Prognosis of Coronary Atherosclerotic Burden in Non-Ischemic Dilated Cardiomyopathies
Abstract
:1. Introduction
2. Experimental Section
2.1. Study Population
2.2. Data Collection
2.3. Cardiovascular Magnetic Resonance Imaging Protocol
2.4. Invasive Coronary Angiography
2.5. Follow Up and Endpoints
2.6. Statistical Analysis
3. Results
3.1. Study Population
3.2. Events at Follow-Up
3.3. Predictors of Events
4. Discussion
Limitation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Elliott, P.; Andersson, B.; Arbustini, E.; Bilinska, Z.; Cecchi, F.; Charron, P.; Dubourg, O.; Kühl, U.; Maisch, B.; McKenna, W.J. Classification of the cardiomyopathies: A position statement from the European Society Of Cardiology Working Group on Myocardial and Pericardial Diseases. Eur. Heart J. 2008, 29, 270–276. [Google Scholar] [CrossRef] [Green Version]
- Repetto, A.; Dal Bello, B.; Pasotti, M.; Agozzino, M.; Viganò, M.; Klersy, C.; Tavazzi, L.; Arbustini, E. Coronary atherosclerosis in end-stage idiopathic dilated cardiomyopathy: An innocent bystander? Eur. Heart J. 2005, 26, 1519–1527. [Google Scholar] [CrossRef] [Green Version]
- Fleg, J.L.; Stone, G.W.; Fayad, Z.A.; Granada, J.F.; Hatsukami, T.S.; Kolodgie, F.D.; Ohayon, J.; Pettigrew, R.; Sabatine, M.S.; Tearney, G.J.; et al. Detection of high-risk atherosclerotic plaque: Report of the NHLBI Working Group on current status and future directions. JACC Cardiovasc. Imaging 2012, 5, 941–955. [Google Scholar] [CrossRef]
- Arbab-Zadeh, A.; Fuster, V. The Risk Continuum of Atherosclerosis and its Implications for Defining CHD by Coronary Angiography. J. Am. Coll. Cardiol. 2016, 68, 2467–2478. [Google Scholar] [CrossRef] [PubMed]
- Arbab-Zadeh, A.; Fuster, V. The myth of the “vulnerable plaque”: Transitioning from a focus on individual lesions to atherosclerotic disease burden for coronary artery disease risk assessment. J. Am. Coll. Cardiol. 2015, 65, 846–855. [Google Scholar] [CrossRef] [Green Version]
- Bart, B.A.; Shaw, L.K.; McCants, C.B.; Fortin, D.F.; Lee, K.L.; Califf, R.M.; O’Connor, C.M. Clinical determinants of mortality in patients with angiographically diagnosed ischemic or nonischemic cardiomyopathy. J. Am. Coll. Cardiol. 1997, 30, 1002–1008. [Google Scholar] [CrossRef] [Green Version]
- Assomull, R.G.; Shakespeare, C.; Kalra, P.R.; Lloyd, G.; Gulati, A.; Strange, J.; Bradlow, W.M.; Lyne, J.; Keegan, J.; Poole-Wilson, P.; et al. Role of cardiovascular magnetic resonance as a gatekeeper to invasive coronary angiography in patients presenting with heart failure of unknown etiology. Circulation 2011, 124, 1351–1360. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ponikowski, P.; Voors, A.A.; Anker, S.D.; Bueno, H.; Cleland, J.G.F.; Coats, A.J.S.; Falk, V.; González-Juanatey, J.R.; Harjola, V.-P.; Jankowska, E.A.; et al. 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: The Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC)Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur. Heart J. 2016, 37, 2129–2200. [Google Scholar]
