Prediction of Residual Stroke Risk in Anticoagulated Patients with Atrial Fibrillation: mCARS
Abstract
:1. Introduction
2. Materials and Methods
Statistical Analyses
3. Results
3.1. CARS, mCARS, and Actual Stroke Risk Based on CHA2DS2-VASc Score
3.2. Predicted 1-Year Stroke Risk by CARS vs. CHA2DS2-VASc
3.3. Predicted vs. Actual 1-Year Stroke Risk
3.4. Exploratory Analysis
4. Discussion
Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chugh, S.S.; Havmoeller, R.; Narayanan, K.; Singh, D.; Rienstra, M.; Benjamin, E.J.; Gillum, R.F.; Kim, Y.-H.; McAnulty, J.H.J.; Zheng, Z.-J.; et al. Worldwide epidemiology of atrial fibrillation: A Global Burden of Disease 2010 Study. Circulation 2014, 129, 837–847. [Google Scholar] [CrossRef] [Green Version]
- Benjamin, E.J.; Wolf, P.A.; D’Agostino, R.B.; Silbershatz, H.; Kannel, W.B.; Levy, D. Impact of atrial fibrillation on the risk of death: The Framingham Heart Study. Circulation 1998, 98, 946–952. [Google Scholar] [CrossRef] [Green Version]
- Stewart, S.; Hart, C.L.; Hole, D.J.; McMurray, J.J. A population-based study of the long-term risks associated with atrial fibrillation: 20-year follow-up of the Renfrew/Paisley study. Am. J. Med. 2002, 113, 359–364. [Google Scholar] [CrossRef]
- Ding, W.Y.; Harrison, S.; Gupta, D.; Lip, G.Y.H.; Lane, D.A. Stroke and Bleeding Risk Assessments in Patients With Atrial Fibrillation: Concepts and Controversies. Front. Med. 2020, 7, 54. [Google Scholar] [CrossRef] [Green Version]
- Kirchhof, P.; Benussi, S.; Kotecha, D.; Ahlsson, A.; Atar, D.; Casadei, B.; Castella, M.; Diener, H.C.; Heidbuchel, H.; Hendriks, J.; et al. 2016 ESC Guidelines for the management of atrial fibrillation developed in collaboration with EACTS. Eur. Heart J. 2016, 37, 2893–2962. [Google Scholar] [CrossRef] [Green Version]
- Lip, G.Y.H.; Banerjee, A.; Boriani, G.; Chiang, C.E.; Fargo, R.; Freedman, B.; Lane, D.A.; Ruff, C.T.; Turakhia, M.; Werring, D.; et al. Antithrombotic Therapy for Atrial Fibrillation: CHEST Guideline and Expert Panel Report. Chest 2018, 154, 1121–1201. [Google Scholar] [CrossRef] [Green Version]
- Seaburg, L.; Hess, E.P.; Coylewright, M.; Ting, H.H.; McLeod, C.J.; Montori, V.M. Shared decision making in atrial fibrillation: Where we are and where we should be going. Circulation 2014, 129, 704–710. [Google Scholar] [CrossRef] [PubMed]
- Lip, G.Y.H.; Nieuwlaat, R.; Pisters, R.; Lane, D.A.; Crijns, H.J.G.M. Refining clinical risk stratification for predicting stroke and thromboembolism in atrial fibrillation using a novel risk factor-based approach: The Euro Heart Survey on atrial fibrillation. Chest 2010, 137, 263–272. [Google Scholar] [CrossRef] [PubMed]
