Antidiabetic and Other Therapies Used in Subjects with Diabetes and Chronic Kidney Disease in a Hospital-Based Clinic Population in Greece
Abstract
:1. Introduction
2. Methods and Data Analysis
Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Adler, A.I.; Stevens, R.J.; Manley, S.E.; Bilous, R.W.; Cull, C.A.; Holman, R.R.; UKPDS Group. Development and progression of nephropathy in type 2 diabetes: The United Kingdom Prospective Diabetes Study (UKPDS 64). Kidney Int. 2003, 63, 225–232. [Google Scholar] [CrossRef] [Green Version]
- Migdalis, I.N.; Papanas, N.; Raptis, A.E.; Ioannidis, I.M.; Sotiropoulos, A.E.; Dimitriadis, G.D. The prevalence of diabetic chronic kidney disease in adult Greek subjects with type 2 diabetes mellitus: A series from hospital-based diabetes clinics. Diabetes Res. Clin. Pr. 2020, 166, 108243. [Google Scholar] [CrossRef]
- Cheung, A.K.; Chang, T.I.; Cushman, W.C.; Furth, S.L.; Ix, J.H.; Pecoits-Filho, R.; Perkovic, V.; Sarnak, M.J.; Tobe, S.W.; Tomson, C.R.; et al. Blood pressure in chronic kidney disease: Conclusions from a kidney disease: Improving Global Outcomes (KDIGO) Controversies Conference. Kidney Int. 2019, 95, 1027–1036. [Google Scholar] [CrossRef] [PubMed]
- Song, K.; Jeong, J.; Kim, M.K.; Kwon, H.; Baek, K.; Ko, S.; Ahn, Y. Discordance in risk factors for the progression of diabetic retinopathy and diabetic nephropathy in patients with type 2 diabetes mellitus. J. Diabetes Investig. 2018, 10, 745–752. [Google Scholar] [CrossRef]
- Levey, A.S.; Bosch, J.P.; Lewis, J.B.; Greene, T.; Rogers, N.; Roth, D.R. A more accurate method to estimate glomerular filtration rate from serum creatinine: A new prediction equation. Ann. Intern. Med. 1999, 130, 461–470. [Google Scholar] [CrossRef] [PubMed]
- Eknoyan, G.; Lameire, N.; Eckardt, K.; Kasiske, B.; Wheeler, D.; Levin, A.; Stevens, P.E.; Bilous, R.W.; Lamb, E.J.; Coresh, J.; et al. KDIGO 2012 clinical practice guideline for the evaluation and management of chronic kidney disease. Kidney Int. 2013, 3, 5–14. [Google Scholar]
- Agrawal, V.; Giri, C.; Solomon, R.J. The effects of glucose-lowering therapies on diabetic kidney disease. Curr. Diabetes Rev. 2015, 11, 191–200. [Google Scholar] [CrossRef] [Green Version]
- Tonelli, M.A.; Wanner, C.; Cass, A.; Garg, A.X.; Holdaas, H.; Jardine, A.G.; Jiang, L.; Kronenberg, F.; Parekh, R.S.; Shoji, T.; et al. Kidney disease: Improving global outcomes (KDIGO) lipid work group. KDIGO clinical practice guideline for lipid management in chronic kidney disease. Kidney Int. Suppl. 2013, 3, 1–315. [Google Scholar]
- Anderson, T.J.; Grégoire, J.; Pearson, G.J.; Barry, A.R.; Couture, P.; Dawes, M.; Francis, G.A.; Genest, J.; Grover, S.; Gupta, M.; et al. 2016 Canadian cardiovascular society guidelines for the management of dyslipidemia for the prevention of cardiovascular disease in the adult. Can. J. Cardiol. 2016, 32, 1263–1282. [Google Scholar] [CrossRef] [PubMed]
- Levin, A.; Stevens, P.E.; Bilous, R.W.; Coresh, J.; De Francisco, A.L.M.; De Jong, P.E.; Griffith, K.E.; Hemmelgarn, B.R.; Iseki, K.; Lamb, E.J.; et al. Kidney disease: Improving global outcomes (KDIGO) CKD work group. KDIGO 2012 clinical practice guideline for the evaluation and management of chronic kidney disease. Kidney Int. Suppl. 2013, 3, 1–150. [Google Scholar] [CrossRef] [Green Version]
