Adverse Life Trajectories Are a Risk Factor for SARS-CoV-2 IgA Seropositivity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cohort
2.2. Data Collection
2.3. Psychological Questionnaires
2.4. IgA and IgG Serology
2.5. Statistical Analyses and Data Presentation
3. Results
3.1. Demographic Covariates
3.2. Relative Risk Linked to Pre-Existing Comorbidities
3.3. Early-Life Adversity Incidence and the Associated Increases in Risk of IgA Seropositivity
3.4. Physical Abuse Is the Predominant Driver of ELA
3.5. Adult Trauma Is a Risk Factor for IgA Seropositivity
3.6. Socioeconomic, Employment, and Life Covariates Do Not Influence IgA Seropositivity
3.7. The Influence of ELA on Psychological States during Lockdown
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization. Coronavirus Disease 2019 (COVID-19): Situation Report, 51; World Health Organization: Geneva, Switzerland, 2020. [Google Scholar]
- Snoeck, C.J.; Vaillant, M.; Abdelrahman, T.; Satagopam, V.P.; Turner, J.D.; Beaumont, K.; Gomes, C.P.C.; Fritz, J.V.; Schröder, V.E.; Kaysen, A.; et al. Prevalence of SARS-CoV-2 infection in the Luxembourgish population: The CON-VINCE study. medRxiv 2020. [Google Scholar] [CrossRef]
- World Health Organization. COVID-19 Weekly Epidemiological Update, 9 March 2021; World Health Organization: Geneva, Switzerland, 2021. [Google Scholar]
- Bai, Y.; Yao, L.; Wei, T.; Tian, F.; Jin, D.Y.; Chen, L.; Wang, M. Presumed Asymptomatic Carrier Transmission of COVID-19. JAMA 2020. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chan, J.F.; Yuan, S.; Kok, K.H.; To, K.K.; Chu, H.; Yang, J.; Xing, F.; Liu, J.; Yip, C.C.; Poon, R.W.; et al. A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: A study of a family cluster. Lancet 2020, 395, 514–523. [Google Scholar] [CrossRef] [Green Version]
- Hu, Z.; Song, C.; Xu, C.; Jin, G.; Chen, Y.; Xu, X.; Ma, H.; Chen, W.; Lin, Y.; Zheng, Y.; et al. Clinical characteristics of 24 asymptomatic infections with COVID-19 screened among close contacts in Nanjing, China. Sci. China Life Sci. 2020, 63, 706–711. [Google Scholar] [CrossRef] [Green Version]
- Mizumoto, K.; Kagaya, K.; Zarebski, A.; Chowell, G. Estimating the asymptomatic proportion of coronavirus disease 2019 (COVID-19) cases on board the Diamond Princess cruise ship, Yokohama, Japan, 2020. Eurosurveillance 2020, 25. [Google Scholar] [CrossRef] [Green Version]
- Nishiura, H.; Kobayashi, T.; Miyama, T.; Suzuki, A.; Jung, S.M.; Hayashi, K.; Kinoshita, R.; Yang, Y.; Yuan, B.; Akhmetzhanov, A.R.; et al. Estimation of the asymptomatic ratio of novel coronavirus infections (COVID-19). Int. J. Infect. Dis. 2020, 94, 154–155. [Google Scholar] [CrossRef]
- Long, Q.X.; Tang, X.J.; Shi, Q.L.; Li, Q.; Deng, H.J.; Yuan, J.; Hu, J.L.; Xu, W.; Zhang, Y.; Lv, F.J.; et al. Clinical and immunological assessment of asymptomatic SARS-CoV-2 infections. Nat. Med. 2020, 26, 1200–1204. [Google Scholar] [CrossRef] [PubMed]
- Holuka, C.; Merz, M.P.; Fernandes, S.B.; Charalambous, E.G.; Seal, S.V.; Grova, N.; Turner, J.D. The COVID-19 Pandemic: Does Our Early Life Environment, Life Trajectory and Socioeconomic Status Determine Disease Susceptibility and Severity? Int. J. Mol. Sci. 2020, 21, 5094. [Google Scholar] [CrossRef]
- Britten, R.H. The Incidence of Epidemic Influenza, 1918-19: A Further Analysis According to Age, Sex, and Color of the Records of Morbidity and Mortality Obtained in Surveys of 12 Localities. Public Health Rep. 1932, 47, 303–339. [Google Scholar] [CrossRef]
- La Ruche, G.; Tarantola, A.; Barboza, P.; Vaillant, L.; Gueguen, J.; Gastellu-Etchegorry, M.; for the epidemic intelligence team at InVS. The 2009 pandemic H1N1 influenza and indigenous populations of the Americas and the Pacific. Eurosurveillance 2009, 14. [Google Scholar] [CrossRef]
- Sydenstricker, E. The Incidence of Influenza among Persons of Different Economic Status during the Epidemic of 1918. Public Health Rep. 1931, 46, 154–170. [Google Scholar] [CrossRef]
- Rose, T.C.; Mason, K.; Pennington, A.; McHale, P.; Buchan, I.; Taylor-Robinson, D.C.; Barr, B. Inequalities in COVID19 mortality related to ethnicity and socioeconomic deprivation. medRxiv 2020. [Google Scholar] [CrossRef]
