Detection of Renal Injury Following Primary Coronary Intervention among ST-Segment Elevation Myocardial Infarction Patients: Doubling the Incidence Using Neutrophil Gelatinase-Associated Lipocalin as a Renal Biomarker
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Laboratory
2.3. Statistics
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Kellum, J.A.; Lameire, N.; Group KAGW. Diagnosis, evaluation, and management of acute kidney injury: A kdigo summary (part 1). Crit. Care 2013, 17, 204. [Google Scholar] [CrossRef] [Green Version]
- Endre, Z.H.; Pickering, J.W.; Walker, R.J. Clearance and beyond: The complementary roles of GFR measurement and injury biomarkers in acute kidney injury (AKI). Am. J. Physiol. Renal Physiol. 2011, 301, F697–F707. [Google Scholar] [CrossRef]
- Waikar, S.S.; Bonventre, J.V. Creatinine kinetics and the definition of acute kidney injury. J. Am. Soc. Nephrol. 2009, 20, 672–679. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murray, P.T.; Mehta, R.L.; Shaw, A.; Ronco, C.; Endre, Z.; Kellum, J.A.; Chawla, L.S.; Cruz, D.; Ince, C.; Okusa, M.D. Potential use of biomarkers in acute kidney injury: Report and summary of recommendations from the 10th Acute Dialysis Quality Initiative consensus conference. Kidney Int. 2014, 85, 513–521. [Google Scholar] [CrossRef] [Green Version]
- Koyner, J.L.; Parikh, C.R. Clinical utility of biomarkers of aki in cardiac surgery and critical illness. Clin. J. Am. Soc. Nephrol. 2013, 8, 1034–1042. [Google Scholar] [CrossRef] [Green Version]
- Haase, M.; Kellum, J.A.; Ronco, C. Subclinical AKI—An emerging syndrome with important consequences. Nat. Rev. Nephrol. 2012, 8, 735–739. [Google Scholar] [CrossRef]
- Haase-Fielitz, A.; Haase, M.; Devarajan, P. Neutrophil gelatinase-associated lipocalin as a biomarker of acute kidney injury: A critical evaluation of current status. Ann. Clin. Biochem. 2014, 51, 335–351. [Google Scholar] [CrossRef] [Green Version]
- Helanova, K.; Spinar, J.; Parenica, J. Diagnostic and prognostic utility of neutrophil gelatinase-associated lipocalin (ngal) in patients with cardiovascular diseases--review. Kidney Blood Press. Res. 2014, 39, 623–629. [Google Scholar] [CrossRef]
- Khatami, M.R.; Sabbagh, M.R.; Nikravan, N.; Khazaeipour, Z.; Boroumand, M.A.; Sadeghian, S.; Davoudi, B. The role of neutrophil-gelatinase-associated lipocalin in early diagnosis of contrast nephropathy. Indian J. Nephrol. 2015, 25, 292–296. [Google Scholar] [CrossRef] [PubMed]
- Shang, W.; Wang, Z. The update of ngal in acute kidney injury. Curr. Protein Pept. Sci. 2017, 18, 1211–1217. [Google Scholar] [CrossRef] [PubMed]
- Haase, M.; Bellomo, R.; Devarajan, P.; Schlattmann, P.; Haase-Fielitz, A. Group NM-aI: Accuracy of neutrophil gelatinase-associated lipocalin (ngal) in diagnosis and prognosis in acute kidney injury: A systematic review and meta-analysis. Am. J. Kidney Dis. 2009, 54, 1012–1024. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mishra, J.; Dent, C.; Tarabishi, R.; Mitsnefes, M.M.; Ma, Q.; Kelly, C.; Ruff, S.M.; Zahedi, K.; Shao, M.; Bean, J.; et al. Neutrophil gelatinase-associated lipocalin (NGAL) as a biomarker for acute renal injury after cardiac surgery. Lancet 2005, 365, 1231–1238. [Google Scholar] [CrossRef]