- Ricardo, A.C.; Anderson, C.A.; Yang, W.; Zhang, X.; Fischer, M.J.; Dember, L.M.; Fink, J.C.; Frydrych, A.; Jensvold, N.G.; Lustigova, E.; et al. Healthy lifestyle and risk of kidney disease progression, atherosclerotic events, and death in CKD: Findings from the Chronic Renal Insufficiency Cohort (CRIC) Study. Am. J. Kidney Dis. 2015, 65, 412–424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Turner, R.; Holman, R.R.; Cull, C.A.; Stratton, I.M.; Matthews, E.; Frighi, V.; Manley, S.; Neil, A.; McElroy, K.; Wright, D.H.; et al. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet 1998, 352, 837–853. [Google Scholar] [CrossRef]
- Shurraw, S.; Hemmelgarn, B.; Lin, M.; Majumdar, S.R.; Klarenbach, S.; Manns, B.; Bello, A.; James, M.; Turin, T.C.; Tonelli, M.; et al. Association between glycemic control and adverse outcomes in people with diabetes mellitus and chronic kidney disease. Arch. Intern. Med. 2011, 171, 1920–1927. [Google Scholar] [CrossRef] [Green Version]
- Inker, L.A.; Astor, B.C.; Fox, C.H.; Isakova, T.; Lash, J.P.; Peralta, C.A.; Tamura, M.K.; Feldman, H.I. KDOQI US Commentary on the 2012 KDIGO clinical practice guideline for the evaluation and management of CKD. Am. J. Kidney Dis. 2014, 63, 713–735. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guideline Development Group. Clinical Practice Guideline on management of patients with diabetes and chronic kidney disease stage 3b or higher (eGFR <45 mL/min). Nephrol. Dial. Transplant. 2015, 30, 1–142. [Google Scholar] [CrossRef] [Green Version]
- American Diabetes Association. Introduction: Standards of medical care in diabetes—2021. Diabetes Care 2021, 44, S1–S2. [Google Scholar] [CrossRef]
- Duckworth, W.; Abraira, C.; Moritz, T.; Reda, D.; Emanuele, N.; Reaven, P.D.; Zieve, F.J.; Marks, J.; Davis, S.N.; Hayward, R.; et al. Glucose control and vascular complications in veterans with type 2 Diabetes. N. Engl. J. Med. 2009, 360, 129–139. [Google Scholar] [CrossRef] [Green Version]
- Patel, A.; MacMahon, S.; Chalmers, J.; Neal, B.; Billot, L.; Joshi, R.; Woodward, M.; Marre, M.; Travert, F.; Cooper, M.; et al. Intensive blood glucose control and vascular outcomes in patients with type 2 Diabetes. N. Engl. J. Med. 2008, 358, 2560–2572. [Google Scholar] [CrossRef] [Green Version]
- Ismail-Beigi, F.; Craven, T.; Banerji, M.A.; Basile, J.; Calles, J.; Cohen, R.M.; Cuddihy, R.; Cushman, W.C.; Genuth, S.; Grimm, R.H.; et al. Effect of intensive treatment of hyperglycaemia on microvascular outcomes in type 2 diabetes: An analysis of the ACCORD randomised trial. Lancet 2010, 376, 419–430. [Google Scholar] [CrossRef] [Green Version]
- National Kidney Foundation. KDOQI clinical practice guideline for diabetes and CKD: 2012 Update. Am. J. Kidney Dis. 2012, 60, 850–886. [Google Scholar] [CrossRef] [PubMed]
- Biesenbach, G.; Raml, A.; Schmekal, B.; Eichbauer-Sturm, G. Decreased insulin requirement in relation to GFR in nephropathic Type 1 and insulin-treated Type 2 diabetic patients. Diabet. Med. 2003, 20, 642–645. [Google Scholar] [CrossRef]