- McCrohon, J.A.; Moon, J.C.C.; Prasad, S.K.; McKenna, W.J.; Lorenz, C.H.; Coats, A.J.S.; Pennell, D.J. Differentiation of heart failure related to dilated cardiomyopathy and coronary artery disease using gadolinium-enhanced cardiovascular magnetic resonance. Circulation 2003, 108, 54–59. [Google Scholar] [CrossRef]
- Felker, G.M.; Shaw, L.K.; O’Connor, C.M. A standardized definition of ischemic cardiomyopathy for use in clinical research. J. Am. Coll. Cardiol. 2002, 39, 210–218. [Google Scholar] [CrossRef] [Green Version]
- Heiberg, E.; Sjögren, J.; Ugander, M.; Carlsson, M.; Engblom, H.; Arheden, H. Design and validation of Segment--freely available software for cardiovascular image analysis. BMC Med. Imaging 2010, 10, 1. [Google Scholar] [CrossRef] [Green Version]
- Heiberg, E.; Ugander, M.; Engblom, H.; Götberg, M.; Olivecrona, G.K.; Erlinge, D.; Arheden, H. Automated quantification of myocardial infarction from MR images by accounting for partial volume effects: Animal, phantom, and human study. Radiology 2008, 246, 581–588. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barone-Rochette, G.; Piérard, S.; De Meester de Ravenstein, C.; Seldrum, S.; Melchior, J.; Maes, F.; Anne-Catherine Pouleur, A.-C.; Vancraeynest, D.; Pasquet, A.; Vanoverschelde, J.-L.; et al. Prognostic significance of LGE by CMR in aortic stenosis patients undergoing valve replacement. J. Am. Coll. Cardiol. 2014, 64, 144–154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barone-Rochette, G.; Zoreka, F.; Djaileb, L.; Piliero, N.; Calizzano, A.; Quesada, J.L.; Broisat, A.; Riou, L.; Machecourt, J.; Fagret, D.; et al. Diagnostic value of stress thallium-201/rest technetium-99m-sestamibi sequential dual isotope high-speed myocardial perfusion imaging for the detection of haemodynamically relevant coronary artery stenosis. J. Nucl. Cardiol. Off. Publ. Am. Soc. Nucl. Cardiol. 2019, 26, 1269–1279. [Google Scholar] [CrossRef]
- Gensini, G.G. A more meaningful scoring system for determining the severity of coronary heart disease. Am. J. Cardiol. 1983, 51, 606. [Google Scholar] [CrossRef]
- Thygesen, K.; Alpert, J.S.; Jaffe, A.S.; Chaitman, B.R.; Bax, J.J.; Morrow, D.A.; White, H.D.; The Executive Group on behalf of the Joint European Society of Cardiology (ESC)/American College of Cardiology (ACC)/American Heart Association (AHA)/World Heart Federation (WHF) Task Force for the Universal Definition of Myocardial Infarction. Fourth Universal Definition of Myocardial Infarction (2018). J. Am. Coll. Cardiol. 2018, 72, 2231–2264. [Google Scholar] [CrossRef]
- Nakagomi, A.; Celermajer, D.S.; Lumley, T.; Freedman, S.B. Angiographic severity of coronary narrowing is a surrogate marker for the extent of coronary atherosclerosis. Am. J. Cardiol. 1996, 78, 516–519. [Google Scholar] [CrossRef]
- Nicholls, S.J.; Hsu, A.; Wolski, K.; Hu, B.; Bayturan, O.; Lavoie, A.; Uno, K.; Tuzcu, E.M.; Nissen, S.E. Intravascular ultrasound-derived measures of coronary atherosclerotic plaque burden and clinical outcome. J. Am. Coll. Cardiol. 2010, 55, 2399–2407. [Google Scholar] [CrossRef] [Green Version]