- Gage, B.F.; Waterman, A.D.; Shannon, W.; Boechler, M.; Rich, M.W.; Radford, M.J. Validation of clinical classification schemes for predicting stroke: Results from the National Registry of Atrial Fibrillation. JAMA 2001, 285, 2864–2870. [Google Scholar] [CrossRef]
- Lee, C.J.-Y.; Toft-Petersen, A.P.; Ozenne, B.; Phelps, M.; Olesen, J.B.; Ellinor, P.T.; Gislason, G.; Lip, G.Y.H.; Torp-Pedersen, C.; Gerds, T.A. Assessing absolute stroke risk in patients with atrial fibrillation using a risk factor based approach. Eur. Heart J. Cardiovasc. Pharmacother. 2020. [Google Scholar] [CrossRef]
- Bousser, M.G.; Bouthier, J.; Buller, H.R.; Cohen, A.T.; Crijns, H.; Davidson, B.L.; Halperin, J.; Hankey, G.; Levy, S.; Pengo, V.; et al. Comparison of idraparinux with vitamin K antagonists for prevention of thromboembolism in patients with atrial fibrillation: A randomised, open-label, non-inferiority trial. Lancet 2008, 371, 315–321. [Google Scholar] [CrossRef]
- Rivera-Caravaca, J.M.; Esteve-Pastor, M.A.; Marin, F.; Valdes, M.; Vicente, V.; Roldan, V.; Lip, G.Y.H. A Propensity Score Matched Comparison of Clinical Outcomes in Atrial Fibrillation Patients Taking Vitamin K Antagonists: Comparing the “Real-World” vs Clinical Trials. Mayo Clin. Proc. 2018, 93, 1065–1073. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.J.-Y. Calculator of Absolute Stroke Risk. Available online: https://hjerteforeningen.shinyapps.io/riskvisrr/ (accessed on 10 August 2020).
- Hart, R.G.; Pearce, L.A.; Aguilar, M.I. Meta-analysis: Antithrombotic therapy to prevent stroke in patients who have nonvalvular atrial fibrillation. Ann. Intern. Med. 2007, 146, 857–867. [Google Scholar] [CrossRef] [PubMed]
- Freedman, B.; Martinez, C.; Katholing, A.; Rietbrock, S. Residual Risk of Stroke and Death in Anticoagulant-Treated Patients With Atrial Fibrillation. JAMA Cardiol. 2016, 1, 366–368. [Google Scholar] [CrossRef] [Green Version]
- Kim, M.; Yu, H.T.; Kim, J.Y.; Kim, T.-H.; Uhm, J.-S.; Joung, B.; Lee, M.-H.; Pak, H.-N. Atrial fibrillation and the risk of ischemic strokes or intracranial hemorrhages: Comparisons of the catheter ablation, medical therapy, and non-atrial fibrillation population. Europace 2021, 23, 529–538. [Google Scholar] [CrossRef]
- Packer, D.L.; Mark, D.B.; Robb, R.A.; Monahan, K.H.; Bahnson, T.D.; Poole, J.E.; Noseworthy, P.A.; Rosenberg, Y.D.; Jeffries, N.; Mitchell, L.B.; et al. Effect of Catheter Ablation vs Antiarrhythmic Drug Therapy on Mortality, Stroke, Bleeding, and Cardiac Arrest Among Patients With Atrial Fibrillation: The CABANA Randomized Clinical Trial. JAMA 2019, 321, 1261–1274. [Google Scholar] [CrossRef]