- Snyder, R.W.; Berns, J.S. Reviews: Use of insulin and oral hypoglycemic medications in patients with diabetes mellitus and advanced kidney disease. Semin. Dial. 2004, 17, 365–370. [Google Scholar] [CrossRef] [PubMed]
- Horton, E.S.; Johnson, C.; Lebovitz, H.E. Carbohydrate metabolism in uremia. Ann. Intern. Med. 1968, 68, 63–74. [Google Scholar] [CrossRef] [PubMed]
- Moen, M.F.; Zhan, M.; Hsu, V.D.; Walker, L.D.; Einhorn, L.M.; Seliger, S.L.; Fink, J.C. Frequency of hypoglycemia and its significance in chronic kidney disease. Clin. J. Am. Soc. Nephrol. 2009, 4, 1121–1127. [Google Scholar] [CrossRef] [PubMed]
- Yurgin, N.; Secnik, K.; Lage, M.J. Antidiabetic prescriptions and glycemic control in German patients with type 2 diabetes mellitus: A retrospective database study. Clin. Ther. 2007, 29, 316–325. [Google Scholar] [CrossRef]
- Casagrande, S.S.; Fradkin, J.E.; Saydah, S.H.; Rust, K.F.; Cowie, C.C. The prevalence of meeting A1C, blood pressure, and LDL goals among people with diabetes, 1988-2010. Diabetes Care 2013, 36, 2271–2279. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wilke, T.; Groth, A.; Fuchs, A.; Seitz, L.; Kienhöfer, J.; Lundershausen, R.; Maywald, U. Real life treatment of diabetes mellitus type 2 patients: An analysis based on a large sample of 394,828 German patients. Diabetes Res. Clin. Pract. 2014, 106, 275–285. [Google Scholar] [CrossRef]
- Liatis, S.; Papaoikonomou, S.; Ganotopoulou, A.; Papazafiropoulou, A.; Dinos, C.; Michail, M.; Xilomenos, A.; Melidonis, A.; Pappas, S. Management of type 2 diabetes and its prescription drug cost before and during the economic crisis in Greece: An observational study. BMC Endocr. Disord. 2014, 14, 23. [Google Scholar] [CrossRef] [Green Version]
- Pagkalos, E.; Thanopoulou, A.; Sampanis, C.; Bousboulas, S.; Melidonis, A.; Tentolouris, N.; Alexandrides, T.; Migdalis, I.; Karamousouli, E.; Papanas, N. The real-life effectiveness and care patterns of type 2 diabetes management in Greece. Exp. Clin. Endocrinol. Diabetes 2017, 126, 53–60. [Google Scholar] [CrossRef]
- Papanas, N.; Elisaf, M.; Kotsa, K.; Melidonis, A.; Bousboulas, S.; Bargiota, A.; Pagkalos, E.; Doupis, J.; Ioannidis, I.; Avramidis, I.; et al. Adherence to the national guidelines for follow-up protocol in subjects with type 2 diabetes Mellitus in Greece: The GLANCE study. Diabetes Ther. 2020, 11, 2887–2908. [Google Scholar] [CrossRef]
- Liatis, S.; AGREEMENT Investigators; Iraklianou, S.; Kazakos, K.; Mastorakos, G.; Milios, K.; Mouslech, Z.; Noutsou, M.; Pagkalos, E.; Sampanis, C.; et al. A Greek registry of current type 2 diabetes management, aiming to determine core clinical approaches, patterns and strategies. BMC Endocr. Disord. 2019, 19, 39. [Google Scholar] [CrossRef]