- Budoff, M.J.; Shaw, L.J.; Liu, S.T.; Weinstein, S.R.; Mosler, T.P.; Tseng, P.H.; Ferdinand, R.; Flores, F.R.; Callister, T.Q.; Raggi, P.; et al. Long-term prognosis associated with coronary calcification: Observations from a registry of 25,253 patients. J. Am. Coll. Cardiol. 2007, 49, 1860–1870. [Google Scholar] [CrossRef] [Green Version]
- Bittencourt, M.S.; Hulten, E.; Ghoshhajra, B.; O’Leary, D.; Christman, M.P.; Montana, P.; Quynh, A.; Truong, Q.A.; Steigner, M.; Murthy, V.L.; et al. Prognostic value of nonobstructive and obstructive coronary artery disease detected by coronary computed tomography angiography to identify cardiovascular events. Circ. Cardiovasc. Imaging 2014, 7, 282–291. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andreini, D.; Magnoni, M.; Conte, E.; Masson, S.; Mushtaq, S.; Berti, S.; Canestrari, M.; Casolo, G.; Gabrielli, D.; Latini, R.; et al. Coronary Plaque Features on CTA Can Identify Patients at Increased Risk of Cardiovascular Events. JACC Cardiovasc. Imaging 2020, 13, 1704–1717. [Google Scholar] [CrossRef]
- Lin, F.Y.; Shaw, L.J.; Dunning, A.M.; Labounty, T.M.; Choi, J.-H.; Weinsaft, J.W.; Sunaina Koduru, S.; Gomez, M.J.; Delago, A.J.; Callister, T.Q.; et al. Mortality risk in symptomatic patients with nonobstructive coronary artery disease: A prospective 2-center study of 2583 patients undergoing 64-detector row coronary computed tomographic angiography. J. Am. Coll. Cardiol. 2011, 58, 510–519. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Neeland, I.J.; Patel, R.S.; Eshtehardi, P.; Dhawan, S.; McDaniel, M.C.; Rab, S.T.; Vaccarino, V.; Zafari, A.M.; Samady, H.; Quyyumi, A.A.; et al. Coronary angiographic scoring systems: An evaluation of their equivalence and validity. Am. Heart J. 2012, 164, 547–552. [Google Scholar] [CrossRef] [Green Version]
- Vancraeynest, D.; Pasquet, A.; Roelants, V.; Gerber, B.L.; Vanoverschelde, J.-L.J. Imaging the vulnerable plaque. J. Am. Coll. Cardiol. 2011, 57, 1961–1979. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mortensen, M.B.; Dzaye, O.; Steffensen, F.H.; Bøtker, H.E.; Jensen, J.M.; Rønnow Sand, N.P.; Kragholm, K.H.; Sørensen, J.L.; Mæng, M.; Blaha, M.J.; et al. Impact of Plaque Burden Versus Stenosis on Ischemic Events in Patients With Coronary Atherosclerosis. J. Am. Coll. Cardiol. 2020, 76, 2803–2813. [Google Scholar] [CrossRef]
- Kim, U.; Leipsic, J.A.; Sellers, S.L.; Shao, M.; Blanke, P.; Hadamitzky, M.; Kim, Y.-J.; Conte, E.; Andreini, D.; Pontone, G.; et al. Natural History of Diabetic Coronary Atherosclerosis by Quantitative Measurement of Serial Coronary Computed Tomographic Angiography: Results of the PARADIGM Study. JACC Cardiovasc. Imaging 2018, 11, 1461–1471. [Google Scholar] [CrossRef] [PubMed]
- Soriano, C.J.; Ridocci, F.; Estornell, J.; Jimenez, J.; Martinez, V.; De Velasco, J.A. Noninvasive diagnosis of coronary artery disease in patients with heart failure and systolic dysfunction of uncertain etiology, using late gadolinium-enhanced cardiovascular magnetic resonance. J. Am. Coll. Cardiol. 2005, 45, 743–748. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- White, B.M.; Mehta, R.; Binkley, P.F.; Leier, C.V. Latent development of occlusive coronary atherosclerosis as a cause of decompensation of non-ischemic dilated cardiomyopathy. Cardiology 2009, 112, 69–73. [Google Scholar] [CrossRef] [PubMed]
