Hypertensive Hypoalgesia in a Complex Chronic Disease Population
Abstract
:1. Introduction
2. Materials and Methods
- Frequency: no pain (0), pain less than daily (1), pain daily (2);
- Intensity: mild pain (1), moderate pain (2), times when pain is horrible or excruciating (3).
- Pain-Yes/No (PAIN-Y/N): Pain prevalence dichotomous measure—no pain (0), pain (1) (mild, moderate, severe);
- Four-point pain intensity scale (PI-4): no pain (0), mild pain (1), moderate pain (2), severe pain (3).
3. Results
4. Discussion
4.1. Strengths and Limitations
4.2. Implications
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sarkar, C.; Dodhia, H.; Cromtop, J.; Schofield, P.; White, P.; Millett, C.; Ashworth, M. Hypertension: A cross-sectional study of the role of multimorbidity in blood pressure control. BMC Fam. Pract. 2015, 16, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Carroll, D.; Phillips, A.C.; Gale, C.R.; Batty, G.R. Generalized anxiety and major depressive disorders, their comorbidity and hypertension in middle-aged men. Psychosom. Med. 2010, 72, 16–19. [Google Scholar] [CrossRef] [Green Version]
- Hodgson, T.A.; Cai, L. Medical care expenditures for hypertension, its complications, and its comorbidities. Med. Care 2001, 39, 599–615. [Google Scholar] [CrossRef] [PubMed]
- Voscopoulos, C.; Lema, M. When does acute pain become chronic? Br. J. Anaesth. 2010, 105 (Suppl. S1), i69–i85. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- France, C.R. Decreased pain perception and risk for hypertension: Considering a common physiological mechanism. Psychophysiology 1999, 36, 683–692. [Google Scholar] [CrossRef]
- Olsen, R.B.; Bruehl, C.; Nielsen, C.S.; Rosseland, L.A.; Eggen, A.E.; Stubhaug, A. Hypertension prevalence and diminished blood pressure–related hypoalgesia in individuals reporting chronic pain in a general population: The Tromsø Study. Pain 2013, 154, 257–262. [Google Scholar] [CrossRef] [PubMed]
- Saccò, M.; Meschi, M.; Regolisti, G.; Detrenis, S.; Bianchi, L.; Bertorelli, M.; Pioli, S.; Magnano, A.; Spagnoli, F.; Giuri, P.G.; et al. The relationship between blood pressure and pain. J. Clin. Hypertens. 2013, 15, 600–605. [Google Scholar] [CrossRef] [PubMed]
- Ghione, S.; Rosa, C.; Panattoni, E.; Nuti, M.; Mezzasalma, L.; Giuliano, G. Comparison of sensory and pain threshold in tooth pulp stimulation in normotensive man and essential hypertension. J. Hypertens. Suppliment Off. J. Int. Soc. Hypertens. 1985, 3, S113. [Google Scholar]
- Guasti, L.; Merlo, B.; Verga, R.; Cattaneo, R.; Gaudio, G.; Bianchi, L.; Zanzi, P.; Grandi, A.M.; Bossi, P.M.; Venco, A. Effects of arithmetic mental stress test on hypertension-related hypalgesia. J. Hypertens. 1995, 13, 1631–1635. [Google Scholar]
