The Effect of Ageing on Clinical, Hormonal and Sonographic Features Associated with PCOS—A Long-Term Follow-Up Study
Abstract
:1. Introduction
2. Material and Methods
2.1. Study Population
2.2. Baseline Study
2.3. Ethical Approval
2.4. Follow-Up Study
2.4.1. Protocol of the Study
2.4.2. Clinical Evaluation
2.4.3. Image Tests
2.4.4. Biochemical Analyses
2.4.5. Calculations
2.4.6. Statistical Analysis
2.4.7. Definitions
3. Results
3.1. The Progressive Reduction in PCOS Symptoms
3.2. Sex Hormones
3.3. Clinical HA
3.4. OM
3.5. PCOM
3.6. Persistent PCOS and Resolved PCOS
3.7. Reproductive Health
3.7.1. Oral Contraceptives
3.7.2. Pregnancy
3.7.3. Delivery
3.7.4. Miscarriage
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bozdag, G.; Mumusoglu, S.; Zengin, D.; Karabulut, E.; Yildiz, B.O. The prevalence and phenotypic features of polycystic ovary syndrome: A systematic review and meta-analysis. Hum. Reprod. 2016, 31, 2841–2855. [Google Scholar] [CrossRef] [PubMed]
- Lizneva, D.; Suturina, L.; Walker, W.; Brakta, S.; Gavrilova-Jordan, L.; Azziz, R. Criteria, prevalence, and phenotypes of polycystic ovary syndrome. Fertil. Steril. 2016, 106, 6–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stein, I.F.; Leventhal, M.L. Amenorrhea associated with bilateral polycystic ovaries. Am. J. Obstet. Gynecol. 1935, 29, 181–191. [Google Scholar] [CrossRef]
- Conway, G.; Dewailly, D.; Diamanti-Kandarakis, E.; Escobar-Morreale, H.F.; Franks, S.; Gambineri, A.; Kelestimur, F.; Macut, D.; Micic, D.; Pasquali, R.; et al. The polycystic ovary syndrome: A position statement from the European Society of Endocrinology. Eur. J. Endocrinol. 2014, 171, P1–P29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Group Rotterdam ESHRE/ASRM-Sponsored PCOS Consensus Workshop. Revised 2003 consensus on diagnostic criteria and long-term health risks related to polycystic ovary syndrome. Fertil. Steril. 2004, 81, 19–25. [Google Scholar] [CrossRef]
- Teede, H.J.; Misso, M.L.; Costello, M.F.; Dokras, A.; Laven, J.; Moran, L.; Piltonen, T.; Norman, R.J.; Andersen, M.; Azziz, R.; et al. Recommendations from the international evidence-based guideline for the assessment and management of polycystic ovary syndrome. Hum. Reprod. 2018, 33, 1602–1618. [Google Scholar] [CrossRef] [Green Version]
- Azziz, R.; Carmina, E.; Dewailly, D.; Diamanti-Kandarakis, E.; Escobar-Morreale, H.F.; Futterweit, W.; Janssen, O.E.; Legro, R.S.; Norman, R.J.; Taylor, A.E.; et al. Positions statement: Criteria for defining polycystic ovary syndrome as a predominantly hyperandrogenic syndrome: An Androgen Excess Society guideline. J. Clin. Endocrinol. Metab. 2006, 91, 4237–4245. [Google Scholar] [CrossRef] [Green Version]
- Teede, H.J.; Deeks, A.; Moran, L. Polycystic ovary syndrome: A complex condition with psychological, reproductive and metabolic manifestations that impacts on health across the lifespan. BMC Med. 2010, 8, 41. [Google Scholar] [CrossRef] [Green Version]
- Plymate, S.R.; Matej, L.A.; Jones, R.E.; Friedl, K.E. Inhibition of sex hormone-binding globulin production in the human hepatoma (Hep G2) cell line by insulin and prolactin. J. Clin. Endocrinol. Metab. 1988, 67, 460–464. [Google Scholar] [CrossRef]
- Le, T.N.; Nestler, J.E.; Strauss, J.F.; Wickham, E.P. Sex hormone-binding globulin and type 2 diabetes mellitus. Trends Endocrinol. Metab. 2012, 23, 32–40. [Google Scholar] [CrossRef] [Green Version]