- Grandfils, N.; Detournay, B.; Attali, C.; Joly, D.; Simon, D.; Vergès, B.; Toussi, M.; Briand, Y.; Delaitre, O. Glucose lowering therapeutic strategies for type 2 diabetic patients with chronic kidney disease in primary care setting in France: A cross-sectional study. Int. J. Endocrinol. 2013, 2013, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Elnaem, M.H.; Mansour, N.O.; Nahas, A.F.; A Baraka, M.; Elkalmi, R.; Cheema, E. Renal outcomes associated with the use of non-insulin antidiabetic pharmacotherapy: A review of current evidence and recommendations. Int. J. Gen. Med. 2020, 13, 1395–1409. [Google Scholar] [CrossRef] [PubMed]
- Ruzafa, J.C.; Paczkowski, R.; Boye, K.S.; Di Tanna, G.L.; Sheetz, M.J.; Donaldson, R.; Breyer, M.D.; Neasham, D.; Voelker, J.R. Estimated glomerular filtration rate progression in UK primary care patients with type 2 diabetes and diabetic kidney disease: A retrospective cohort study. Int. J. Clin. Pract. 2015, 69, 871–882. [Google Scholar] [CrossRef] [PubMed]
- Kovesdy, C.P.; Isaman, D.; Petruski-Ivleva, N.; Fried, L.; Blankenburg, M.; Gay, A.; Velentgas, P.; Folkerts, K. Chronic kidney disease progression among patients with type 2 diabetes identified in US administrative claims: A population cohort study. Clin. Kidney J. 2020. [Google Scholar] [CrossRef]
- Virally, M.; Blicklé, J.-F.; Girard, J.P.; Halimi, S.; Simon, D.R.; Guillausseau, P.-J. Type 2 diabetes mellitus: Epidemiology, pathophysiology, unmet needs and therapeutical perspectives. Diabetes Metab. 2007, 33, 231–244. [Google Scholar] [CrossRef]
- Donath, M.Y.; Shoelson, S.E. Type 2 diabetes as an inflammatory disease. Nat. Rev. Immunol. 2011, 11, 98–107. [Google Scholar] [CrossRef] [PubMed]
- Henquin, J.-C. Triggering and amplifying pathways of regulation of insulin secretion by glucose. Diabetes 2000, 49, 1751–1760. [Google Scholar] [CrossRef] [Green Version]
- Nogueira, C.; Souto, S.B.; Vinha, E.; Carvalho-Braga, D.; Carvalho, D. Oral glucose lowering drugs in type 2 diabetic patients with chronic kidney disease. Hormones 2013, 12, 483–494. [Google Scholar] [CrossRef] [Green Version]
- Bensellam, M.; Jonas, J.-C.; Laybutt, D.R. Mechanisms of β-cell dedifferentiation in diabetes: Recent findings and future research directions. J. Endocrinol. 2018, 236, R109–R143. [Google Scholar] [CrossRef] [Green Version]
- Ekström, N.; Schiöler, L.; Svensson, A.-M.; Eeg-Olofsson, K.; Jonasson, J.M.; Zethelius, B.; Cederholm, J.; Eliasson, B.; Gudbjörnsdottir, S. Effectiveness and safety of metformin in 51 675 patients with type 2 diabetes and different levels of renal function: A cohort study from the Swedish National Diabetes Register. BMJ Open 2012, 2, e001076. [Google Scholar] [CrossRef]
- Lalau, J.-D.; Arnouts, P.; Sharif, A.; De Broe, M.E. Metformin and other antidiabetic agents in renal failure patients. Kidney Int. 2015, 87, 308–322. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salpeter, S.R.; Greyber, E.; A Pasternak, G.; E Salpeter, E. Risk of fatal and nonfatal lactic acidosis with metformin use in type 2 diabetes mellitus. Cochrane Database Syst. Rev. 2010, 2010, CD002967. [Google Scholar] [CrossRef]