- Proietti, M.; Lip, G.Y.H.; Laroche, C.; Fauchier, L.; Marin, F.; Nabauer, M.; Potpara, T.; Dan, G.-A.; Kalarus, Z.; Tavazzi, L.; et al. Relation of outcomes to ABC (Atrial Fibrillation Better Care) pathway adherent care in European patients with atrial fibrillation: An analysis from the ESC-EHRA EORP Atrial Fibrillation General Long-Term (AFGen LT) Registry. Europace 2021, 23, 174–183. [Google Scholar] [CrossRef] [PubMed]
- Connolly, S.J.; Ezekowitz, M.D.; Yusuf, S.; Eikelboom, J.; Oldgren, J.; Parekh, A.; Pogue, J.; Reilly, P.A.; Themeles, E.; Varrone, J.; et al. Dabigatran versus warfarin in patients with atrial fibrillation. N. Engl. J. Med. 2009, 361, 1139–1151. [Google Scholar] [CrossRef] [Green Version]
- Patel, M.R.; Mahaffey, K.W.; Garg, J.; Pan, G.; Singer, D.E.; Hacke, W.; Breithardt, G.; Halperin, J.L.; Hankey, G.J.; Piccini, J.P.; et al. Rivaroxaban versus warfarin in nonvalvular atrial fibrillation. N. Engl. J. Med. 2011, 365, 883–891. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Granger, C.B.; Alexander, J.H.; McMurray, J.J.V.; Lopes, R.D.; Hylek, E.M.; Hanna, M.; Al-Khalidi, H.R.; Ansell, J.; Atar, D.; Avezum, A.; et al. Apixaban versus warfarin in patients with atrial fibrillation. N. Engl. J. Med. 2011, 365, 981–992. [Google Scholar] [CrossRef]
- Giugliano, R.P.; Ruff, C.T.; Braunwald, E.; Murphy, S.A.; Wiviott, S.D.; Halperin, J.L.; Waldo, A.L.; Ezekowitz, M.D.; Weitz, J.I.; Spinar, J.; et al. Edoxaban versus warfarin in patients with atrial fibrillation. N. Engl. J. Med. 2013, 369, 2093–2104. [Google Scholar] [CrossRef] [Green Version]
- Freeman, A.L.J. How to communicate evidence to patients. Drug Ther. Bull. 2019, 57, 119–124. [Google Scholar] [CrossRef] [PubMed]
- Masoud, A.; Bartoletti, S.; Fairbairn, T.; Khurana, A.; Velavan, P.; Morrison, W.L.; Khalatbari, A.; Aggarwal, S.; Sharma, N.; Kirchhof, P.; et al. Outcome of left atrial appendage occlusion in high-risk patients. Heart 2018, 104, 594–599. [Google Scholar] [CrossRef] [PubMed]
- Marrouche, N.F.; Brachmann, J.; Andresen, D.; Siebels, J.; Boersma, L.; Jordaens, L.; Merkely, B.; Pokushalov, E.; Sanders, P.; Proff, J.; et al. Catheter Ablation for Atrial Fibrillation with Heart Failure. N. Engl. J. Med. 2018, 378, 417–427. [Google Scholar] [CrossRef] [PubMed]