- Guasti, L.; Cattaneo, R.; Rinaldi, O.; Rossi, M.G.; Bianchi, L.; Gaudio, G.; Grandi, A.M.; Gorini, G.; Venco, A. Twenty-Four–Hour Noninvasive Blood Pressure Monitoring and Pain Perception. Hypertension 1995, 25, 1301–1305. [Google Scholar] [CrossRef] [PubMed]
- Guasti, L.; Cattaneo, R.; Daneri, A.; Bianchi, L.; Gaudio, G.; Regazzi, M.B.; Grandi, A.M.; Bertolini, A.; Restelli, E.; Venco, A. Endogenous beta-endorphins in hypertension: Correlation with 24-hour ambulatory blood pressure. J. Am. Coll. Cardiol. 1996, 28, 1243–1248. [Google Scholar] [CrossRef] [Green Version]
- Rosa, C.; Vignocchi, G.; Panattoni, E.; Rossi, B.; Ghione, S. Relationship between increased blood pressure and hypoalgesia: Additional evidence for the existence of an abnormality of pain perception in arterial hypertension in humans. J. Hum. Hypertens. 1994, 8, 119–126. [Google Scholar] [PubMed]
- Rosa, C.; Ghione, S.; Panattoni, E.; Mezzasalma, L.; Giuliano, G. Comparison of pain perception in normotensives and borderline hypertensives by means of a tooth pulp-stimulation test. J. Cardiovasc. Pharmacol. 1986, 8, S125–S127. [Google Scholar] [CrossRef] [PubMed]
- Rosa, C.; Ghione, S. Effect of ketanserin on pain perception in arterial hypertension. Cardiovasc. Drugs Ther. 1990, 4, 133–135. [Google Scholar] [CrossRef] [PubMed]
- Zamir, N.; Shuber, E. Altered pain perception in hypertensive humans. Brain Res. 1980, 201, 471–474. [Google Scholar] [CrossRef]
- Zamir, N.; Maixner, W. The relationship between cardiovascular and pain regulatory systems. Ann. N. Y. Acad. Sci. 1986, 467, 371–384. [Google Scholar] [CrossRef] [PubMed]
- Bruehl, S.; Chung, O.Y.; Diedrich, L.; Diedrich, A.; Robertson, D. The relationship between resting blood pressure and acute pain sensitivity: Effects of chronic pain and alpha-2 adrenergic blockade. J. Behav. Med. 2008, 31, 71–80. [Google Scholar] [CrossRef] [PubMed]
- France, C.R.; Katz, J. Postsurgical Pain Is Attenuated in Men with Elevated Presurgical Systolic Blood Pressure. Pain Res. Manag. 1999, 4, 100–103. [Google Scholar] [CrossRef] [Green Version]
- Gureje, O.; Akinpelu, A.; Uwakwe, R.; Udofia, O.; Wakil, A. Comorbidity and impact of chronic spinal pain in Nigeria. Spine 2007, 32, E495–E500. [Google Scholar] [CrossRef] [PubMed]
- Stang, P.; Brandenburg, N.; Lane, M.; Merikangas, K.R.; Von Korff, M.; Kessler, R. Mental and physical comorbid conditions and days in role among persons with arthritis. Psychosom. Med. 2006, 68, 152. [Google Scholar] [CrossRef] [PubMed]
- France, C.R.; Ditto, B.; Adler, P. Pain sensitivity in offspring of hypertensives at rest and during baroreflex stimulation. J. Behav. Med. 1991, 14, 513–525. [Google Scholar] [CrossRef]
- France, C.R.; Taddio, A.; Shah, V.S.; Page, M.G.; Katz, J. Maternal family history of hypertension attenuates neonatal pain response. Pain 2009, 142, 189–193. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jamerson, K.; Julius, S. Predictors of blood pressure and hypertension: General principles. Am. J. Hypertens. 1991, 4, 598S–602S. [Google Scholar] [CrossRef] [PubMed]