- Ronco, C.; Haapio, M.; House, A.A.; Anavekar, N.; Bellomo, R. Cardiorenal syndrome. J. Am. Coll. Cardiol. 2008, 52, 1527–1539. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Gara, P.T.; Kushner, F.G.; Ascheim, D.D.; Casey, D.E.; Chung, M.K., Jr.; de Lemos, J.A.; Ettinger, S.M.; Fang, J.C.; Fesmire, F.M.; Franklin, B.A.; et al. American College of Cardiology, F., American Heart Association Task Force on Practice G, American College of Emergency P, Society for Cardiovascular A, Interventions: 2013 accf/aha guideline for the management of st-elevation myocardial infarction: Executive summary: A report of the american college of cardiology foundation/american heart association task force on practice guidelines: Developed in collaboration with the american college of emergency physicians and society for cardiovascular angiography and interventions. Catheter. Cardiovasc. Interv. Off. J. Soc. Card. Angiogr. Interv. 2013, 82, E1–E27. [Google Scholar]
- De Geus, H.R.; Ronco, C.; Haase, M.; Jacob, L.; Lewington, A.; Vincent, J.L. The cardiac surgery-associated neutrophil gelatinase-associated lipocalin (csa-ngal) score: A potential tool to monitor acute tubular damage. J. Thorac. Cardiovasc. Surg. 2016, 151, 1476–1481. [Google Scholar] [CrossRef] [Green Version]
- Levey, A.S.; Stevens, L.A.; Schmid, C.H.; Zhang, Y.L.; Castro, A.F., 3rd; Feldman, H.I.; Kusek, J.W.; Eggers, P.; Van Lente, F.; Greene, T.; et al. A new equation to estimate glomerular filtration rate. Ann. Intern. Med. 2009, 150, 604–612. [Google Scholar] [CrossRef] [PubMed]
- Mehta, R.L.; Kellum, J.A.; Shah, S.V.; Molitoris, B.A.; Ronco, C.; Warnock, D.G.; Levin, A. Acute Kidney Injury N: Acute kidney injury network: Report of an initiative to improve outcomes in acute kidney injury. Crit. Care 2007, 11, R31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, S. Retooling the creatinine clearance equation to estimate kinetic GFR when the plasma creatinine is changing acutely. J. Am. Soc. Nephrol. 2013, 24, 877–888. [Google Scholar] [CrossRef] [Green Version]
- Jufar, A.H.; Lankadeva, Y.R.; May, C.N.; Cochrane, A.D.; Bellomo, R.; Evans, R.G. Renal functional reserve: From physiological phenomenon to clinical biomarker and beyond. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2020, 319, 690–702. [Google Scholar] [CrossRef] [PubMed]
- Dent, C.L.; Ma, Q.; Dastrala, S.; Bennett, M.; Mitsnefes, M.M.; Barasch, J.; Devarajan, P. Plasma neutrophil gelatinase-associated lipocalin predicts acute kidney injury, morbidity and mortality after pediatric cardiac surgery: A prospective uncontrolled cohort study. Crit. Care 2007, 11, R127. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bennett, M.; Dent, C.L.; Ma, Q.; Dastrala, S.; Grenier, F.; Workman, R.; Syed, H.; Ali, S.; Barasch, J.; Devarajan, P. Urine ngal predicts severity of acute kidney injury after cardiac surgery: A prospective study. Clin. J. Am. Soc. Nephrol. 2008, 3, 665–673. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haase, M.; Devarajan, P.; Haase-Fielitz, A.; Bellomo, R.; Cruz, D.N.; Wagener, G.; Krawczeski, C.D.; Koyner, J.L.; Murray, P.; Zappitelli, M.; et al. The outcome of neutrophil gelatinase-associated lipocalin-positive subclinical acute kidney injury: A multicenter pooled analysis of prospective studies. J. Am. Coll. Cardiol. 2011, 57, 1752–1761. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shapiro, N.I.; Trzeciak, S.; Hollander, J.E.; Birkhahn, R.; Otero, R.; Osborn, T.M.; Moretti, E.; Nguyen, H.B.; Gunnerson, K.; Milzman, D.; et al. The Diagnostic Accuracy of Plasma Neutrophil Gelatinase-Associated Lipocalin in the Prediction of Acute Kidney Injury in Emergency Department Patients With Suspected Sepsis. Ann. Emerg. Med. 2010, 56, 52–59. [Google Scholar] [CrossRef]