- Hertzman, C.; Boyce, T. How experience gets under the skin to create gradients in developmental health. Annu. Rev. Public Health 2010, 31, 329–347. [Google Scholar] [CrossRef] [Green Version]
- Phelan, J.C.; Link, B.G.; Tehranifar, P. Social conditions as fundamental causes of health inequalities: Theory, evidence, and policy implications. J. Health Soc. Behav. 2010, 51, S28–S40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wadhwa, P.D.; Buss, C.; Entringer, S.; Swanson, J.M. Developmental origins of health and disease: Brief history of the approach and current focus on epigenetic mechanisms. Semin. Reprod. Med. 2009, 27, 358–368. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Daskalakis, N.P.; Bagot, R.C.; Parker, K.J.; Vinkers, C.H.; de Kloet, E.R. The three-hit concept of vulnerability and resilience: Toward understanding adaptation to early-life adversity outcome. Psychoneuroendocrinology 2013, 38, 1858–1873. [Google Scholar] [CrossRef] [Green Version]
- Grova, N.; Schroeder, H.; Olivier, J.L.; Turner, J.D. Epigenetic and Neurological Impairments Associated with Early Life Exposure to Persistent Organic Pollutants. Int. J. Genom. 2019, 2019, 2085496. [Google Scholar] [CrossRef] [Green Version]
- Gluckman, P.D.; Hanson, M.A.; Beedle, A.S. Non-genomic transgenerational inheritance of disease risk. Bioessays 2007, 29, 145–154. [Google Scholar] [CrossRef]
- Gluckman, P.D.; Hanson, M.A.; Mitchell, M.D. Developmental origins of health and disease: Reducing the burden of chronic disease in the next generation. Genome Med. 2010, 2, 14. [Google Scholar] [CrossRef] [Green Version]
- Merrick, M.T.; Ford, D.C.; Ports, K.A.; Guinn, A.S.; Chen, J.; Klevens, J.; Metzler, M.; Jones, C.M.; Simon, T.R.; Daniel, V.M.; et al. Vital Signs: Estimated Proportion of Adult Health Problems Attributable to Adverse Childhood Experiences and Implications for Prevention—25 States, 2015–2017. Morb. Mortal. Wkly. Rep. 2019, 68, 999–1005. [Google Scholar] [CrossRef] [Green Version]
- Ports, K.A.; Holman, D.M.; Guinn, A.S.; Pampati, S.; Dyer, K.E.; Merrick, M.T.; Lunsford, N.B.; Metzler, M. Adverse Childhood Experiences and the Presence of Cancer Risk Factors in Adulthood: A Scoping Review of the Literature From 2005 to 2015. J. Pediatr. Nurs. 2019, 44, 81–96. [Google Scholar] [CrossRef]
- Felitti, V.J.; Anda, R.F.; Nordenberg, D.; Williamson, D.F.; Spitz, A.M.; Edwards, V.; Koss, M.P.; Marks, J.S. Relationship of Childhood Abuse and Household Dysfunction to Many of the Leading Causes of Death in Adults: The Adverse Childhood Experiences (ACE) Study. Am. J. Prev. Med. 1998, 14, 245–258. [Google Scholar] [CrossRef]
- Baumeister, D.; Akhtar, R.; Ciufolini, S.; Pariante, C.M.; Mondelli, V. Childhood trauma and adulthood inflammation: A meta-analysis of peripheral C-reactive protein, interleukin-6 and tumour necrosis factor-α. Mol. Psychiatry 2016, 21, 642–649. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuhlman, K.R.; Horn, S.R.; Chiang, J.J.; Bower, J.E. Early life adversity exposure and circulating markers of inflammation in children and adolescents: A systematic review and meta-analysis. Brain Behav. Immun. 2020, 86, 30–42. [Google Scholar] [CrossRef]
- Engel, M.L.; Coe, C.L.; Reid, B.M.; Donzella, B.; Gunnar, M.R. Selective inflammatory propensities in adopted adolescents institutionalized as infants. Psychoneuroendocrinology 2021, 124, 105065. [Google Scholar] [CrossRef]
- Elwenspoek, M.M.C.; Hengesch, X.; Leenen, F.A.D.; Schritz, A.; Sias, K.; Schaan, V.K.; Meriaux, S.B.; Schmitz, S.; Bonnemberger, F.; Schachinger, H.; et al. Proinflammatory T Cell Status Associated with Early Life Adversity. J. Immunol. 2017, 199, 4046–4055. [Google Scholar] [CrossRef] [Green Version]