- Tang, W.; Shen, X.; Li, H.; Bai, Y.; Zhang, B.; Guo, Z.; Wu, H.; Li, P.; Zhao, X. The independent and incremental value of ultrasound carotid plaque length to predict the presence and severity of coronary artery disease: Analysis from the carotid plaque length prospective registry. Eur. Heart J. Cardiovasc. Imaging 2020, 21, 389–396. [Google Scholar]
- Chow, B.J.W.; Small, G.; Yam, Y.; Chen, L.; McPherson, R.; Achenbach, S.; Al-Mallah, M.; Berman, D.S.; Budoff, M.J.; Cademartiri, F.; et al. Prognostic and therapeutic implications of statin and aspirin therapy in individuals with nonobstructive coronary artery disease: Results from the CONFIRM (COronary CT Angiography EvaluatioN For Clinical Outcomes: An InteRnational Multicenter registry) registry. Arter. Thromb Vasc. Biol. 2015, 35, 981–989. [Google Scholar]
- Frankenstein, L.; Hees, H.; Taeger, T.; Froehlich, H.; Dösch, A.; Cebola, R.; Zugck, C.; Katus, H.A. Clinical characteristics, morbidity, and prognostic value of concomitant coronary artery disease in idiopathic dilated cardiomyopathy. Clin. Res. Cardiol. Off. J. Ger. Card. Soc. 2013, 102, 771–780. [Google Scholar] [CrossRef]
- Gulati, A.; Jabbour, A.; Ismail, T.F.; Guha, K.; Khwaja, J.; Raza, S.; Morarji, K.; Brown, T.D.H.; Ismail, N.A.; Dweck, M.R.; et al. Association of fibrosis with mortality and sudden cardiac death in patients with nonischemic dilated cardiomyopathy. JAMA 2013, 309, 896–908. [Google Scholar] [CrossRef] [Green Version]
- Weintraub, R.G.; Semsarian, C.; Macdonald, P. Dilated cardiomyopathy. Lancet Lond. Engl. 2017, 390, 400–414. [Google Scholar] [CrossRef]
- Barone-Rochette, G. Will artificial intelligence change the job of the cardiac imaging specialist? Arch. Cardiovasc. Dis. 2020, 113, 1–4. [Google Scholar] [CrossRef]
- Yang, S.; Kweon, J.; Roh, J.-H.; Lee, J.-H.; Kang, H.; Park, L.-J.; Kim, D.J.; Yang, H.; Hur, J.; Kang, D.-Y.; et al. Deep learning segmentation of major vessels in X-ray coronary angiography. Sci. Rep. 2019, 9, 16897. [Google Scholar] [CrossRef]
- Yi, J.-E.; Park, J.; Lee, H.-J.; Shin, D.G.; Kim, Y.; Kim, M.; Kwon, K.; Pyun, W.B.; Kim, Y.J.; Joung, B.; et al. Prognostic implications of late gadolinium enhancement at the right ventricular insertion point in patients with non-ischemic dilated cardiomyopathy: A multicenter retrospective cohort study. PLoS ONE. 2018, 13, e0208100. [Google Scholar] [CrossRef] [PubMed]
- Ederhy, S.; Mansencal, N.; Réant, P.; Piriou, N.; Barone-Rochette, G. Role of multimodality imaging in the diagnosis and management of cardiomyopathies. Arch. Cardiovasc. Dis. 2019, 112, 615–629. [Google Scholar] [CrossRef]
- Donal, E.; Delgado, V.; Bucciarelli-Ducci, C.; Galli, E.; Haugaa, K.H.; Charron, P.; Voigt, J.-U.; Cardim, N.; Masci, P.G.; Galderisi, M.; et al. Multimodality imaging in the diagnosis, risk stratification, and management of patients with dilated cardiomyopathies: An expert consensus document from the European Association of Cardiovascular Imaging. Eur. Heart J. Cardiovasc. Imaging 2019, 20, 1075–1093. [Google Scholar] [CrossRef] [Green Version]