- Goldfarb, M.; Abbassi z Rosen, S.; Shina, A.; Brezis, M.; Hyman, S.N. Chronic heart failure predisposes to hypoxic outer medullary tubular injury: Studies in rats. Kidney Int. 2001, 60, 607–613. [Google Scholar] [CrossRef] [Green Version]
- Lindberg, S.; Jensen, J.S.; Hoffmann, S.; Iversen, A.Z.; Pedersen, S.H.; Biering-Sorensen, T.; Galatius, S.; Flyvbjerg, A.; Mogelvang, R.; Magnusson, N.E. Plasma neutrophil gelatinase-associated lipocalin reflects both inflammation and kidney function in patients with myocardial infarction. Cardiorenal. Med. 2016, 6, 180–190. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Helanova, K.; Littnerova, S.; Kubena, P.; Ganovska, E.; Pavlusova, M.; Kubkova, L.; Jarkovsky, J.; Pavkova Goldbergova, M.; Lipkova, J.; Gottwaldova, J.; et al. Prognostic impact of neutrophil gelatinase-associated lipocalin and b-type natriuretic in patients with st-elevation myocardial infarction treated by primary pci: A prospective observational cohort study. BMJ Open 2015, 5, e006872. [Google Scholar] [CrossRef] [PubMed]
- Mehran, R.; Aymong, E.D.; Nikolsky, E.; Lasic, Z.; Iakovou, I.; Fahy, M.; Mintz, G.S.; Lansky, A.J.; Moses, J.W.; Stone, G.W.; et al. A simple risk score for prediction of contrast-induced nephropathy after percutaneous coronary intervention: Development and initial validation. J. Am. Coll. Cardiol. 2004, 44, 1393–1399. [Google Scholar] [PubMed] [Green Version]
- Darawshi, S.; Yaseen, H.; Gorelik, Y.; Faor, C.; Abassi, Z.; Heyman, S.N.; Khamaisi, M. Biomarker Evidence for Distal Tubular Damage but Cortical Sparing in Hospitalized Diabetic Patients with Acute Kidney Injury (AKI) While on SGLT2 Inhibitors. Renal Fail. 2020, 42, 836–844. [Google Scholar] [CrossRef] [PubMed]
Variable | No AKI | Subclinical AKI | Clinical AKI | p-Value |
---|---|---|---|---|
n = 136 | n = 45 | n = 42 | ||
Age (years) | 61 ± 12 | 69 ± 13 | 72 ± 11 | <0.001 |
Men | 113 (83%) | 35 (78%) | 33 (79%) | 0.511 |
Admission systolic blood pressure (mm/Hg) | 135 ± 26 | 130 ± 27 | 139 ± 33 | 0.233 |
Admission diastolic blood pressure (mm/Hg) | 83 ± 15 | 82 ± 16 | 85 ± 15 | 0.412 |
Admission pulse | 80 ± 18 | 78 ± 17 | 77 ± 15 | 0.561 |
Diabetes mellitus | 43 (32%) | 11 (24%) | 15 (37%) | 0.467 |
Dyslipidemia | 80 (59%) | 26 (57%) | 28 (33%) | 0.728 |
Hypertension | 62 (46%) | 28 (56%) | 33 (79 %) | 0.004 |
Chronic kidney disease (any) | 5 (4%) | 7 (15%) | 25 (59%) | <0.001 |
Chronic kidney disease stage 3b, 4, and 5 | 1 (1%) | 4 (9%) | 9 (21%) | <0.001 |
Smoking history | 67 (49%) | 20 (44%) | 11 (25%) | 0.104 |
Family history of CAD | 35 (26%) | 5 (10%) | 7 (17%) | 0.258 |
Prior myocardial infarction | 27 (18%) | 13 (22%) | 11 (25%) | 0.106 |
No. of narrowed coronary arteries: | 0.01 | |||
1 | 54 (40%) | 20 (42%) | 16 (37%) | |
2 | 46 (34%) | 14 (31%) | 7 (17%) | |
3 | 36 (27%) | 11 (24%) | 19 (46%) | |
Symptom duration (minutes) | 310 ± 285 | 524 ± 457 | 653 ± 367 | <0.001 |
Door to balloon time (minutes) | 45 ± 25 | 57 ± 19 | 59 ± 27 | 0.318 |