- Bakris, G.L. Recognition, pathogenesis, and treatment of different stages of nephropathy in patients with type 2 diabetes mellitus. Mayo Clin. Proc. 2011, 86, 444–456. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Budde, K.; Neumayer, H.-H.; Fritsche, L.; Sulowicz, W.; Stompôr, T.; Eckland, D. The pharmacokinetics of pioglitazone in patients with impaired renal function. Br. J. Clin. Pharmacol. 2003, 55, 368–374. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Y.-H.; Tarng, D.-C.; Chen, H.-S. Renal Outcomes of pioglitazone compared with acarbose in diabetic patients: A randomized controlled study. PLoS ONE 2016, 11, e0165750. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, Y.-G.; Byun, J.; Yoon, D.; Jeon, J.Y.; Han, S.J.; Kim, D.J.; Lee, K.-W.; Park, R.W.; Kim, H.J. Renal protective effect of DPP-4 inhibitors in type 2 diabetes mellitus patients: A cohort study. J. Diabetes Res. 2016, 2016, 1–9. [Google Scholar] [CrossRef]
- Mann, J.F.; Ørsted, D.D.; Brown-Frandsen, K.; Marso, S.P.; Poulter, N.R.; Rasmussen, S.; Tornøe, K.; Zinman, B.; Buse, J.B. Liraglutide and renal outcomes in type 2 diabetes. N. Engl. J. Med. 2017, 377, 839–848. [Google Scholar] [CrossRef] [Green Version]
- Heerspink, H.J.L.; Karasik, A.; Thuresson, M.; Melzer-Cohen, C.; Chodick, G.; Khunti, K.; Wilding, J.P.H.; Rodriguez, L.A.G.; Cea-Soriano, L.; Kohsaka, S.; et al. Kidney outcomes associated with use of SGLT2 inhibitors in real-world clinical practice (CVD-REAL 3): A multinational observational cohort study. Lancet Diabetes Endocrinol. 2020, 8, 27–35. [Google Scholar] [CrossRef]
- Perkovic, V.; Jardine, M.J.; Neal, B.; Bompoint, S.; Heerspink, H.J.; Charytan, D.M.; Edwards, R.; Agarwal, R.; Bakris, G.; Bull, S.; et al. Canagliflozin and renal outcomes in type 2 diabetes and nephropathy. N. Engl. J. Med. 2019, 380, 2295–2306. [Google Scholar] [CrossRef] [Green Version]
- Zinman, B.; Wanner, C.; Lachin, J.M.; Fitchett, D.H.; Bluhmki, E.; Hantel, S.; Mattheus, M.; Devins, T.; Johansen, O.E.; Woerle, H.J.; et al. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N. Engl. J. Med. 2015, 373, 2117–2128. [Google Scholar] [CrossRef]
- Neal, B.; Perkovic, V.; Mahaffey, K.W.; De Zeeuw, D.; Fulcher, G.; Erondu, N.; Shaw, W.; Law, G.; Desai, M.; Matthews, D.R. Canagliflozin and cardiovascular and renal events in type 2 diabetes. N. Engl. J. Med. 2017, 377, 644–657. [Google Scholar] [CrossRef]
- Fioretto, P.; Zambon, A.; Rossato, M.; Busetto, L.; Vettor, R. SGLT2 Inhibitors and the diabetic kidney. Diabetes Care 2016, 39, S165–S171. [Google Scholar] [CrossRef] [Green Version]
- Sarafidis, P.; Ferro, C.J.; Morales, E.; Ortiz, A.; Malyszko, J.; Hojs, R.; Khazim, K.; Ekart, R.; Valdivielso, J.; Fouque, D.; et al. SGLT-2 inhibitors and GLP-1 receptor agonists for nephroprotection and cardioprotection in patients with diabetes mellitus and chronic kidney disease. A consensus statement by the EURECA-m and the DIABESITY working groups of the ERA-EDTA. Nephrol. Dial. Transplant. 2019, 34, 208–230. [Google Scholar] [CrossRef] [PubMed]
- Cupisti, A.; Giannese, D.; Moriconi, D.; D’Alessandro, C.; Torreggiani, M.; Piccoli, G.B. Nephroprotection by SGLT2i in CKD patients: May It be modulated by low-protein plant-based Diets? Front. Med. 2020, 7. [Google Scholar] [CrossRef] [PubMed]