- Ding, E.L.; Song, Y.; Manson, J.E.; Hunter, D.J.; Lee, C.C.; Rifai, N.; Buring, J.E.; Gaziano, J.M.; Liu, S. Sex hormone-binding globulin and risk of type 2 diabetes in women and men. N. Engl. J. Med. 2009, 361, 1152–1163. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burke, C.W.; Anderson, D.C. Sex-hormone-binding globulin is an oestrogen amplifier. Nature 1972, 240, 38–40. [Google Scholar] [CrossRef] [PubMed]
- Poretsky, L. On the paradox of insulin-induced hyperandrogenism in insulin-resistant states. Endocr. Rev. 1991, 12, 3–13. [Google Scholar] [CrossRef] [PubMed]
- Diamanti-Kandarakis, E.; Dunaif, A. Insulin resistance and the polycystic ovary syndrome revisited: An update on mechanisms and implications. Endocr. Rev. 2012, 33, 981–1030. [Google Scholar] [CrossRef]
- Rojas, J.; Chávez, M.; Olivar, L.; Rojas, M.; Morillo, J.; Mejías, J.; Calvo, M.; Bermúdez, V. Polycystic ovary syndrome, insulin resistance, and obesity: Navigating the pathophysiologic labyrinth. Int. J. Reprod. Med. 2014, 2014, e719050. [Google Scholar] [CrossRef]
- Rodriguez Paris, V.; Bertoldo, M.J. The Mechanism of Androgen Actions in PCOS Etiology. Med. Sci. 2019, 7, 89. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Livadas, S.; Pappas, C.; Karachalios, A.; Marinakis, E.; Tolia, N.; Drakou, M.; Kaldrymides, P.; Panidis, D.; Diamanti-Kandarakis, E. Prevalence and impact of hyperandrogenemia in 1218 women with polycystic ovary syndrome. Endocrine 2014, 47, 631–638. [Google Scholar] [CrossRef]
- Keefe, C.C.; Goldman, M.M.; Zhang, K.; Clarke, N.; Reitz, R.E.; Welt, C.K. Simultaneous measurement of thirteen steroid hormones in women with polycystic ovary syndrome and control women using liquid chromatography-tandem mass spectrometry. PLoS ONE. 2014, 9, e93805. [Google Scholar] [CrossRef]
- Pappalardo, M.A.; Vita, R.; Di Bari, F.; Le Donne, M.; Trimarchi, F.; Benvenga, S. Gly972Arg of IRS-1 and Lys121Gln of PC-1 polymorphisms act in opposite way in polycystic ovary syndrome. J. Endocrinol. Invest. 2017, 40, 367–376. [Google Scholar] [CrossRef]
- Yang, R.; Yang, S.; Li, R.; Liu, P.; Qiao, J.; Zhang, Y. Effects of hyperandrogenism on metabolic abnormalities in patients with polycystic ovary syndrome: A meta-analysis. Reprod. Biol. Endocrinol. 2016, 14, 67. [Google Scholar] [CrossRef] [Green Version]
- Patel, S. Polycystic ovary syndrome (PCOS), an inflammatory, systemic, lifestyle endocrinopathy. J. Steroid Biochem. Mol. Biol. 2018, 182, 27–36. [Google Scholar] [CrossRef]
- Anagnostis, P.; Tarlatzis, B.C.; Kauffman, R.P. Polycystic ovarian syndrome (PCOS): Long-term metabolic consequences. Metabolism 2018, 86, 33–43. [Google Scholar] [CrossRef] [PubMed]
- Jacewicz-Święcka, M.; Kowalska, I. Polycystic ovary syndrome and the risk of cardiometabolic complications in longitudinal studies. Diabetes Metab. Res. Rev. 2018, 34, e3054. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Real, J.M.; Ricart, W. Insulin resistance and chronic cardiovascular inflammatory syndrome. Endocr. Rev. 2003, 24, 278. [Google Scholar] [CrossRef] [Green Version]
- Tarkun, I.; Arslan, B.C.; Cantürk, Z.; Türemen, E.; Sahin, T.; Duman, C. Endothelial dysfunction in young women with polycystic ovary syndrome: Relationship with insulin resistance and low-grade chronic inflammation. J. Clin. Endocrinol. Metab. 2004, 89, 5592–5596. [Google Scholar] [CrossRef]
- Kravariti, M.; Naka, K.K.; Kalantaridou, S.N.; Kazakos, N.; Katsouras, C.S.; Makrigiannakis, A.; Paraskevaidis, E.A.; Chrousos, G.P.; Tsatsoulis, A.; Michalis, L.K. Predictors of endothelial dysfunction in young women with polycystic ovary syndrome. J. Clin. Endocrinol. Metab. 2005, 90, 5088–5095. [Google Scholar] [CrossRef] [Green Version]
