu, Q. Role of mTOR Signaling in Female Reproduction. Front. Endocrinol. 2019, 10, 692. [Google Scholar] [CrossRef]
- Cecconi, S.; Mauro, A.; Cellini, V.; Patacchiola, F. The role of Akt signalling in the mammalian ovary. Int. J. Dev. Biol. 2012, 56, 809–817. [Google Scholar] [CrossRef] [Green Version]
- Artini, P.G.; Tatone, C.; Sperduti, S.; D’Aurora, M.; Franchi, S.; Di Emidio, G.; Ciriminna, R.; Vento, M.; Di Pietro, C.; Stuppia, L.; et al. Cumulus cells surrounding oocytes with high developmental competence exhibit down-regulation of phosphoinositol 1.3 kinase/protein kinase B (PI3K/AKT) signalling genes involved in proliferation and survival. Hum. Reprod. 2017, 32, 2474–2484. [Google Scholar] [CrossRef]
- Ma, X.; Su, P.; Yin, C.; Lin, X.; Wang, X.; Gao, Y.; Patil, S.; War, A.R.; Qadir, A.; Tian, Y.; et al. The roles of FoxO transcription factors in regulation of bone cells function. Int. J. Mol. Sci. 2020, 21, 692. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.; Castrillon, D.H.; Zhou, W.; Richards, J.S. FOXO1/3 depletion in granulosa cells alters follicle growth, death and regulation of pituitary FSH. Mol. Endocrinol. 2013, 27, 238–252. [Google Scholar] [CrossRef] [Green Version]
- Castrillon, D.H.; Miao, L.; Kollipara, R.; Horner, J.W.; DePinho, R.A. Suppression of ovarian follicle activation in mice by the transcription factor Foxo3a. Science 2003, 301, 215–218. [Google Scholar] [CrossRef] [PubMed]
- Rehnitz, J.; Alcoba, D.D.; Brum, I.S.; Hinderhofer, K.; Youness, B.; Strowitzki, T.; Vogt, P.H. FMR1 and AKT/mTOR signalling pathways: Potential functional interactions controlling folliculogenesis in human granulosa cells. Reprod. Biomed. Online 2017, 35, 485–493. [Google Scholar] [CrossRef] [Green Version]
- Ascano, M.; Mukherjee, N.; Bandaru, P.; Miller, J.B.; Nusbaum, J.; Corcoran, D.; Langlois, C.; Munschauer, M.; Dewell, S.; Hafner, M.; et al. FMRP targets distinct mRNA sequence elements to regulate protein expression. Nature 2012, 492, 382–386. [Google Scholar] [CrossRef] [PubMed]
- Pratt, A.J.; MacRae, I.J. The RNA-induced silencing complex: A versatile gene-silencing machine. J. Biol. Chem. 2009, 284, 17897–17901. [Google Scholar] [CrossRef] [Green Version]
- Sharma, A.; Hoeffer, C.A.; Takayasu, Y.; Miyawaki, T.; McBride, S.M.; Klann, E.; Zukin, R.S. Dysregulation of mTOR signaling in fragile X syndrome. J. Neurosci. 2010, 30, 694–702. [Google Scholar] [CrossRef]
- Narayanan, U.; Nalavadi, V.; Nakamoto, M.; Thomas, G.; Ceman, S.; Bassell, G.J.; Warren, S.T. S6K1 phosphorylates and regulates fragile X mental retardation protein (FMRP) with the neuronal protein synthesis-dependent mammalian target of rapamycin (mTOR) signaling cascade. J. Biol. Chem. 2008, 283, 18478–18482. [Google Scholar] [CrossRef] [Green Version]
- Lu, C.; Lin, L.; Tan, H.; Wu, H.; Sherman, S.L.; Gao, F.; Jin, P.; Chen, D. Fragile X premutation RNA is sufficient to cause primary ovarian insufficiency in mice. Hum. Mol. Genet. 2012, 21, 5039–5047. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chomczynski, P.; Sacchi, N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal. Biochem. 1987, 162, 156–159. [Google Scholar] [CrossRef]
- Chomczynski, P. A reagent for the single-step simultaneous isolation of RNA, DNA and proteins from cell and tissue samples. Biotechniques 1993, 15, 532–534. [Google Scholar]