- Esposito, E.A.; Jones, M.J.; Doom, J.R.; MacIsaac, J.L.; Gunnar, M.R.; Kobor, M.S. Differential DNA methylation in peripheral blood mononuclear cells in adolescents exposed to significant early but not later childhood adversity. Dev. Psychopathol. 2016, 28, 1385–1399. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reid, B.M.; Coe, C.L.; Doyle, C.M.; Sheerar, D.; Slukvina, A.; Donzella, B.; Gunnar, M.R. Persistent Skewing of the T-Cell Profile in Adolescents Adopted Internationally from Institutional Care. Brain Behav. Immun. 2019. [Google Scholar] [CrossRef] [PubMed]
- Wolfel, R.; Corman, V.M.; Guggemos, W.; Seilmaier, M.; Zange, S.; Muller, M.A.; Niemeyer, D.; Jones, T.C.; Vollmar, P.; Rothe, C.; et al. Virological assessment of hospitalized patients with COVID-2019. Nature 2020, 581, 465–469. [Google Scholar] [CrossRef] [Green Version]
- Russell, M.W.; Moldoveanu, Z.; Ogra, P.L.; Mestecky, J. Mucosal Immunity in COVID-19: A Neglected but Critical Aspect of SARS-CoV-2 Infection. Front. Immunol. 2020, 11, 611337. [Google Scholar] [CrossRef]
- Zhou, M.; Ruprecht, R.M. Are anti-HIV IgAs good guys or bad guys? Retrovirology 2014, 11, 109. [Google Scholar] [CrossRef] [PubMed]
- Buisman, A.M.; Abbink, F.; Schepp, R.M.; Sonsma, J.A.; Herremans, T.; Kimman, T.G. Preexisting poliovirus-specific IgA in the circulation correlates with protection against virus excretion in the elderly. J. Infect. Dis. 2008, 197, 698–706. [Google Scholar] [CrossRef] [Green Version]
- Nishio, O.; Sakae, K.; Ishihara, Y.; Isomura, S.; Inouye, S. Adenovirus infection and specific secretory IgA responses in the intestine of infants. Microbiol. Immunol. 1992, 36, 623–631. [Google Scholar] [CrossRef] [Green Version]
- Blutt, S.E.; Miller, A.D.; Salmon, S.L.; Metzger, D.W.; Conner, M.E. IgA is important for clearance and critical for protection from rotavirus infection. Mucosal Immunol. 2012, 5, 712–719. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, R.T. Childhood Adversities and Depression in Adulthood: Current Findings and Future Directions. Clin. Psychol. 2017, 24, 140–153. [Google Scholar] [CrossRef]
- Cohen, S.; Kamarck, T.; Mermelstein, R. A global measure of perceived stress. J. Health Soc. Behav. 1983, 24, 385–396. [Google Scholar] [CrossRef]
- Hughes, M.E.; Waite, L.J.; Hawkley, L.C.; Cacioppo, J.T. A Short Scale for Measuring Loneliness in Large Surveys: Results From Two Population-Based Studies. Res Aging 2004, 26, 655–672. [Google Scholar] [CrossRef] [PubMed]
- Radloff, L.S. The CES-D scale: A self-report depression scale for research in the general population. Appl. Psychol. Meas. 1977, 1, 385–401. [Google Scholar] [CrossRef]
- Spitzer, R.L.; Kroenke, K.; Williams, J.B.; Lowe, B. A brief measure for assessing generalized anxiety disorder: The GAD-7. Arch. Intern. Med. 2006, 166, 1092–1097. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bernstein, D.P.; Stein, J.A.; Newcomb, M.D.; Walker, E.; Pogge, D.; Ahluvalia, T.; Stokes, J.; Handelsman, L.; Medrano, M.; Desmond, D.; et al. Development and validation of a brief screening version of the Childhood Trauma Questionnaire. Child Abus. Negl. 2003, 27, 169–190. [Google Scholar] [CrossRef]
- Turner, J.D.; D’Ambrosio, C.; Vögele, C.; Diewald, M. Twin Research in the Post-Genomic Era: Dissecting the Pathophysiological Effects of Adversity and the Social Environment. Int. J. Molecuar Sci. 2020, 21, 3142. [Google Scholar] [CrossRef]
- Wickham, H.; François, R.; Henry, L.; Müller, K. Dplyr: A Grammar of Data Manipulation, R Package Version 1.0.2. 2020. Available online: https://CRAN.R-project.org/package=dplyr (accessed on 10 March 2021).
- Lüdecke, D. Sjmisc: Data and Variable Transformation Functions. J. Open Source Softw. 2018, 3. [Google Scholar] [CrossRef]
- Aragon, T.J. Epitools: Epidemiology Tools. R Package Version 0.5-10.1. 2020. Available online: https://CRAN.R-project.org/package=epitools (accessed on 10 March 2021).
- Chongsuvivatwong, V. epidisplay: Epidemiological Data Display Package. R Package Version 3.5.0.1. 2018. Available online: https://CRAN.R-project.org/package=epiDisplay (accessed on 10 March 2021).
- Maechler, M.; Rousseeuw, P.; Struyf, A.; Hubert, M.; Hornik, K. Cluster: Cluster Analysis Basics and Extensions. R Package Version 2.1.0. 2019. Available online: https://CRAN.R-project.org/package=cluster (accessed on 10 March 2021).