- Paradisi, G.; Steinberg, H.O.; Hempfling, A.; Cronin, J.; Hook, G.; Shepard, M.K.; Baron, A.D. Polycystic ovary syndrome is associated with endothelial dysfunction. Circulation 2001, 103, 1410–1415. [Google Scholar] [CrossRef] [PubMed]
- Poredos, P. Endothelial dysfunction in the pathogenesis of atherosclerosis. Int. Angiol. 2002, 21, 109–116. [Google Scholar]
- Kowalska, I.; Straczkowski, M.; Szelachowska, M.; Kinalska, I.; Prokop, J.; Bachórzewska-Gajewska, H.; Stepien, A. Circulating E-selectin, vascular cell adhesion molecule-1, and intercellular adhesion molecule-1 in men with coronary artery disease assessed by angiography and disturbances of carbohydrate metabolism. Metabolism 2002, 51, 733–736. [Google Scholar] [CrossRef]
- Roldán, V.; Marín, F.; Lip, G.Y.; Blann, A.D. Soluble E-selectin in cardiovascular disease and its risk factors. A review of the literature. Thromb. Haemost. 2003, 90, 1007–1020. [Google Scholar] [CrossRef]
- Kado, S.; Nagata, N. Circulating intercellular adhesion molecule-1, vascular cell adhesion molecule-1, and E-selectin in patients with type 2 diabetes mellitus. Diabetes Res. Clin. Pract. 1999, 46, 143–148. [Google Scholar] [CrossRef]
- Diamanti-Kandarakis, E.; Paterakis, T.; Alexandraki, K.; Piperi, C.; Aessopos, A.; Katsikis, I.; Katsilambros, N.; Kreatsas, G.; Panidis, D. Indices of low-grade chronic inflammation in polycystic ovary syndrome and the beneficial effect of metformin. Hum. Reprod. 2006, 21, 1426–1431. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Victor, V.M.; Rovira-Llopis, S.; Bañuls, C.; Diaz-Morales, N.; de Marañon, A.M.; Rios-Navarro, C.; Alvarez, A.; Gomez, M.; Rocha, M.; Hernández-Mijares, A. Insulin Resistance in PCOS Patients Enhances Oxidative Stress and Leukocyte Adhesion: Role of Myeloperoxidase. PLoS ONE 2016, 11, e0151960. [Google Scholar] [CrossRef] [PubMed]
- Victor, V.M.; Rocha, M.; Bañuls, C.; Alvarez, A.; de Pablo, C.; Sanchez-Serrano, M.; Gomez, M.; Rocha, M.; Hernández-Mijares, A. Induction of oxidative stress and human leukocyte/endothelial cell interactions in polycystic ovary syndrome patients with insulin resistance. J. Clin. Endocrinol. Metab. 2011, 96, 3115–3122. [Google Scholar] [CrossRef] [Green Version]
- Piouka, A.; Farmakiotis, D.; Katsikis, I.; Macut, D.; Gerou, S.; Panidis, D. Anti-Mullerian hormone levels reflect severity of PCOS but are negatively influenced by obesity: Relationship with increased luteinizing hormone levels. Am. J. Physiol. Endocrinol. Metab. 2009, 296, E238-43. [Google Scholar] [CrossRef] [Green Version]
- Diamanti-Kandarakis, E. Polycystic ovarian syndrome: Pathophysiology, molecular aspects and clinical implications. Expert Rev. Mol. Med. 2008, 10, e3. [Google Scholar] [CrossRef]
- Norman, R.J.; Dewailly, D.; Legro, R.S.; Hickey, T.E. Polycystic ovary syndrome. Lancet 2007, 370, 685–697. [Google Scholar] [CrossRef] [Green Version]
- Cassar, S.; Teede, H.J.; Moran, L.J.; Joham, A.E.; Harrison, C.L.; Strauss, B.J.; Stepto, N.K. Polycystic ovary syndrome and anti-Müllerian hormone: Role of insulin resistance, androgens, obesity and gonadotrophins. Clin. Endocrinol. 2014, 81, 899–906. [Google Scholar] [CrossRef] [PubMed]
- Cook, C.L.; Siow, Y.; Brenner, A.G.; Fallat, M.E. Relationship between serum müllerian-inhibiting substance and other reproductive hormones in untreated women with polycystic ovary syndrome and normal women. Fertil. Steril. 2002, 77, 141–146. [Google Scholar] [CrossRef]
- Jonard, S.; Dewailly, D. The follicular excess in polycystic ovaries, due to intra-ovarian hyperandrogenism, may be the main culprit for the follicular arrest. Hum. Reprod. Update 2004, 10, 107–117. [Google Scholar] [CrossRef] [Green Version]