- Winer, J.; Jung, C.K.; Shackel, I.; Williams, P.M. Development and validation of real-time quantitative reverse transcriptase-polymerase chain reaction for monitoring gene expression in cardiac myocytes in vitro. Anal. Biochem. 1999, 270, 41–49. [Google Scholar] [CrossRef]
- Zhang, H.; Vollmer, M.; De Geyter, M.; Litzistorf, Y.; Ladewig, A.; Dürrenberger, M.; Guggenheim, R.; Miny, P.; Holzgreve, W.; De Geyter, C. Characterization of an immortalized human granulosa cell line (COV434). Mol. Hum. Reprod. 2000, 6, 146–153. [Google Scholar] [CrossRef] [Green Version]
- Stoyanova, V.; Oostra, B.A. The CGG repeat and the FMR1 gene. Methods Mol. Biol. 2004, 277, 173–184. [Google Scholar] [PubMed]
- Gleicher, N.; Weghofer, A.; Barad, D.H. Ovarian reserve determinations suggest new function of FMR1 (fragile X gene) in regulating ovarian ageing. Reprod. Biomed. Online 2010, 20, 768–775. [Google Scholar] [CrossRef] [Green Version]
- Matsuda, F.; Inoue, N.; Manabe, N.; Ohkura, S. Follicular growth and atresia in mammalian ovaries: Regulation by survival and death of granulosa cells. J. Reprod. Dev. 2012, 58, 44–50. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Keppler-Noreuil, K.M.; Parker, V.E.; Darling, T.N.; Martinez-Agosto, J.A. Somatic overgrowth disorders of the PI3K/AKT/mTOR pathway & therapeutic strategies. Am. J. Med. Genet. C Semin. Med. Genet. 2016, 172, 402–421. [Google Scholar]
- Ford, E.A.; Beckett, E.L.; Roman, S.D.; McLaughlin, E.A.; Sutherland, J.M. Advances in human primordial follicle activation and premature ovarian insufficiency. Reproduction 2020, 159, R15–R29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mok-Lin, E.; Ascano, M., Jr.; Serganov, A.; Rosenwaks, Z.; Tuschl, T.; Williams, Z. Premature recruitment of oocyte pool and increased mTOR activity in Fmr1 knockout mice and reversal of phenotype with rapamycin. Sci. Rep. 2018, 8, 588. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pankhurst, M.W. A putative role for anti-Müllerian hormone (AMH) in optimising ovarian reserve expenditure. J. Endocrinol 2017, 233, R1–R13. [Google Scholar] [CrossRef]
- Brown, A.K.; Webb, A.E. Regulation of FOXO factors in mammalian cells. Curr. Top. Dev. Biol. 2018, 127, 165–192. [Google Scholar] [PubMed]
- Kawamura, K.; Kawamura, N.; Hsueh, A.J. Activation of dormant follicles: A new treatment for premature ovarian failure? Curr. Opin. Obstet. Gynecol. 2016, 28, 217–222. [Google Scholar] [CrossRef] [Green Version]
- Tarnawa, E.D.; Baker, M.D.; Aloisio, G.M.; Carr, B.R.; Castrillon, D.H. Gonadal expression of Foxo1, but not Foxo3, is conserved in diverse Mammalian species. Biol. Reprod. 2013, 88, 103. [Google Scholar] [CrossRef]
- Cui, C.; Han, S.; Yin, H.; Luo, B.; Shen, X.; Yang, F.; Liu, Z.; Zhu, Q.; Li, D.; Wang, Y. FOXO3 Is expressed in ovarian tissues and acts as an apoptosis initiator in granulosa cells of chickens. Biomed. Res. Int. 2019, 2019, 6902906. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shen, M.; Liu, Z.; Li, B.; Teng, Y.; Zhang, J.; Tang, Y.; Sun, S.C.; Liu, H. Involvement of FoxO1 in the effects of follicle-stimulating hormone on inhibition of apoptosis in mouse granulosa cells. Cell Death Dis. 2014, 5, e1475. [Google Scholar] [CrossRef] [Green Version]
Demographic | NOR | POR | p Value | ||
---|---|---|---|---|---|
n | Median (P25-P75) | n | Median (P25-P75) | ||