- Schilling, C.; Weidner, K.; Brahler, E.; Glaesmer, H.; Hauser, W.; Pohlmann, K. Patterns of Childhood Abuse and Neglect in a Representative German Population Sample. PLoS ONE 2016, 11, e0159510. [Google Scholar] [CrossRef] [Green Version]
- Küçükali, H.; Hayran, O.; İleri, Ş.; Kurt, B.; Kuru, F.; Nalbantoğlu, S.; Özbaş, B.; Akif Sezerol, M.; Taşçı, Y. Effect of Socioeconomic Status on Risk of Developing COVID-19: A Community-based Case-control Study. Res. Sq. 2021. [Google Scholar] [CrossRef]
- Clouston, S.A.P.; Natale, G.; Link, B.G. Socioeconomic inequalities in the spread of coronavirus-19 in the United States: A examination of the emergence of social inequalities. Soc. Sci. Med. 2021, 268, 113554. [Google Scholar] [CrossRef] [PubMed]
- Arentz, M.; Yim, E.; Klaff, L.; Lokhandwala, S.; Riedo, F.X.; Chong, M.; Lee, M. Characteristics and Outcomes of 21 Critically Ill Patients With COVID-19 in Washington State. JAMA 2020, 323, 1612–1614. [Google Scholar] [CrossRef] [Green Version]
- Grasselli, G.; Zangrillo, A.; Zanella, A.; Antonelli, M.; Cabrini, L.; Castelli, A.; Cereda, D.; Coluccello, A.; Foti, G.; Fumagalli, R.; et al. Baseline Characteristics and Outcomes of 1591 Patients Infected With SARS-CoV-2 Admitted to ICUs of the Lombardy Region, Italy. JAMA 2020, 323, 1574–1581. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guan, W.J.; Ni, Z.Y.; Hu, Y.; Liang, W.H.; Ou, C.Q.; He, J.X.; Liu, L.; Shan, H.; Lei, C.L.; Hui, D.S.C.; et al. Clinical Characteristics of Coronavirus Disease 2019 in China. N. Engl. J. Med. 2020, 382, 1708–1720. [Google Scholar] [CrossRef]
- Richardson, S.; Hirsch, J.S.; Narasimhan, M.; Crawford, J.M.; McGinn, T.; Davidson, K.W.; the Northwell COVID-19 Research Consortium; Barnaby, D.P.; Becker, L.B.; Chelico, J.D.; et al. Presenting Characteristics, Comorbidities, and Outcomes Among 5700 Patients Hospitalized With COVID-19 in the New York City Area. JAMA 2020, 323, 2052–2059. [Google Scholar] [CrossRef]
- Shah, P.; Owens, J.; Franklin, J.; Mehta, A.; Heymann, W.; Sewell, W.; Hill, J.; Barfield, K.; Doshi, R. Demographics, comorbidities and outcomes in hospitalized Covid-19 patients in rural southwest Georgia. Ann. Med. 2020, 52, 354–360. [Google Scholar] [CrossRef]
- Metlay, J.P.; Haas, J.S.; Soltoff, A.E.; Armstrong, K.A. Household Transmission of SARS-CoV-2. JAMA Netw. Open 2021, 4, e210304. [Google Scholar] [CrossRef] [PubMed]
- Shields, A.; Faustini, S.E.; Perez-Toledo, M.; Jossi, S.; Aldera, E.; Allen, J.D.; Al-Taei, S.; Backhouse, C.; Bosworth, A.; Dunbar, L.A.; et al. SARS-CoV-2 seroprevalence and asymptomatic viral carriage in healthcare workers: A cross-sectional study. Thorax 2020. [Google Scholar] [CrossRef] [PubMed]
- Yancy, C.W. COVID-19 and African Americans. JAMA 2020. [Google Scholar] [CrossRef] [Green Version]
- Assari, S. Family Socioeconomic Status and Exposure to Childhood Trauma: Racial Differences. Children 2020, 7, 57. [Google Scholar] [CrossRef] [PubMed]
- Mock, S.E.; Arai, S.M. Childhood trauma and chronic illness in adulthood: Mental health and socioeconomic status as explanatory factors and buffers. Front. Psychol 2010, 1, 246. [Google Scholar] [CrossRef] [Green Version]
- Didikoglu, A.; Maharani, A.; Pendleton, N.; Canal, M.M.; Payton, A. Early life factors and COVID-19 infection in England: A prospective analysis of UK Biobank participants. Early Hum. Dev. 2021, 155, 105326. [Google Scholar] [CrossRef]
- Farsalinos, K.; Barbouni, A.; Poulas, K.; Polosa, R.; Caponnetto, P.; Niaura, R. Current smoking, former smoking, and adverse outcome among hospitalized COVID-19 patients: A systematic review and meta-analysis. Ther. Adv. Chronic Dis. 2020, 11, 2040622320935765. [Google Scholar] [CrossRef]