- Mansour, M.; Heist, E.K.; Agarwal, R.; Bunch, T.J.; Karst, E.; Ruskin, J.N.; Mahapatra, S. Stroke and Cardiovascular Events After Ablation or Antiarrhythmic Drugs for Treatment of Patients With Atrial Fibrillation. Am. J. Cardiol. 2018, 121, 1192–1199. [Google Scholar] [CrossRef] [Green Version]
- Srivatsa, U.N.; Danielsen, B.; Amsterdam, E.A.; Pezeshkian, N.; Yang, Y.; Nordsieck, E.; Fan, D.; Chiamvimonvat, N.; White, R.H. CAABL-AF (California Study of Ablation for Atrial Fibrillation): Mortality and Stroke, 2005 to 2013. Circ. Arrhythmia Electrophysiol. 2018, 11, e005739. [Google Scholar] [CrossRef]
- Saliba, W.; Schliamser, J.E.; Lavi, I.; Barnett-Griness, O.; Gronich, N.; Rennert, G. Catheter ablation of atrial fibrillation is associated with reduced risk of stroke and mortality: A propensity score-matched analysis. Heart Rhythm 2017, 14, 635–642. [Google Scholar] [CrossRef]
- Chao, T.-F.; Lip, G.Y.H.; Lin, Y.-J.; Chang, S.-L.; Lo, L.-W.; Hu, Y.-F.; Tuan, T.-C.; Liao, J.-N.; Chung, F.-P.; Chen, T.-J.; et al. Age threshold for the use of non-vitamin K antagonist oral anticoagulants for stroke prevention in patients with atrial fibrillation: Insights into the optimal assessment of age and incident comorbidities. Eur. Heart J. 2019, 40, 1504–1514. [Google Scholar] [CrossRef] [Green Version]
- Chao, T.-F.; Liao, J.-N.; Tuan, T.-C.; Lin, Y.-J.; Chang, S.-L.; Lo, L.-W.; Hu, Y.-F.; Chung, F.-P.; Chen, T.-J.; Lip, G.Y.H.; et al. Incident Co-Morbidities in Patients with Atrial Fibrillation Initially with a CHA2DS2-VASc Score of 0 (Males) or 1 (Females): Implications for Reassessment of Stroke Risk in Initially “Low-Risk” Patients. Thromb. Haemost. 2019, 119, 1162–1170. [Google Scholar] [CrossRef]
Clinical Trial | Real-World | |||||
---|---|---|---|---|---|---|
CHA2DS2-VASc | CARS (IQR) | mCARS (IQR) | Actual Stroke Risk (95% CI) | CARS (IQR) | mCARS (IQR) | Actual Stroke Risk (95% CI) |
0 | NA | 0.9 (0.6–1.3) | 0.3 (0.2–0.5) | 0 (0–0) | ||
1 | 1.1 (0.7–1.4) | 0.4 (0.3–0.5) | 0.6 (0–1.7) | 1.4 (0.9–1.7) | 0.5 (0.3–0.6) | 0 (0–0) |
2 | 2.0 (1.5–2.4) | 0.7 (0.5–0.9) | 0.9 (0–1.7) | 2.1 (1.5–2.6) | 0.8 (0.5–0.9) | 1.4 (0.2–5.2) |
3 | 2.6 (2.1–3.4) | 0.9 (0.8–1.2) | 0.9 (0.1–1.6) | 2.8 (2.5–3.4) | 1.0 (0.9–1.2) | 1.5 (0.4–3.8) |
4 | 3.6 (2.8–5.6) | 1.3 (1.0–2.0) | 2.7 (1.2–4.1) | 3.9 (3.3–5.5) | 1.4 (1.2–1.8) | 3.0 (1.4–5.5) |
5 | 6.7 (3.6–14.1) | 2.4 (1.3–5.1) | 3.1 (1.1–5.0) | 4.8 (3.9–12.2) | 1.7 (1.4–4.4) | 2.6 (1.0–5.4) |
6 | 13.6 (5.5–15.8) | 4.9 (2.0–5.7) | 2.2 (0–4.7) | 12.8 (4.8–16.7) | 4.6 (1.7–6.0) | 4.0 (1.3–9.4) |
7 | 15.7 (14.5–17.4) | 5.7 (5.2–6.3) | 1.7 (0–5.1) | 15.6 (5.9–17.5) | 5.6 (2.1–6.3) | 3.4 (0.4–12.2) |