- Pinto, Y.M.; Elliott, P.M.; Arbustini, E.; Adler, Y.; Anastasakis, A.; Böhm, M.; Duboc, D.; Gimeno, J.; de Groote, P.; Imazio, M.; et al. Proposal for a revised definition of dilated cardiomyopathy, hypokinetic non-dilated cardiomyopathy, and its implications for clinical practice: A position statement of the ESC working group on myocardial and pericardial diseases. Eur. Heart J. 2016, 37, 1850–1858. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ford, T.J.; Ong, P.; Sechtem, U.; Beltrame, J.; Camici, P.G.; Crea, F.; Kaski, J.-C.; Merz, C.N.B.; Pepine, C.J.; Shimokawa, H.; et al. Assessment of Vascular Dysfunction in Patients without Obstructive Coronary Artery Disease: Why, How, and When. JACC Cardiovasc. Interv. 2020, 13, 1847–1864. [Google Scholar] [CrossRef]
- Kunadian, V.; Chieffo, A.; Camici, P.G.; Berry, C.; Escaned, J.; Maas, A.H.E.M.; Prescott, E.; Karam, N.; Appelman, Y.; Fraccaro, C.; et al. An EAPCI Expert Consensus Document on Ischaemia with Non-Obstructive Coronary Arteries in Collaboration with European Society of Cardiology Working Group on Coronary Pathophysiology & Microcirculation Endorsed by Coronary Vasomotor Disorders International Study Group. Eur. Heart J. 2020, 41, 3504–3520. [Google Scholar] [PubMed]
- Garcia, M.; Mulvagh, S.L.; Merz, C.N.; Buring, J.E.; Manson, J.E. Cardiovascular Disease in Women: Clinical Perspectives. Circ. Res. 2016, 118, 1273–1293. [Google Scholar] [CrossRef] [PubMed]
All Patients (n = 139) 100% | MACE (n = 12) 9% | No MACE (n = 127) 91% | p-Value | |
---|---|---|---|---|
Age, years | 59.4 (14.7) | 70.0 (8.89) | 58.4 (14.7) | 0.008 |
Male | 103 (74) | 10 (83) | 93 (73) | 0.4 |
BMI, kg/m2 | 26.25 (4.79) | 27.0 (5.70) | 26.1 (4.70) | 0.5 |
Ever smoker | 58 (42) | 4 (33) | 54 (44) | 0.4 |
Diabetes mellitus | 30 (22) | 6 (50) | 24 (19) | 0.02 |
Dyslipidemia | 43 (31) | 7 (58) | 36 (29) | 0.051 |
Hypertension | 48 (35) | 5 (41) | 43 (34) | 0.6 |
Family history of CAD | 20 (14) | 1 (8) | 19 (15) | 0.5 |
CMR measurements | ||||
LVEF (%) | 31.1(11.02) | 24.1 (6.64) | 31.7 (11.1) | 0.02 |
LVEDVi (mL/m2) | 123.5 (35.4) | 139.1 (23.0) | 120.0 (36.0) | 0.1 |
LVESVi (mL/m2) | 86.3 (34.6) | 106.0 (22.4) | 84.0 (35.1) | 0.03 |
LV mass index (g/m2) | 72.4 (20.6) | 78.5 (19.5) | 71.8 (20.7) | 0.2 |
LA size (mL/m2) | 72.9 (25.5) | 80.8 (24.9) | 72.2 (25.6) | 0.3 |
Cardiac index (L/mn/m2) | 2.38 (0.72) | 2.73 (0.94) | 2.34 (0.69) | 0.08 |
RVEF (%) | 41.8 (14.3) | 32.8 (10.3) | 42.9 (14.1) | 0.04 |
RVEDVi (mL/m2) | 91.8 (32.2) | 94.4 (28.6) | 91.5 (32.9) | 0.8 |
RVESVi (mL/m2) | 54.2 (29.0) | 65.2 (29.1) | 52.3 (28.9) | 0.2 |
LGE | ||||
Presence (%) | 93 (66) | 9 (75) | 84 (66) | 0.5 |
Extent (% of total LV mass) | 7.4 (10.03) | 9.63 (10.88) | 7.19 (9.9) | 0.4 |
LGE by Location | ||||
LGE septal (%) | 57 (41) | 7 (58) | 50 (39) | 0.2 |
LGE by pattern and distribution | ||||
-Sub-endocardial (%) | 21 (15) | 3 (25) | 18 (14) | 0.39 |
-Mid-wall linear (%) | 58 (42) | 4 (33) | 54 (43) | 0.53 |
-Mid-wall nodular (%) | 2 (1) | 0 (0) | 2 (2) | 0.8 |