- Patanavanich, R.; Glantz, S.A. Smoking Is Associated With COVID-19 Progression: A Meta-analysis. Nicotine Tob. Res. 2020, 22, 1653–1656. [Google Scholar] [CrossRef]
- Brake, S.J.; Barnsley, K.; Lu, W.; McAlinden, K.D.; Eapen, M.S.; Sohal, S.S. Smoking Upregulates Angiotensin-Converting Enzyme-2 Receptor: A Potential Adhesion Site for Novel Coronavirus SARS-CoV-2 (Covid-19). J. Clin. Med. 2020, 9, 841. [Google Scholar] [CrossRef] [Green Version]
- Oakes, J.M.; Fuchs, R.M.; Gardner, J.D.; Lazartigues, E.; Yue, X. Nicotine and the renin-angiotensin system. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2018, 315, R895–R906. [Google Scholar] [CrossRef] [Green Version]
- Klein, J.D.; Thomas, R.K.; Sutter, E.J. Self-reported smoking in online surveys: Prevalence estimate validity and item format effects. Med. Care 2007, 45, 691–695. [Google Scholar] [CrossRef] [PubMed]
- Cassel, J. The contribution of the social environment to host resistance: The Fourth Wade Hampton Frost Lecture. Am. J. Epidemiol. 1976, 104, 107–123. [Google Scholar] [CrossRef] [PubMed]
- Seeman, T.E. Social ties and health: The benefits of social integration. Ann. Epidemiol. 1996, 6, 442–451. [Google Scholar] [CrossRef]
- Avitsur, R.; Hunzeker, J.; Sheridan, J.F. Role of early stress in the individual differences in host response to viral infection. Brain Behav. Immun. 2006, 20, 339–348. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, T.; Walker, A.K.; Sominsky, L.; Allen, T.; Rosengren, S.; Hodgson, D.M. Maternal separation in early life impairs tumor immunity in adulthood in the F344 rat. Stress 2011, 14, 335–343. [Google Scholar] [CrossRef]
- Cole, S.W.; Conti, G.; Arevalo, J.M.; Ruggiero, A.M.; Heckman, J.J.; Suomi, S.J. Transcriptional modulation of the developing immune system by early life social adversity. Proc. Natl. Acad. Sci. USA 2012, 109, 20578–20583. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elwenspoek, M.M.C.; Kuehn, A.; Muller, C.P.; Turner, J.D. The effects of early life adversity on the immune system. Psychoneuroendocrinology 2017, 82, 140–154. [Google Scholar] [CrossRef] [PubMed]
- Elwenspoek, M.M.C.; Sias, K.; Hengesch, X.; Schaan, V.K.; Leenen, F.A.D.; Adams, P.; Meriaux, S.B.; Schmitz, S.; Bonnemberger, F.; Ewen, A.; et al. T Cell Immunosenescence after Early Life Adversity: Association with Cytomegalovirus Infection. Front. Immunol. 2017, 8, 1263. [Google Scholar] [CrossRef] [Green Version]
- Antoni, M.H.; Lutgendorf, S.K.; Blomberg, B.; Carver, C.S.; Lechner, S.; Diaz, A.; Stagl, J.; Arevalo, J.M.; Cole, S.W. Cognitive-behavioral stress management reverses anxiety-related leukocyte transcriptional dynamics. Biol. Psychiatry 2012, 71, 366–372. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, E.; Miller, G.E.; Walker, H.A.; Arevalo, J.M.; Sung, C.Y.; Cole, S.W. Genome-wide transcriptional profiling linked to social class in asthma. Thorax 2009, 64, 38–43. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cole, S.W.; Hawkley, L.C.; Arevalo, J.M.; Cacioppo, J.T. Transcript origin analysis identifies antigen-presenting cells as primary targets of socially regulated gene expression in leukocytes. Proc. Natl. Acad. Sci. USA 2011, 108, 3080–3085. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cole, S.W.; Hawkley, L.C.; Arevalo, J.M.; Sung, C.Y.; Rose, R.M.; Cacioppo, J.T. Social regulation of gene expression in human leukocytes. Genome Biol. 2007, 8, R189. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Irwin, M.R.; Cole, S.W. Reciprocal regulation of the neural and innate immune systems. Nat. Rev. Immunol. 2011, 11, 625–632. [Google Scholar] [CrossRef] [PubMed]