Age | 225 | 34.7 ± 4.1 a | 84 | 37.7 ± 4.6 | <0.001 b |
BMI | 223 | 23.1 (20.1–26.8) | 80 | 22.48 (20.5–25.0) | 0.182 |
AFC | 108 | 13 (9–20) | 37 | 6 (4–7.5) | <0.001 |
FSH (U/L) | 209 | 7.4 (6.10–8.9) | 73 | 8.0 (6.1–10.4) | 0.076 |
LH (U/L) | 214 | 5.4 (3.8–7.1) | 77 | 5.2 (3.6–6.3) | 0.133 |
Estradiol (pg/mL) | 208 | 43 (34.8–54.0) | 74 | 51.3 (35.6–78.5) | 0.018 |
AMH (ng/mL) | 216 | 2.5 (1.5–4.0) | 82 | 0.8 (0.5–1.1)) | <0.001 |
Total oocytes | 225 | 9 (6–13) | 82 | 4 (2–6) | <0.001 |
MII oocytes | 157 | 7 (5–10.5) | 51 | 3 (2–6) | <0.001 |
All Patients | Spearman-Rho Correlation Co-Efficient FMR1 | p Value |
---|---|---|
AKT | 0.666 | <0.01 |
mTOR | 0.722 | <0.01 |
TSC2 | 0.556 | <0.01 |
S6K | 0.654 | <0.01 |
FOXO3 | 0.284 | <0.01 |
FOXO1 | −0.034 | 0.689 |
NOR Patients | Spearman-Rho Correlation Co-Efficient FMR1 | p Value |
---|---|---|
AKT | 0.672 | <0.01 |
mTOR | 0.731 | <0.01 |
TSC2 | 0.584 | <0.01 |
S6K | 0.647 | <0.01 |
FOXO3 | 0.263 | <0.01 |
FOXO1 | −0.003 | 0.972 |
POR Patients | Spearman-Rho Correlation Co-Efficient FMR1 | p Value |
---|---|---|
AKT | 0.667 | <0.01 |
mTOR | 0.712 | <0.01 |
TSC2 | 0.372 | 0.047 |
S6K | 0.690 | <0.01 |
FOXO3 | 0.337 | 0.05 |
FOXO1 | −0.133 | 0.475 |
Demographic | NOR | POR | p Value | ||
---|---|---|---|---|---|
Gene | n | Median (P25-P75) | n | Median (P25-P75) | |
AKT1 | 225 | 0.47 (0.22–1.00) | 83 | 0.66 (0.37–1.25) | 0.040 |
TSC2 | 105 | 0.183 (0.09–0.298) | 29 | 0.233 (0.145–0.329) | 0.392 |
mTOR | 225 | 0.05 (0.02–0.13) | 84 | 0.08 (0.03–0.14) | 0.296 |
S6K | 191 | 0.17 (0.12–0.24) | 67 | 0.19 (0.13–0.26) | 0.342 |
FOXO3 | 193 | 0.59 (0.36–0.98) | 68 | 0.51 (0.29–0.82) | 0.064 |
FOXO1 | 105 | 166 (117–243) | 29 | 105 (95–146) | 0.002 |
Frequencies | NOR—n (%) | POR—n (%) |
---|---|---|
high/high | 0 | 0 |
high/low | 4 (1.8) | 0 |
high/normal | 18 (8.3) | 12 (15.0) |
normal/normal | 128 (59.0) | 46 (57.5) |
normal/low | 59 (27.2) | 20 (25.0) |
low/low | 8 (3.7) | 2 (2.5) |
217 (100) | 80 (100) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rehnitz, J.; Capp, E.; Messmer, B.; Nguyen, X.P.; Germeyer, A.; Freis, A.; Dietrich, J.E.; Hinderhofer, K.; Strowitzki, T.; Vogt, P.H. FMR1 and AKT/mTOR Signaling in Human Granulosa Cells: Functional Interaction and Impact on Ovarian Response. J. Clin. Med. 2021, 10, 3892. https://doi.org/10.3390/jcm10173892
Rehnitz J, Capp E, Messmer B, Nguyen XP, Germeyer A, Freis A, Dietrich JE, Hinderhofer K, Strowitzki T, Vogt PH. FMR1 and AKT/mTOR Signaling in Human Granulosa Cells: Functional Interaction and Impact on Ovarian Response. Journal of Clinical Medicine. 2021; 10(17):3892. https://doi.org/10.3390/jcm10173892
Chicago/Turabian StyleRehnitz, Julia, Edison Capp, Birgitta Messmer, Xuan Phuoc Nguyen, Ariane Germeyer, Alexander Freis, Jens Erik Dietrich, Karin Hinderhofer, Thomas Strowitzki, and Peter H. Vogt. 2021. "FMR1 and AKT/mTOR Signaling in Human Granulosa Cells: Functional Interaction and Impact on Ovarian Response" Journal of Clinical Medicine 10, no. 17: 3892. https://doi.org/10.3390/jcm10173892
APA StyleRehnitz, J., Capp, E., Messmer, B., Nguyen, X. P., Germeyer, A., Freis, A., Dietrich, J. E., Hinderhofer, K., Strowitzki, T., & Vogt, P. H. (2021). FMR1 and AKT/mTOR Signaling in Human Granulosa Cells: Functional Interaction and Impact on Ovarian Response. Journal of Clinical Medicine, 10(17), 3892. https://doi.org/10.3390/jcm10173892