- Tschöpe, D.; Hanefeld, M.; Meier, J.J.; Gitt, A.K.; Halle, M.; Bramlage, P.; Schumm-Draeger, P.-M. The role of co-morbidity in the selection of antidiabetic pharmacotherapy in type-2 diabetes. Cardiovasc. Diabetol. 2013, 12, 62. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Umanath, K.; Lewis, J.B. Update on diabetic nephropathy: Core Curriculum 2018. Am. J. Kidney Dis. 2018, 71, 884–895. [Google Scholar] [CrossRef] [PubMed]
- James, P.A.; Oparil, S.; Carter, B.L.; Cushman, W.C.; Dennison-Himmelfarb, C.; Handler, J.; Lackland, D.T.; Lefevre, M.L.; MacKenzie, T.D.; Ogedegbe, O.; et al. 2014 Evidence-based guideline for the management of high blood pressure in adults. JAMA 2014, 311, 507–520. [Google Scholar] [CrossRef] [Green Version]
- Verma, A.; Vyas, S.; Agarwal, A.; Abbas, S.; Agarwal, D.P.; Kumar, R. Diabetic kidney disease and hypertension: A true love story. J. Clin. Diagn. Res. 2016, 10, OC11–OC13. [Google Scholar] [CrossRef]
- Wu, B.; Bell, K.; Stanford, A.; Kern, D.M.; Tunceli, O.; Vupputuri, S.; Kalsekar, I.; Willey, V. Understanding CKD among patients with T2DM: Prevalence, temporal trends, and treatment patterns—NHANES 2007–2012. BMJ Open Diabetes Res. Care 2016, 4, e000154. [Google Scholar] [CrossRef] [Green Version]
- Hu, F.; Zhang, T. Study on risk factors of diabetic nephropathy in obese patients with type 2 diabetes mellitus. Int. J. Gen. Med. 2020, ume 13, 351–360. [Google Scholar] [CrossRef]
- Mancia, G.; De Backer, G.; Dominiczak, A.; Cifkova, R.; Fagard, R.; Germano, G.; Grassi, G.; Heagerty, A.M.; Kjeldsen, S.E.; Laurent, S.; et al. 2007 ESH-ESC practice guidelines for the management of arterial hypertension. J. Hypertens. 2007, 25, 1751–1762. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Whelton, P.K.; Carey, R.M.; Aronow, W.S.; Casey, D.E.; Collins, K.J.; Himmelfarb, C.D.; DePalma, S.M.; Gidding, S.; Jamerson, K.A.; Jones, D.W.; et al. 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA Guideline for the prevention, detection, evaluation, and management of high blood pressure in adults. J. Am. Coll. Cardiol. 2018, 71, e127–e248. [Google Scholar] [CrossRef]
- Cushman, W.C.; Evans, G.W.; Byington, R.P.; Goff, D.C.; Grimm, R.H.; A Cutler, J.; Simons-Morton, D.G.; Basile, J.N.; A Corson, M.; Probstfield, J.L.; et al. Effects of intensive blood-pressure control in type 2 diabetes mellitus. N. Engl. J. Med. 2010, 362, 1575–1585. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.-C.; Tseng, C.-H. Dyslipidemia, kidney disease, and cardiovascular disease in diabetic patients. Rev. Diabet. Stud. 2013, 10, 88–100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shepherd, J.; Kastelein, J.J.; Bittner, V.; Deedwania, P.; Breazna, A.; Dobson, S.; Wilson, D.J.; Zuckerman, A.; Wenger, N.K. Effect of intensive lipid lowering with atorvastatin on renal function in patients with coronary heart disease: The treating to new targets (TNT) study. Clin. J. Am. Soc. Nephrol. 2007, 2, 1131–1139. [Google Scholar] [CrossRef]
- Colhoun, H.M.; Betteridge, D.J.; Durrington, P.N.; A Hitman, G.; Neil, H.A.W.; Livingstone, S.J.; Thomason, M.J.; I Mackness, M.; Charlton-Menys, V.; Fuller, J.H. Primary prevention of cardiovascular disease with atorvastatin in type 2 diabetes in the Collaborative Atorvastatin Diabetes Study (CARDS): Multicentre randomised placebo-controlled trial. Lancet 2004, 364, 685–696. [Google Scholar] [CrossRef]