-Multiple patterns (%) | 12 (9) | 2 (16) | 10 (8) | 0.27 |
Coronary atherosclerotic burden | ||||
Gensini score | 0 (0–3) | 3.75 (2–15) | 0 (0–3) | 0.0001 |
OR | 95% CI | p-Value | |
---|---|---|---|
Age, years | 1.08 | 1.01–1.15 | 0.01 |
Male | 0.54 | 0.11–2.62 | 0.45 |
BMI, kg/m2 | 1.03 | 0.92–1.17 | 0.54 |
Ever smoker | 1.56 | 0.44–5.47 | 0.48 |
Diabetes mellitus | 4.16 | 1.23–14.05 | 0.02 |
Dyslipidemia | 3.42 | 1.01–11.4 | 0.04 |
Hypertension | 1.36 | 0.40–4.54 | 0.61 |
Family history of CAD | 0.49 | 0.06–4.08 | 0.51 |
CMR measurements | |||
LVEF (%) | 0.93 | 0.88–0.99 | 0.02 |
LVEDVi (mL/m2) | 1.01 | 0.99–1.02 | 0.11 |
LVESVi (mL/m2) | 1.01 | 1.00–1.03 | 0.04 |
LV mass index (g/m2) | 1.01 | 0.98–1.04 | 0.28 |
LA size (mL/m2) | 1.01 | 0.98–1.03 | 0.33 |
Cardiac index (L/mn/m2) | 1.95 | 0.90–4.21 | 0.08 |
RVEF (%) | 0.94 | 0.89–1.00 | 0.054 |
RVEDVi (mL/m2) | 1.00 | 0.98–1.02 | 0.80 |
RVESVi (mL/m2) | 1.01 | 0.98–1.03 | 0.23 |
LGE | |||
Presence (%) | 1.53 | 0.39–5.96 | 0.53 |
Extent (% of total LV mass) | 1.02 | 0.97–1.07 | 0.42 |
LGE localization | |||
LGE (septal) | 2.15 | 0.64–7.16 | 0.21 |
LGE by pattern and distribution | |||
-Sub-endocardial (%) | 2.01 | 0.49–8.17 | 0.32 |
-Mid-wall linear (%) | 0.67 | 0.19–2.36 | 0.53 |
-Mid-wall nodular (%) | – | – | – |
-multiple patterns (%) | 2.34 | 0.44–12.1 | 0.31 |
Coronary atherosclerotic burden | |||
Gensini score | 1.10 | 1.02–1.18 | 0.009 |
OR | 95% CI | p-Value | |
Age, years | 1.09 | 1.01–1.17 | 0.02 |
Diabetes mellitus | 1.85 | 0.32–10.5 | 0.48 |
Dyslipidemia | 2.15 | 0.41–11.03 | 0.35 |
LVEF (%) | 0.91 | 0.79–1.03 | 0.16 |
LVESVi (mL/m2) | 1.00 | 0.97–1.04 | 0.73 |
Gensini score | 1.12 | 1.01–1.23 | 0.02 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Canu, M.; Margerit, L.; Mekhdoul, I.; Broisat, A.; Riou, L.; Djaileb, L.; Charlon, C.; Jankowski, A.; Magnesa, M.; Augier, C.; et al. Prognosis of Coronary Atherosclerotic Burden in Non-Ischemic Dilated Cardiomyopathies. J. Clin. Med. 2021, 10, 2183. https://doi.org/10.3390/jcm10102183
Canu M, Margerit L, Mekhdoul I, Broisat A, Riou L, Djaileb L, Charlon C, Jankowski A, Magnesa M, Augier C, et al. Prognosis of Coronary Atherosclerotic Burden in Non-Ischemic Dilated Cardiomyopathies. Journal of Clinical Medicine. 2021; 10(10):2183. https://doi.org/10.3390/jcm10102183
Chicago/Turabian StyleCanu, Marjorie, Léa Margerit, Ismail Mekhdoul, Alexis Broisat, Laurent Riou, Loïc Djaileb, Clémence Charlon, Adrien Jankowski, Michele Magnesa, Caroline Augier, and et al. 2021. "Prognosis of Coronary Atherosclerotic Burden in Non-Ischemic Dilated Cardiomyopathies" Journal of Clinical Medicine 10, no. 10: 2183. https://doi.org/10.3390/jcm10102183
APA StyleCanu, M., Margerit, L., Mekhdoul, I., Broisat, A., Riou, L., Djaileb, L., Charlon, C., Jankowski, A., Magnesa, M., Augier, C., Marlière, S., Salvat, M., Casset, C., Maurin, M., Saunier, C., Fagret, D., Ghezzi, C., Vanzetto, G., & Barone-Rochette, G. (2021). Prognosis of Coronary Atherosclerotic Burden in Non-Ischemic Dilated Cardiomyopathies. Journal of Clinical Medicine, 10(10), 2183. https://doi.org/10.3390/jcm10102183