- Julius, S.; Schork, M.A. Predictors of hypertension. Ann. N. Y. Acad. Sci. 1978, 304, 38–58. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yong, L.-C.; Kuller, L.H.; Rutan, G.; Bunker, C. Longitudinal study of blood pressure: Changes and determinants from adolescence to middle age. The Dormont High. School follow-up study, 1957–1963 to 1989–1990. Am. J. Epidemiol. 1993, 138, 973–983. [Google Scholar] [CrossRef] [PubMed]
- Fries, B.E.; Simon, S.E.; Morris, J.N.; Flodstrom, C.; Bookstein, F.L. Pain in US nursing homes: Validating a pain scale for the minimum data set. Gerontologist 2001, 41, 173–179. [Google Scholar] [CrossRef] [Green Version]
- Hartmaier, S.L.; Sloane, P.D.; Guess, H.A.; Koch, G.G.; Mitchell, C.M.; Phillips, C.D. Validation of the Minimum Data Set Cognitive Performance Scale: Agreement with the Mini-Mental State Examination. J. Gerontol. A Biol. Sci. Med. Sci. 1995, 50, M128–M133. [Google Scholar] [CrossRef]
- Hawes, C.; Morris, J.N.; Phillips, C.D.; Mor, V.; Fries, B.E.; Nonemaker, S. Reliability estimates for the Minimum Data Set for nursing home resident assessment and care screening (MDS). Gerontologist 1995, 35, 172–178. [Google Scholar] [CrossRef]
- Mor, V.; Branco, K.; Fleishman, J.; Hawes, C.; Phillips, C.; Morris, J. Fries, B. The structure of social engagement among nursing home residents. J. Gerontol. Ser. B Psychol. Sci. Soc. Sci. 1995, 50, P1–P8. [Google Scholar]
- Snowden, M.; McCormick, W.; Russo, J.; Srebnik, D.; Comtois, K.; Bowen, J.; Teri, L.; Larson, E.B. Validity and responsiveness of the Minimum Data Set. J. Am. Geriatr. Soc. 1999, 47, 1000–1004. [Google Scholar] [CrossRef]
- Lawton, M.P.; Casten, R.; Parmelee, P.A.; Van Haitsma, K.; Corn, J.; Kleban, M.H. Psychometric characteristics of the minimum data set II: Validity. J. Am. Geriatr. Soc. 1998, 46, 736–744. [Google Scholar] [CrossRef]
- Ghione, S.; Rosa, C.; Mezzasalma, L.; Panattoni, E. Arterial hypertension is associated with hypalgesia in humans. Hypertension 1988, 12, 491–497. [Google Scholar] [CrossRef] [Green Version]
- Ghione, S. Hypertension-associated hypalgesia: Evidence in experimental animals and humans, pathophysiological mechanisms, and potential clinical consequences. Hypertension 1996, 28, 494–504. [Google Scholar] [CrossRef] [PubMed]
- Randich, A.; Maixner, W. Interactions between cardiovascular and pain regulatory systems. Neurosci. Biobehav. Rev. 1984, 8, 343–367. [Google Scholar] [CrossRef]
- Bruehl, S.; Chung, O.Y. Interactions between the cardiovascular and pain regulatory systems: An updated review of mechanisms and possible alterations in chronic pain. Neurosci. Biobehav. Rev. 2004, 28, 395–414. [Google Scholar] [CrossRef]