Redit-2-Diag Sample, n | Normal Kidney Function 965 | Mild DCKD 539 | Moderate DCKD 135 | Severe DCKD 120 | Total 1759 | Odds | 95% CI |
---|---|---|---|---|---|---|---|
Sex (males) | 487 (50.5%) | 298 (55.3%) | 77 (57%) | 67 (55.8%) | 929 (54.6%) | 1.22 | 1.02–1.46 |
Age (years) mean (SD) | 64.9 (9.4) | 66.8 (9.3) | 69.8 (8.3) | 70.8 (8.9) | 68 (9.5) | 1.04 | 1.03–1.05 |
BMI mean (SD) | 30.7 (5.7) | 31.1 (5.7) | 31.3 (6.0) | 30.9 (5.6) | 30.9 (5.7) | 1.01 | 1.00–1.03 |
Current smokers | 166 (17.2%) | 102 (18.9%) | 13 (9.6%) | 19 (15.8%) | 300 (17%) | 1.01 | 1.00–1.02 |
Diabetes duration mean, years, (SD) | 11.8 (8.2) | 13.9 (8.5) | 14.9 (8.1) | 17.1 (9.9) | 13 (8.5) | 1.04 | 1.03–1.05 |
CKD duration mean, years, (SD) | 3.7 (4.1) | 4.0 (3.6) | 4.7 (3.5) | 4.1 (3.6) | |||
Mean HbA1c, %, (SD) | 7.0 (1.1) | 7.1 (1.2) | 7.2 (1.2) | 7.3 (1.3) | 7.1 (1.2) | 1.14 | 1.06–1.23 |
Mean SBP, mmHg, (SD) | 130.7 (14.9) | 136.1 (16.7) | 138.7 (17.9) | 138.4 (18.7) | 135.9 (17) | 1.26 | 1.19–1.33 |
Mean DBP, mmHg, (SD) | 76.9 (9.2) | 77.4 (10.6) | 77.4 (10.9) | 75.9 (10.4) | 76.9 (9.9) | 1.01 | 0.92–1.11 |
Mean LDL-C, mg/dL, (SD) | 98.4 (32.0) | 98.8 (32.9) | 94.6 (29.6) | 94.3 (35.0) | 96.5 (32.8) | 1.00 | 1.00–1.00 |
Redit-2-Diag Sample, n | Normal Kidney Function 965 | Mild DCKD 539 | Moderate DCKD 135 | Severe DCKD 120 | Total 1759 | Odds | 95% CI |
---|---|---|---|---|---|---|---|
Antidiabetic treatment | |||||||
Metformin | 860 (89.1%) | 436 (80.9%) | 92 (68.1%) | 50 (41.7%) | 1438 (81.8%) | 0.32 | 0.25–0.42 |
DPP-inhibitors | 412 (42.7%) | 207 (38.4%) | 53 (39.3%) | 44 (36.7%) | 716 (40.7%) | 0.85 | 0.70–1.02 |
Sulfonylureas | 229 (23.7%) | 132 (24.5%) | 34 (25.2%) | 15 (12.5%) | 410 (23.3%) | 0.93 | 0.75–1.16 |
Pioglitazone | 65 (6.7%) | 21 (3.9%) | 5 (3.7%) | 3 (2.5%) | 94 (5.3%) | 0.54 | 0.35–0.84 |
SGLT2 inhibitors | 25 (2.6%) | 15 (2.8%) | 3 (2.2%) | 1 (0.8%) | 44 (2.5%) | 0.92 | 0.51–1.65 |
Insulin | 324 (33.6%) | 235 (43.6%) | 77 (57%) | 81 (67.5%) | 717 (40.8%) | 1.96 | 1.63–2.37 |
GLP-1 analogs | 91 (9.4%) | 32 (5.9%) | 9 (6.7%) | 11 (9.2%) | 143 (8.1%) | 0.68 | 0.48–0.97 |
Antihypertensive Treatment | |||||||
ACE-I | 256 (26.5%) | 157 (29.1%) | 32 (23.7%) | 22 (18.3%) | 467 (26.5%) | 0.99 | 0.78–1.25 |
ARBs | 583 (60.4%) | 321 (59.5%) | 74 (54.8%) | 66 (55.0%) | 1044 (59.35%) | 0.90 | 0.73–1.11 |
CCBs | 322 (33.3%) | 233 (43.2%) | 72 (53.3%) | 73 (60.8%) | 700 (39.7%) | 1.63 | 1.30–2.04 |
B-Blockers | 368 (38.1%) | 227 (42.1%) | 69 (51.1%) | 45 (37.5%) | 709 (40.9%) | 1.21 | 0.98–1.50 |
Thiazide diuretics | 362 (37.5%) | 214 (39.7%) | 48 (35.5%) | 34 (28.3%) | 658 (37.4%) | 0.99 | 0.80–1.23 |
Aldosterone RA | 26 (2.7%) | 12 (2.2%) | 8 (5.9%) | 3 (2.5%) | 49 (2.7%) | 1.14 | 0.61–2.13 |
Loop diuretics | 56 (5.8%) | 42 (7.7%) | 23 (17%) | 35 (29.1%) | 156 (8.8%) | 2.49 | 1.71–3.64 |
Lipid-lowering agents | |||||||
Statins | 925 (95.8%) | 524 (97.2%) | 123 (91.1%) | 118 (98.3%) | 1690 (96.0%) | 1.31 | 0.74–2.32 |