Baseline C-reactive protein (mg/dL) | 12 ± 8 | 15 ± 10 | 25 ± 12 | <0.001 |
Baseline eGFR mL/min/1.73 m2 | 91 ± 28 | 84 ± 25 | 73 ± 15 | <0.001 |
Baseline serum creatinine, mg/dL | 0.84 ± 0.15 | 0.88 ± 0.19 | 0.98 ± 0.12 | <0.001 |
Peak serum creatinine, mg/dL | 0.88 ± 0.16 | 1.07 ± 0.32 | 1.46 ± 0.23 | <0.001 |
Serum creatinine change, mg/dL | 0.05 ± 0.04 | 0.15 ± 0.12 | 0.47 ± 0.35 | <0.001 |
Contrast volume, mL | 147 ± 48 | 134 ± 47 | 139 ± 41 | 0.256 |
Variable | No AKI | Subclinical AKI | p-Value | Clinical AKI | p-Value * |
---|---|---|---|---|---|
n = 136 | n = 45 | n = 42 | |||
Length of hospital stay, days | 4.1 ± 1.2 | 5.2 ± 1.1 | 0.01 | 4.8 ± 2.9 | 0.006 |
Left ventricle EF | 47 ± 10 | 44 ± 10 | 0.06 | 41 ± 8 | 0.007 |
Left ventricular EF ≤ 45 | 32 (23%) | 15 (33%) | 0.01 | 23 (54%) | 0.01 |
In-hospital adverse outcomes | 66 (48%) | 33 (73%) | 0.005 | 32 (75%) | 0.001 |
Peak C-reactive protein (mg/dL) | 26 ± 28 | 45 ± 23 | 0.01 | 88 ± 75 | 0.001 |
Peak Troponin (×103) ng/dL, Median, IQR | 20 (50) | 39 (71) | 0.001 | 101 (208) | <0.001 |
Model 1 | Model 2 | |||||
---|---|---|---|---|---|---|
Odds Ratio | 95% CI | p-Value | Odds Ratio | 95% CI | p-Value | |
Age (years) | 1.02 | 0.96–1.07 | 0.605 | 1.01 | 0.96–1.07 | 0.605 |
Peak troponin (ng/dL) | 1.000 | 0.99–1.00 | 0.489 | 1.000 | 0.99–1.00 | 0.473 |
Left ventricle EF | 0.73 | 0.66–0.82 | <0.001 | 0.74 | 0.66–0.81 | 0.001 |
Peak CRP (mg/L) | 1.01 | 1.00–1.03 | 0.02 | 1.01 | 1.00–1.03 | 0.03 |
Any AKI (clinical and subclinical) | 3.83 | 1.41–11.48 | 0.01 | |||
Subclinical AKI | 3.71 | 1.30–10.62 | 0.02 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lupu, L.; Rozenfeld, K.-L.; Zahler, D.; Morgan, S.; Merdler, I.; Shtark, M.; Goldiner, I.; Banai, S.; Shacham, Y. Detection of Renal Injury Following Primary Coronary Intervention among ST-Segment Elevation Myocardial Infarction Patients: Doubling the Incidence Using Neutrophil Gelatinase-Associated Lipocalin as a Renal Biomarker. J. Clin. Med. 2021, 10, 2120. https://doi.org/10.3390/jcm10102120
Lupu L, Rozenfeld K-L, Zahler D, Morgan S, Merdler I, Shtark M, Goldiner I, Banai S, Shacham Y. Detection of Renal Injury Following Primary Coronary Intervention among ST-Segment Elevation Myocardial Infarction Patients: Doubling the Incidence Using Neutrophil Gelatinase-Associated Lipocalin as a Renal Biomarker. Journal of Clinical Medicine. 2021; 10(10):2120. https://doi.org/10.3390/jcm10102120
Chicago/Turabian StyleLupu, Lior, Keren-Lee Rozenfeld, David Zahler, Samuel Morgan, Ilan Merdler, Moshe Shtark, Ilana Goldiner, Shmuel Banai, and Yacov Shacham. 2021. "Detection of Renal Injury Following Primary Coronary Intervention among ST-Segment Elevation Myocardial Infarction Patients: Doubling the Incidence Using Neutrophil Gelatinase-Associated Lipocalin as a Renal Biomarker" Journal of Clinical Medicine 10, no. 10: 2120. https://doi.org/10.3390/jcm10102120
APA StyleLupu, L., Rozenfeld, K.-L., Zahler, D., Morgan, S., Merdler, I., Shtark, M., Goldiner, I., Banai, S., & Shacham, Y. (2021). Detection of Renal Injury Following Primary Coronary Intervention among ST-Segment Elevation Myocardial Infarction Patients: Doubling the Incidence Using Neutrophil Gelatinase-Associated Lipocalin as a Renal Biomarker. Journal of Clinical Medicine, 10(10), 2120. https://doi.org/10.3390/jcm10102120