- Miller, G.E.; Chen, E.; Fok, A.K.; Walker, H.; Lim, A.; Nicholls, E.F.; Cole, S.; Kobor, M.S. Low early-life social class leaves a biological residue manifested by decreased glucocorticoid and increased proinflammatory signaling. Proc. Natl. Acad. Sci. USA 2009, 106, 14716–14721. [Google Scholar] [CrossRef] [Green Version]
- Miller, G.E.; Chen, E.; Sze, J.; Marin, T.; Arevalo, J.M.; Doll, R.; Ma, R.; Cole, S.W. A functional genomic fingerprint of chronic stress in humans: Blunted glucocorticoid and increased NF-kappaB signaling. Biol. Psychiatry 2008, 64, 266–272. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Donovan, A.; Sun, B.; Cole, S.; Rempel, H.; Lenoci, M.; Pulliam, L.; Neylan, T. Transcriptional control of monocyte gene expression in post-traumatic stress disorder. Dis. Markers 2011, 30, 123–132. [Google Scholar] [CrossRef]
- Shirtcliff, E.A.; Coe, C.L.; Pollak, S.D. Early childhood stress is associated with elevated antibody levels to herpes simplex virus type 1. Proc. Natl. Acad. Sci. USA 2009, 106, 2963–2967. [Google Scholar] [CrossRef] [Green Version]
- Sloan, E.K.; Capitanio, J.P.; Tarara, R.P.; Mendoza, S.P.; Mason, W.A.; Cole, S.W. Social stress enhances sympathetic innervation of primate lymph nodes: Mechanisms and implications for viral pathogenesis. J. Neurosci. 2007, 27, 8857–8865. [Google Scholar] [CrossRef]
- White, R.G.; Van Der Boor, C. Impact of the COVID-19 pandemic and initial period of lockdown on the mental health and well-being of adults in the UK. BJPsych Open 2020, 6, e90. [Google Scholar] [CrossRef]
- Montero-Lopez, E.; Santos-Ruiz, A.; Gonzalez, R.; Navarrete-Navarrete, N.; Ortego-Centeno, N.; Martinez-Augustin, O.; Rodriguez-Blazquez, M.; Peralta-Ramirez, M.I. Analyses of hair and salivary cortisol for evaluating hypothalamic-pituitary-adrenal axis activation in patients with autoimmune disease. Stress 2017, 20, 541–548. [Google Scholar] [CrossRef] [Green Version]
- Schubert, C.; Lampe, A.; Geser, W.; Noisternig, B.; Fuchs, D.; Konig, P.; Chamson, E.; Schussler, G. Daily psychosocial stressors and cyclic response patterns in urine cortisol and neopterin in a patient with systemic lupus erythematosus. Psychoneuroendocrinology 2003, 28, 459–473. [Google Scholar] [CrossRef]
- Barton, A.S.; Zakreski, E.; Pruessner, J. The effects of early life adversity on responses to the Montreal Imaging Stress Task. Psychoneuroendocrinology 2016, 71, 67. [Google Scholar] [CrossRef]
- Gunnar, M.R.; Frenn, K.; Wewerka, S.S.; Van Ryzin, M.J. Moderate versus severe early life stress: Associations with stress reactivity and regulation in 10-12-year-old children. Psychoneuroendocrinology 2009, 34, 62–75. [Google Scholar] [CrossRef] [Green Version]
- Hengesch, X.; Elwenspoek, M.M.C.; Schaan, V.K.; Larra, M.F.; Finke, J.B.; Zhang, X.; Bachmann, P.; Turner, J.D.; Vogele, C.; Muller, C.P.; et al. Blunted endocrine response to a combined physical-cognitive stressor in adults with early life adversity. Child Abus. Negl. 2018, 85, 137–144. [Google Scholar] [CrossRef]
- Yu, H.Q.; Sun, B.Q.; Fang, Z.F.; Zhao, J.C.; Liu, X.Y.; Li, Y.M.; Sun, X.Z.; Liang, H.F.; Zhong, B.; Huang, Z.F.; et al. Distinct features of SARS-CoV-2-specific IgA response in COVID-19 patients. Eur. Respir. J. 2020, 56. [Google Scholar] [CrossRef]
- Guo, L.; Ren, L.; Yang, S.; Xiao, M.; Chang, D.; Yang, F.; Cruz, C.S.D.; Wang, Y.; Wu, C.; Xiao, Y.; et al. Profiling Early Humoral Response to Diagnose Novel Coronavirus Disease (COVID-19). Clin. Infect. Dis. 2020, 71, 778–785. [Google Scholar] [CrossRef] [Green Version]
- Sterlin, D.; Mathian, A.; Miyara, M.; Mohr, A.; Anna, F.; Claer, L.; Quentric, P.; Fadlallah, J.; Devilliers, H.; Ghillani, P.; et al. IgA dominates the early neutralizing antibody response to SARS-CoV-2. Sci. Transl. Med. 2021, 13. [Google Scholar] [CrossRef]