Ezetimibe | 99 (10.2%) | 51 (9.4%) | 9 (6.6%) | 22 (18.3%) | 181 (10.2%) | 1.00 | 0.71–1.41 |
Fibrates | 57 (5.9%) | 26 (4.8%) | 14 (10.3%) | 5 (4.1%) | 102 (5.7%) | 1.06 | 0.69–1.65 |
Redit-2-Diag Sample, n | Normal Kidney Function 965 | Mild DCKD 539 | Moderate DCKD 135 | Severe DCKD 120 | Total1 759 | Odds | 95% CI |
---|---|---|---|---|---|---|---|
Antidiabetic Treatment | |||||||
Mono therapy | 257 (26.6%) | 155 (28.7%) | 40 (29.6%) | 52 (43.3%) | 504 (28.6%) | 1.58 | 1.13–2.00 |
Dual therapy | 393 (40.7%) | 222 (41.1%) | 52 (38.5%) | 46 (38.3%) | 713 (40.5%) | 0.87 | 0.69–1.09 |
Triple therapy | 273 (28.2%) | 142 (26.3%) | 38 (28.1%) | 15 (12.5%) | 468 (26.6%) | 0.76 | 0.59–0.98 |
Four or more | 42 (4.3%) | 20 (3.7%) | 5 (3.7%) | 7 (5.8%) | 74 (4.2%) | 0.76 | 0.46–1.27 |
Antihypertensive Treatment | |||||||
Mono therapy | 303 (31.3%) | 134 (24.8%) | 22 (16.2%) | 24 (20.0%) | 483 (27.4%) | 1.40 | 1.10–2.00 |
Dual therapy | 350 (36.2%) | 187 (34.6%) | 48 (35.5%) | 41 (34.1%) | 626 (35.5%) | 1.31 | 1.00–1.72 |
Triple therapy | 232 (24.0%) | 138 (25.6%) | 38 (28.1%) | 32 (26.6%) | 440 (25.0%) | 1.45 | 1.08–1.94 |
Four or more | 80 (8.2%) | 80 (14.8%) | 27 (20.0%) | 23 (19.1%) | 210 (11.9%) | 2.72 | 1.87–3.95 |
Lipid-lowering Treatment | |||||||
Mono therapy | 808 (83.7%) | 455 (84.4%) | 110 (81.4%) | 91 (75.8%) | 1464 (83.2%) | 0.80 | 0.60–0.92 |
Dual therapy | 157 (16.2%) | 84 (15.5%) | 25 (18.5%) | 29 (24.1%) | 295 (16.7%) | 1.08 | 0.82–1.43 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Migdalis, I.N.; Papanas, N.; Ioannidis, I.M.; Sotiropoulos, A.E.; Raptis, A.E.; Dimitriadis, G.D.; on behalf of the Hellenic Diabetic Nephropathy Study (HDNS). Antidiabetic and Other Therapies Used in Subjects with Diabetes and Chronic Kidney Disease in a Hospital-Based Clinic Population in Greece. J. Clin. Med. 2021, 10, 2104. https://doi.org/10.3390/jcm10102104
Migdalis IN, Papanas N, Ioannidis IM, Sotiropoulos AE, Raptis AE, Dimitriadis GD, on behalf of the Hellenic Diabetic Nephropathy Study (HDNS). Antidiabetic and Other Therapies Used in Subjects with Diabetes and Chronic Kidney Disease in a Hospital-Based Clinic Population in Greece. Journal of Clinical Medicine. 2021; 10(10):2104. https://doi.org/10.3390/jcm10102104
Chicago/Turabian StyleMigdalis, Ilias N., Nikolaos Papanas, Ioannis M. Ioannidis, Alexios E. Sotiropoulos, Athanasios E. Raptis, George D. Dimitriadis, and on behalf of the Hellenic Diabetic Nephropathy Study (HDNS). 2021. "Antidiabetic and Other Therapies Used in Subjects with Diabetes and Chronic Kidney Disease in a Hospital-Based Clinic Population in Greece" Journal of Clinical Medicine 10, no. 10: 2104. https://doi.org/10.3390/jcm10102104
APA StyleMigdalis, I. N., Papanas, N., Ioannidis, I. M., Sotiropoulos, A. E., Raptis, A. E., Dimitriadis, G. D., & on behalf of the Hellenic Diabetic Nephropathy Study (HDNS). (2021). Antidiabetic and Other Therapies Used in Subjects with Diabetes and Chronic Kidney Disease in a Hospital-Based Clinic Population in Greece. Journal of Clinical Medicine, 10(10), 2104. https://doi.org/10.3390/jcm10102104