- Al’Absi, M.; Buchanan, T.W.; Marrero, A.; Lovallo, W.R. Sex differences in pain perception and cardiovascular responses in persons with parental history for hypertension. Pain 1999, 83, 331–338. [Google Scholar] [CrossRef]
- Fillingim, R.B. Sex, Gender, and Pain, in Principles of Gender-Specific Medicine; Elsevier: Amsterdam, The Netherlands, 2017; pp. 481–496. [Google Scholar]
- Kleiman, V.; Clarke, H.; Katz, J. Sensitivity to pain traumatization: A higher-order factor underlying pain-related anxiety, pain catastrophizing and anxiety sensitivity among patients scheduled for major surgery. Pain Res. Manag. 2011, 16, 169–177. [Google Scholar] [CrossRef] [PubMed]
- Rogers, A.H.; Gallagher, M.W.; Garey, L.; Ditre, J.W.; Williams, W.M.; Zvolensky, M.J. Pain Anxiety Symptoms Scale–20: An empirical evaluation of measurement invariance across race/ethnicity, sex, and pain. Psychol. Assess. 2020, 32, 818–828. [Google Scholar] [CrossRef] [PubMed]
- Sorge, R.E.; Totsch, S.K. Sex Differences in Pain. J. Neurosci. Res. 2017, 95, 1271–1281. [Google Scholar] [CrossRef]
- Grunau, R.V.E.; Craig, K.D. Pain expression in neonates: Facial action and cry. Pain 1987, 28, 395–410. [Google Scholar] [CrossRef]
- Hill, J. Discussion of research using propensity-score matching: Comments on ‘A critical appraisal of propensity-score matching in the medical literature between 1996 and 2003’by Peter Austin, Statistics in Medicine. Stat. Med. 2008, 27, 2055–2061. [Google Scholar] [CrossRef] [PubMed]
- Belletti, D.; Zacker, C.; Mullins, C.D. Perspectives on electronic medical records adoption: Electronic medical records (EMR) in outcomes research. Patient Relat. Outcome Meas. 2010, 1, 29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Characteristics | Matched Hypertensive Patients (n = 40,799) | Control Group Patients | Comparison between Two Groups |
---|---|---|---|
(n = 40,799) | |||
N (%) or | N (%) or | ||
Mean ± SD | Mean ± SD | ||
Median (IQR) | Median (IQR) | ||
Gender | χ2(1) = 0.00, p = 1.00 | ||
Males | 17,592 (43%) | 17,592 (43%) | |
Females | 23,207 (57%) | 23,207 (57%) | |
Age | 78.66 ± 10.54 | 78.66 ± 10.54 | t(81,596) = 0.00, |
p = 1.00 | |||
Year of assessment | χ2(1) = 0.00, p = 1.00 | ||
2006 | 4045 (10%) | 4045 (10%) | |
2007 | 3889 (10%) | 3889 (10%) | |
2008 | 3696 (9%) | 3696 (9%) | |
2009 | 3810 (9%) | 3810 (9%) | |
2010 | 3998 (10%) | 3998 (10%) | |
2011 | 4399 (11%) | 4399 (11%) | |
2012 | 4170 (10%) | 4170 (10%) | |
2013 | 4069 (10%) | 4069 (10%) | |
2014 | 3861 (9%) | 3861 (9%) | |
2015 | 4028 (10%) | 4028 (10%) | |
2016 | 834 (2%) | 834 (2%) | |
Number of diseases (excluding hypertension) | 1.65 ± 1.07 | 1.65 ± 1.07 | χ2(6) = 0.00, p = 1.00 |
0 | |||
1 | 5675 (14%) | 5675 (14%) | |
2 | 13,674 (33%) | 13,674 (33%) | |
3 | 12,929 (32%) | 12,929 (32%) | |