8 | 16.5 (14.0–18.5) | 5.9 (5.0–6.7) | 28.6 (1.5–55.6) | 16.9 (15.7–19.5) | 6.1 (5.7–7.0) | 5.9 (0.1–32.8) |
9 | 17.7 (17.7–17.7) | 6.4 (6.4–6.4) | 0 (0–0) | 11.1 (5.9–16.3) | 4.0 (2.1–5.9) | 0 (0–0) |
Range of Absolute 1-Year Stroke Risk (%) | ||
---|---|---|
Clinical Trial | Real-World | |
CHA2DS2-VASc score 0 | NA | 0.2–1.4 |
CHA2DS2-VASc score 1 | 0.2–2.0 | 0.2–13.0 |
CHA2DS2-VASc score 2 | 0.3–10.8 | 0.3–10.8 |
CHA2DS2-VASc score 3 | 0.4–13.3 | 0.9–13.3 |
CHA2DS2-VASc score 4 | 0.3–18.1 | 1.1–21.0 |
CHA2DS2-VASc score 5 | 1.9–20.9 | 1.2–21.0 |
CHA2DS2-VASc score 6 | 2.4–21.8 | 2.2–21.8 |
CHA2DS2-VASc score 7 | 4.5–21.9 | 4.1–23.5 |
CHA2DS2-VASc score 8 | 13.1–20.3 | 13.6–21.0 |
Clinical Trial | Real-World | |||
---|---|---|---|---|
% Risk | p value | % Risk | p value | |
CHA2DS2-VASc predicted stroke risk | ||||
Mean (SD) | 4.3 (2.6) | 5.3 (2.8) | ||
Median (IQR) | 3.2 (2.2–4.8) | 4.8 (3.2–7.2) | ||
Range | 0.6–12.2 | 0.2–12.2 | ||
CARS predicted stroke risk | ||||
Mean (SD) | 5.1 (4.9) | 5.7 (5.2) | ||
Median (IQR) | 2.9 (2.0–5.2) | 3.8 (2.6–5.5) | ||
Range | 0.2–21.9 | 0.794* | 0.2–23.5 | 0.002* |
Clinical Trial | Real-World | |||||
---|---|---|---|---|---|---|
Number of Patients | Events, n | Actual Stroke Risk (95% CI), % | Number of Patients | Events, n | Actual Stroke Risk (95% CI), % | |
CHA2DS2-VASc score 0 | NA | 17 | 0 | 0 (0–0) | ||
mCARS <1% | 17 | 0 | 0 (0–0) | |||
mCARS 1–2% | 0 | 0 | NA | |||
mCARS 2–5% | 0 | 0 | NA | |||
mCARS >5% | 0 | 0 | NA | |||
CHA2DS2-VASc score 1 | 178 | 1 | 0.6 (0–1.7) | 66 | 0 | 0 (0–0) |
mCARS <1% | 178 | 1 | 0.6 (0–1.7) | 65 | 0 | 0 (0–0) |
mCARS 1–2% | 0 | 0 | NA | 0 | 0 | NA |
mCARS 2–5% | 0 | 0 | NA | 1 | 0 | 0 (0–0) |
mCARS >5% | 0 | 0 | NA | 0 | 0 | NA |
CHA2DS2-VASc score 2 | 463 | 4 | 0.9 (0–1.7) | 138 | 2 | 1.4 (0.2–5.2) |
mCARS <1% | 389 | 4 | 1.0 (0–2.0) | 121 | 2 | 1.7 (0.2–6.0) |
mCARS 1–2% | 54 | 0 | 0 (0–0) | 14 | 0 | 0 (0–0) |
mCARS 2–5% | 20 | 0 | 0 (0–0) | 3 | 0 | 0 (0–0) |
mCARS >5% | 0 | 0 | NA | 0 | 0 | NA |
CHA2DS2-VASc score 3 | 572 | 5 | 0.9 (0.1–1.6) | 270 | 4 | 1.5 (0.4–3.8) |
mCARS <1% | 303 | 2 | 0.7 (0–1.6) | 107 | 0 | 0 (0–0) |
mCARS 1–2% | 200 | 2 | 1.0 (0–2.4) | 153 | 4 | 2.6 (0.7–6.7) |
mCARS 2–5% | 69 | 1 | 1.4 (0–4.3) | 10 | 0 | 0 (0–0) |
mCARS >5% | 0 | 0 | NA | 0 | 0 | NA |
CHA2DS2-VASc score 4 | 486 | 13 | 2.7 (1.2–4.1) | 336 | 10 | 3.0 (1.4–5.5) |
mCARS <1% | 91 | 1 | 1.1 (0–3.3) | 44 | 1 | 2.3 (0.06–12.7) |
mCARS 1–2% | 275 | 6 | 2.2 (0.4–3.9) | 229 | 7 | 3.1 (1.2–6.3) |
mCARS 2–5% | 101 | 4 | 4.0 (0.1–7.8) | 48 | 2 | 4.2 (0.5–15.0) |