- Tschernig, T.; Pabst, R. Bronchus-associated lymphoid tissue (BALT) is not present in the normal adult lung but in different diseases. Pathobiology 2000, 68, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Quiding-Jarbrink, M.; Nordstrom, I.; Granstrom, G.; Kilander, A.; Jertborn, M.; Butcher, E.C.; Lazarovits, A.I.; Holmgren, J.; Czerkinsky, C. Differential expression of tissue-specific adhesion molecules on human circulating antibody-forming cells after systemic, enteric, and nasal immunizations. A molecular basis for the compartmentalization of effector B cell responses. J. Clin. Investig. 1997, 99, 1281–1286. [Google Scholar] [CrossRef]
- Klingler, J.; Weiss, S.; Itri, V.; Liu, X.; Oguntuyo, K.Y.; Stevens, C.; Ikegame, S.; Hung, C.T.; Enyindah-Asonye, G.; Amanat, F.; et al. Role of IgM and IgA Antibodies in the Neutralization of SARS-CoV-2. medRxiv 2020. [Google Scholar] [CrossRef]
- Ejemel, M.; Li, Q.; Hou, S.; Schiller, Z.A.; Tree, J.A.; Wallace, A.; Amcheslavsky, A.; Kurt Yilmaz, N.; Buttigieg, K.R.; Elmore, M.J.; et al. A cross-reactive human IgA monoclonal antibody blocks SARS-CoV-2 spike-ACE2 interaction. Nat. Commun. 2020, 11, 4198. [Google Scholar] [CrossRef]
- Wec, A.Z.; Wrapp, D.; Herbert, A.S.; Maurer, D.P.; Haslwanter, D.; Sakharkar, M.; Jangra, R.K.; Dieterle, M.E.; Lilov, A.; Huang, D.; et al. Broad neutralization of SARS-related viruses by human monoclonal antibodies. Science 2020, 369, 731–736. [Google Scholar] [CrossRef]
- Kubagawa, H.; Bertoli, L.F.; Barton, J.C.; Koopman, W.J.; Mestecky, J.; Cooper, M.D. Analysis of paraprotein transport into the saliva by using anti-idiotype antibodies. J. Immunol. 1987, 138, 435–439. [Google Scholar]
- Gudbjartsson, D.F.; Norddahl, G.L.; Melsted, P.; Gunnarsdottir, K.; Holm, H.; Eythorsson, E.; Arnthorsson, A.O.; Helgason, D.; Bjarnadottir, K.; Ingvarsson, R.F.; et al. Humoral Immune Response to SARS-CoV-2 in Iceland. N. Engl. J. Med. 2020. [Google Scholar] [CrossRef] [PubMed]
- Burgess, S.; Ponsford, M.J.; Gill, D. Are we underestimating seroprevalence of SARS-CoV-2? BMJ. 2020, 370, m3364. [Google Scholar] [CrossRef]
- Chen, M.; Qin, R.; Jiang, M.; Yang, Z.; Wen, W.; Li, J. Clinical applications of detecting IgG, IgM or IgA antibody for the diagnosis of COVID-19: A meta-analysis and systematic review. Int. J. Infect. Dis. 2021, 104, 415–422. [Google Scholar] [CrossRef]
- Wechselberger, C.; Sussner, S.; Doppler, S.; Bernhard, D. Performance evaluation of serological assays to determine the immunoglobulin status in SARS-CoV-2 infected patients. J. Clin. Virol. 2020, 131, 104589. [Google Scholar] [CrossRef] [PubMed]
- Tesija Kuna, A.; Hanzek, M.; Vukasovic, I.; Nikolac Gabaj, N.; Vidranski, V.; Celap, I.; Miler, M.; Stancin, N.; Simac, B.; Zivkovic, M.; et al. Comparison of diagnostic accuracy for eight SARS-CoV-2 serological assays. Biochem. Med. 2021, 31, 010708. [Google Scholar] [CrossRef] [PubMed]
- Cao, W.C.; Liu, W.; Zhang, P.H.; Zhang, F.; Richardus, J.H. Disappearance of antibodies to SARS-associated coronavirus after recovery. N. Engl. J. Med. 2007, 357, 1162–1163. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, C.O.; Kohlmann, T. When to use the odds ratio or the relative risk? Int. J. Public Health 2008, 53, 165–167. [Google Scholar] [CrossRef] [PubMed]
- Choe, P.G.; Perera, R.; Park, W.B.; Song, K.H.; Bang, J.H.; Kim, E.S.; Kim, H.B.; Ko, L.W.R.; Park, S.W.; Kim, N.J.; et al. MERS-CoV Antibody Responses 1 Year after Symptom Onset, South Korea, 2015. Emerg. Infect. Dis. 2017, 23, 1079–1084. [Google Scholar] [CrossRef] [Green Version]