4 | 6578 (16%) | 6578 (16%) | |
5 | 1747 (4%) | 1747 (4%) | |
6 | 192 (1%) | 192 (1%) | |
4 (0.01%) | 4 (0.01%) | ||
Marital status | χ2(5) = 0.00, p = 1.00 | ||
Never married | 2860 (7%) | 2860 (7%) | |
Married | 18,483 (45%) | 18,483 (45%) | |
Widowed | 15,491 (38%) | 15,491 (38%) | |
Separated | 340 (1%) | 340 (1%) | |
Divorced | 1505 (4%) | 1505 (4%) | |
Unknown | 2120 (5%) | 2120 (5%) | |
Activities of Daily Living (ADL) score (long form) | 16.36 ± 7.88 | 16.82 ± 8.30 | t(81,596) = 8.08, |
p < 0.001 | |||
Depression Rating Scale (DRS) score | 1.41 ± 2.11 | 1.42 ± 2.09 | t(81,013) = 0.41, |
p = 0.68 | |||
Index of Social Engagement (ISE) | 2.97 ± 2.04 | 2.72 ± 2.04 | t(81,596) = 17.69, |
p < 0.001 | |||
Number of medications taken | 12.73 ± 5.38 | 10.91 ± 5.18 | t(81,596) = 49.04, |
Median (IQR): | Median (IQR): | p < 0.001 | |
12 (7) | 10 (7) | M-W p < 0.001 | |
Days taking analgesics | 4.59 ± 3.04 | 3.56 ± 3.06 | t(81,596) = 1.33, |
Median (IQR): | Median (IQR): | p = 0.19 | |
7 (6) | 7 (6) | M-W p = 0.29 | |
Number of emergency room visits | 0.59 ± 0.90 | 0.59 ± 0.99 | t(81,437) = 0.79, |
Median (IQR): | Median (IQR): | p = 0.43 | |
0 (1) | 0 (1) | M-W p = 0.57 | |
0 | 21,944 (54%) | 22,111 (54%) | |
1 | 15,607 (38%) | 15,341 (38%) | |
2 | 2165 (5%) | 2226 (5%) | |
4 | 584 (2%) | 616 (2%) | |
5 or more | 407 (1%) | 438 (1%) | |
Number of physician visits | 5.02 ± 3.30 | 5.15 ± 3.48 | t(81,596) = 5.36, |
Median (IQR): | Median (IQR): | p < 0.001 | |
4 (5) | 4 (5) | M-W p = 0.002 | |
Hospital stays | 1.14 ± 1.71 | 1.07 ± 1.27 | t(81,437) = 6.86, |
Median (IQR): | Median (IQR): | p < 0.001 | |
1 (0) | 1 (0) | M-W p < 0.001 | |
0 | 8555 (21%) | 9263 (23%) | |
1 | 22,926 (56%) | 23,214 (57%) | |
2 | 6792 (17%) | 6060 (15%) | |
3 | 1722 (4%) | 1598 (4%) | |
4 or more | 712 (2%) | 597 (1%) |
Pain Variable | Cases | Controls | Statistical |
---|---|---|---|
N (%) | N (%) | Test | |
PAIN-Y/N | |||
No | 11,522 (28.3%) | 11,198 (27.4%) | McNemar’s test: |
Yes | 29,247 (71.7%) | 29,601 (72.6%) | Χ2 = 7.73, p = 0.005 |
PI-4 | |||
Mean ± SD * | 1.28 ± 0.96 | 1.31 ± 0.97 | |
No pain (0) | 11,522 (28.3%) | 11,198 (27.4%) | Wilcoxon signed-ranks test: z = 3.46, p = 0.001 |
Mild pain (1) | 9252 (22.7%) | 9321 (22.8%) | |
Moderate pain (2) | 16,963 (41.6%) | 16,801 (41.2%) | |
Severe pain (3) | 3032 (7.4%) | 3479 (8.5%) |
Pain Variable | Females | Males | Statistical |
---|---|---|---|
n = 23,207 (57%) | n = 17,592 (43%) | Comparison Test | |
PAIN-Y/N | |||
No | 5653 (24.36%) | 5899 (33.53%) | Chi-square test: |
Yes | 17,554 (75.64%) | 11,693 (66.47%) | Χ2 = 415, p < 0.001 |
PI-4 | |||
Mean ± SD | 1.36 ± 0.94 | 1.18 ± 0.97 | Mann–Whitney U test: |
No pain (0) | 5653 (24.36%) | 5899 (33.53%) | z = 19.12, p < 0.001 |
Mild pain (1) | 5390 (23.23%) | 3862 (21.96%) | |
Moderate pain (2) | 10,301 (44.39%) | 6662 (37.87%) | |