mCARS >5% | 19 | 2 | 10.5 (0–25.7) | 15 | 0 | 0 (0–0) |
CHA2DS2-VASc score 5 | 295 | 9 | 3.1 (1.1–5.0) | 269 | 7 | 2.6 (1.0–5.4) |
mCARS <1% | 16 | 0 | 0 (0–0) | 16 | 0 | 0 (0–0) |
mCARS 1–2% | 128 | 4 | 3.1 (0.1–6.2) | 153 | 1 | 0.7 (0.01–3.6) |
mCARS 2–5% | 76 | 3 | 3.9 (0–8.4) | 45 | 1 | 2.2 (0.06–12.4) |
mCARS >5% | 75 | 2 | 2.7 (0–6.4) | 55 | 5 | 9.1 (3.0–21.2) |
CHA2DS2-VASc score 6 | 137 | 3 | 2.2 (0–4.7) | 124 | 5 | 4.0 (1.3–9.4) |
mCARS <1% | 3 | 0 | 0 (0–0) | 1 | 0 | 0 (0–0) |
mCARS 1–2% | 34 | 1 | 2.9 (0–8.9) | 42 | 0 | 0 (0–0) |
mCARS 2–5% | 37 | 0 | 0 (0–0) | 25 | 0 | 0 (0–0) |
mCARS >5% | 63 | 2 | 3.2 (0–7.6) | 56 | 5 | 8.9 (2.9–20.8) |
CHA2DS2-VASc score 7 | 59 | 1 | 1.7 (0–5.1) | 59 | 2 | 3.4 (0.4–12.2) |
mCARS <1% | 0 | 0 | NA | 0 | 0 | NA |
mCARS 1–2% | 2 | 0 | 0 (0–0) | 13 | 0 | 0 (0–0) |
mCARS 2–5% | 10 | 0 | 0 (0–0) | 9 | 0 | 0 (0–0) |
mCARS >5% | 47 | 1 | 2.1 (0–6.4) | 37 | 2 | 5.4 (0.7–19.5) |
CHA2DS2-VASc score 8 | 14 | 4 | 28.6 (1.5–55.6) | 17 | 1 | 5.9 (0.1–32.8) |
mCARS <1% | 0 | 0 | NA | 0 | 0 | NA |
mCARS 1–2% | 0 | 0 | NA | 0 | 0 | NA |
mCARS 2–5% | 4 | 0 | 0 (0–0) | 2 | 0 | 0 (0–0) |
mCARS >5% | 10 | 4 | 40.0 (3.1–76.9) | 15 | 1 | 6.7 (0.2–37.1) |
CHA2DS2-VASc score 9 | 1 | 0 | 0 (0–0) | 2 | 0 | 0 (0–0) |
mCARS <1% | 0 | 0 | NA | 0 | 0 | NA |
mCARS 1–2% | 0 | 0 | NA | 0 | 0 | NA |
mCARS 2–5% | 0 | 0 | NA | 1 | 0 | 0 (0–0) |
mCARS >5% | 1 | 0 | 0 (0–0) | 1 | 0 | 0 (0–0) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ding, W.Y.; Rivera-Caravaca, J.M.; Marin, F.; Torp-Pedersen, C.; Roldán, V.; Lip, G.Y.H. Prediction of Residual Stroke Risk in Anticoagulated Patients with Atrial Fibrillation: mCARS. J. Clin. Med. 2021, 10, 3357. https://doi.org/10.3390/jcm10153357
Ding WY, Rivera-Caravaca JM, Marin F, Torp-Pedersen C, Roldán V, Lip GYH. Prediction of Residual Stroke Risk in Anticoagulated Patients with Atrial Fibrillation: mCARS. Journal of Clinical Medicine. 2021; 10(15):3357. https://doi.org/10.3390/jcm10153357
Chicago/Turabian StyleDing, Wern Yew, José Miguel Rivera-Caravaca, Francisco Marin, Christian Torp-Pedersen, Vanessa Roldán, and Gregory Y. H. Lip. 2021. "Prediction of Residual Stroke Risk in Anticoagulated Patients with Atrial Fibrillation: mCARS" Journal of Clinical Medicine 10, no. 15: 3357. https://doi.org/10.3390/jcm10153357
APA StyleDing, W. Y., Rivera-Caravaca, J. M., Marin, F., Torp-Pedersen, C., Roldán, V., & Lip, G. Y. H. (2021). Prediction of Residual Stroke Risk in Anticoagulated Patients with Atrial Fibrillation: mCARS. Journal of Clinical Medicine, 10(15), 3357. https://doi.org/10.3390/jcm10153357