- Wu, L.P.; Wang, N.C.; Chang, Y.H.; Tian, X.Y.; Na, D.Y.; Zhang, L.Y.; Zheng, L.; Lan, T.; Wang, L.F.; Liang, G.D. Duration of antibody responses after severe acute respiratory syndrome. Emerg Infect. Dis. 2007, 13, 1562–1564. [Google Scholar] [CrossRef] [PubMed]
- Payne, D.C.; Iblan, I.; Rha, B.; Alqasrawi, S.; Haddadin, A.; Al Nsour, M.; Alsanouri, T.; Ali, S.S.; Harcourt, J.; Miao, C.; et al. Persistence of Antibodies against Middle East Respiratory Syndrome Coronavirus. Emerg Infect. Dis. 2016, 22, 1824–1826. [Google Scholar] [CrossRef] [PubMed]
- Tao, P.Y.; Leng, L.; Liu, K.; Zhou, R.H.; Hu, Y.C.; Wu, S.J.; Xiao, Y.D.; Liu, J. Determination of risk factors for predicting the onset of symptoms in asymptomatic COVID-19 infected patients. Int. J. Med. Sci. 2020, 17, 2187–2193. [Google Scholar] [CrossRef] [PubMed]
Age Category | Total | Female/Male | IgA Positive | RR (95%CI; p-Value) |
---|---|---|---|---|
18–29 | 150 | 90/59 | 21 (14%) | 1 (–) |
30–39 | 260 | 133/128 | 42 (16%) | 1.15 (0.7–1.9; 0.67) |
40–49 | 325 | 177/147 | 43 (13%) | 0.94 (0.58–1.53; 0.88) |
50–59 | 297 | 156/142 | 34 (13%) | 0.82 (0.49–1.36; 0.45) |
60–69 | 272 | 150/123 | 34 (11%) | 0.89 (0.54–1.48; 0.65) |
70–79 | 154 | 49/107 | 24 (15.5%) | 1.11 (0.65–1.91; 0.75) |
BMI Category | ||||
Underweight | 32 | 26/6 | 5 | 1.12 (0.49–2.58; 0.79) |
Normal | 614 | 333/281 | 85 | 1 (–) |
Overweight | 493 | 228/265 | 60 | 0.87 (0.65–1.20; 0.42) |
Obese | 334 | 170/167 | 49 | 1.05 (0.76–1.46; 0.77) |
Smoking Category | ||||
Never smoked | 796 | 444/354 | 120 (15.1%) | 1 (–) |
Live with smoker | 439 | 180/260 | 58 (13.2%) | 0.89 (0.66–1.17; 0.40) |
Ex-smoker | 38 | 19/19 | 6 (15.7%) | 1.05 (0.49–2.22; 0.82) |
Current smoker | 201 | 114/86 | 15 (7.4%) | 0.50 (0.30–0.83; 0.004) |
Disease Categories | Case Numbers | Female/Male | p-Value (Chi2) | IgA Positive |
---|---|---|---|---|
Cardiac | 53 | 17/36 | 0.009058 | 7 (13.2%) |
Hypertension | 269 | 113/156 | 0.008748 | 36 (13.4%) |
Pulmonary | 35 | 17/18 | 0.8658 | 6 (17%) |
Liver | 36 | 17/19 | 0.7389 | 2 (5%) |
Kidney | 13 | 7/6 | 0.7815 | 2 (15%) |
Rheumatological | 199 | 121/78 | 0.002302 | 20 (10.1%) |
Autoimmune | 115 | 90/25 | 1.35 × 10−9 | 17 (14.7%) |
HIV | 6 | 1/5 | 0.1025 | 1 (16%) |
Cancer | 85 | 38/47 | 0.329 | 12 (14.1%) |
Haematological | 19 | 11/8 | 0.4913 | 1 (5%) |
Malnourished | 4 | 2/2 | 1 | 2 (50%) |
Diabetes (I + II) | 76 | 32/44 | 0.1687 | 9 (11.8%) |
Transplant | 7 | 3/4 | 0.7055 | 1 (14.3%) |
Psychiatric | 69 | 45/24 | 0.01529 | 7 (10.1%) |
Other | 0 | 0/0 | n/a | 0 (0%) |
CTQ >2 | 18 | 17/1 | 4.56 × 10−10 | 6 (33.3%) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Holuka, C.; Snoeck, C.J.; Mériaux, S.B.; Ollert, M.; Krüger, R.; Turner, J.D.; the CON-VINCE Consortium. Adverse Life Trajectories Are a Risk Factor for SARS-CoV-2 IgA Seropositivity. J. Clin. Med. 2021, 10, 2159. https://doi.org/10.3390/jcm10102159
Holuka C, Snoeck CJ, Mériaux SB, Ollert M, Krüger R, Turner JD, the CON-VINCE Consortium. Adverse Life Trajectories Are a Risk Factor for SARS-CoV-2 IgA Seropositivity. Journal of Clinical Medicine. 2021; 10(10):2159. https://doi.org/10.3390/jcm10102159
Chicago/Turabian StyleHoluka, Cyrielle, Chantal J. Snoeck, Sophie B. Mériaux, Markus Ollert, Rejko Krüger, Jonathan D. Turner, and the CON-VINCE Consortium. 2021. "Adverse Life Trajectories Are a Risk Factor for SARS-CoV-2 IgA Seropositivity" Journal of Clinical Medicine 10, no. 10: 2159. https://doi.org/10.3390/jcm10102159
APA StyleHoluka, C., Snoeck, C. J., Mériaux, S. B., Ollert, M., Krüger, R., Turner, J. D., & the CON-VINCE Consortium. (2021). Adverse Life Trajectories Are a Risk Factor for SARS-CoV-2 IgA Seropositivity. Journal of Clinical Medicine, 10(10), 2159. https://doi.org/10.3390/jcm10102159