Severe pain (3) | 1863 (8.03%) | 1169 (6.65%) |
Pain Variable | Females | Males | Statistical |
---|---|---|---|
n = 23,207 (57%) | n = 17,592 (43%) | Comparison Test | |
PAIN-Y/N | Chi-square test: | ||
No | 5559 (23.96%) | 5639 (32.05%) | Χ2 = 330, p < 0.001 |
Yes | 17,648 (76.04%) | 11,953 (67.95%) | |
PI-4 | |||
Mean ± SD | 1.37 ± 0.94 | 1.22 ± 0.99 | Mann–Whitney U test: |
No pain (0) | 5559 (23.96%) | 5639 (32.05%) | z = 15.33, p < 0.001 |
Mild pain (1) | 5473 (23.59%) | 3848 (21.87%) | |
Moderate pain (2) | 10,153 (43.74%) | 6648 (37.79%) | |
Severe pain (3) | 2022 (8.71%) | 1457 (8.28%) |
Independent Variable | Dependent Variable | B (SE) | p-Value | Odds Ratio (95% CI) |
---|---|---|---|---|
Model 1: PAIN-Y/N | ||||
Hypertension | Pain (Yes/No) | −0.159 (0.027) | <0.001 | 0.85 (0.81–0.90) |
Sex | Pain (Yes/No) | 0.285 (0.026) | <0.001 | 1.33 (1.26–1.40) |
Hypertension × Sex | Pain (Yes/No) | 0.037 (0.037) | 0.315 | 1.04 (0.97–1.11) |
Model 2: PI-4 | ||||
Hypertension | Mild pain (1) | −0.127 (0.031) | <0.001 | 0.88 (0.83–0.94) |
Moderate pain (2) | −0.149 (0.030) | <0.001 | 0.86 (0.81–0.91) | |
Severe pain (3) | −0.374 (0.048) | <0.001 | 0.69 (0.63–0.76) | |
Sex | Mild pain (1) | 0.273 (0.030) | <0.001 | 1.31 (1.24–1.39) |
Moderate pain (2) | 0.308 (0.029) | <0.001 | 1.36 (1.29–1.44) | |
Severe pain (3) | 0.200 (0.044) | <0.001 | 1.22 (1.12–1.33) | |
Hypertension × Sex | Mild pain (1) | 0.012 (0.042) | 0.786 | 1.01 (0.93–1.10) |
Moderate pain (2) | 0.038 (0.040) | 0.350 | 1.04 (0.96–1.12) | |
Severe pain (3) | 0.156 (0.063) | 0.014 | 1.17 (1.03–1.32) |
Pain Level | Male | Female |
---|---|---|
Pain (Yes/No) | ||
No hypertension | 67.95% | 76.04% |
Hypertension | 66.47% | 75.64% |
PI-4: Severe pain | ||
No hypertension | 8.28% | 8.71% |
Hypertension | 6.65% | 8.03% |
Odds ratio hypertension vs. no hypertension | 0.77 | 0.91 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ferguson, M.; Slepian, M.; France, C.; Svendrovski, A.; Katz, J. Hypertensive Hypoalgesia in a Complex Chronic Disease Population. J. Clin. Med. 2021, 10, 3816. https://doi.org/10.3390/jcm10173816
Ferguson M, Slepian M, France C, Svendrovski A, Katz J. Hypertensive Hypoalgesia in a Complex Chronic Disease Population. Journal of Clinical Medicine. 2021; 10(17):3816. https://doi.org/10.3390/jcm10173816
Chicago/Turabian StyleFerguson, Meaghan, Maxwell Slepian, Christopher France, Anton Svendrovski, and Joel Katz. 2021. "Hypertensive Hypoalgesia in a Complex Chronic Disease Population" Journal of Clinical Medicine 10, no. 17: 3816. https://doi.org/10.3390/jcm10173816
APA StyleFerguson, M., Slepian, M., France, C., Svendrovski, A., & Katz, J. (2021). Hypertensive Hypoalgesia in a Complex Chronic Disease Population. Journal of Clinical Medicine, 10(17), 3816. https://doi.org/10.3390/jcm10173816