- Casadei, L.; Fanisio, F.; Sorge, R.P.; Collamarini, M.; Piccolo, E.; Piccione, E. The diagnosis of PCOS in young infertile women according to different diagnostic criteria: The role of serum anti-Müllerian hormone. Arch. Gynecol. Obstet. 2018, 298, 207–215. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Wang, C.; Liang, Z.; Liu, X. Diagnostic Value of Anti-Müllerian Hormone as a Biomarker for Polycystic Ovary Syndrome: A Meta-Analysis Update. Endocr. Pract. 2019, 25, 1056–1066. [Google Scholar] [CrossRef] [PubMed]
- Visser, J.A.; de Jong, F.H.; Laven, J.S.; Themmen, A.P. Anti-Müllerian hormone: A new marker for ovarian function. Reproduction 2006, 131, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pigny, P.; Jonard, S.; Robert, Y.; Dewailly, D. Serum anti-Mullerian hormone as a surrogate for antral follicle count for definition of the polycystic ovary syndrome. J. Clin. Endocrinol. Metab. 2006, 91, 941–945. [Google Scholar] [CrossRef]
- Bhide, P.; Homburg, R. Anti-Müllerian hormone and polycystic ovary syndrome. Best Pract. Res. Clin. Obstet. Gynaecol. 2016, 37, 38–45. [Google Scholar] [CrossRef] [PubMed]
- Dewailly, D.; Andersen, C.Y.; Balen, A.; Broekmans, F.; Dilaver, N.; Fanchin, R.; Griesinger, G.; Kelsey, T.W.; La Marca, A.; Lambalk, C.; et al. The physiology and clinical utility of anti-Mullerian hormone in women. Hum. Reprod. Update 2014, 20, 370–385. [Google Scholar] [CrossRef] [Green Version]
- Dumont, A.; Robin, G.; Catteau-Jonard, S.; Dewailly, D. Role of Anti-Müllerian Hormone in pathophysiology, diagnosis and treatment of Polycystic Ovary Syndrome: A review. Reprod. Biol. Endocrinol. 2015, 13, 137. [Google Scholar] [CrossRef] [Green Version]
- Zore, T.; Joshi, N.V.; Lizneva, D.; Azziz, R. Polycystic Ovarian Syndrome: Long-Term Health Consequences. Semin. Reprod. Med. 2017, 35, 271–281. [Google Scholar] [CrossRef]
- Balen, A.H.; Morley, L.C.; Misso, M.; Franks, S.; Legro, R.S.; Wijeyaratne, C.N.; Stener-Victorin, E.; Fauser, B.C.J.M.; Norman, R.J.; Teede, H. The management of anovulatory infertility in women with polycystic ovary syndrome: An analysis of the evidence to support the development of global WHO guidance. Hum. Reprod. Update 2016, 22, 687–708. [Google Scholar] [CrossRef]
- Bahri Khomami, M.; Joham, A.E.; Boyle, J.A.; Piltonen, T.; Silagy, M.; Arora, C.; Misso, M.L.; Teede, H.J.; Moran, L.J. Increased maternal pregnancy complications in polycystic ovary syndrome appear to be independent of obesity-A systematic review, meta-analysis, and meta-regression. Obes. Rev. 2019, 20, 659–674. [Google Scholar] [CrossRef]
- Hudecova, M.; Holte, J.; Olovsson, M.; Sundström Poromaa, I. Long-term follow-up of patients with polycystic ovary syndrome: Reproductive outcome and ovarian reserve. Hum. Reprod. 2009, 24, 1176–1183. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jacewicz-Święcka, M.; Kowalska, I. Changes in Metabolic Profile in the Women with a History of PCOS-A Long-Term Follow-Up Study. J. Clin. Med. 2020, 9, 3367. [Google Scholar] [CrossRef] [PubMed]
- Kowalska, I.; Straczkowski, M.; Nikolajuk, A.; Adamska, A.; Karczewska-Kupczewska, M.; Otziomek, E.; Wołczyński, S.; Górska, M. Serum visfatin in relation to insulin resistance and markers of hyperandrogenism in lean and obese women with polycystic ovary syndrome. Hum. Reprod. 2007, 22, 1824–1829. [Google Scholar] [CrossRef] [Green Version]
- DeFronzo, R.A.; Tobin, J.D.; Andres, R. Glucose clamp technique: A method for quantifying insulin secretion and resistance. Am. J. Physiol. 1979, 237, E214–E223. [Google Scholar] [CrossRef] [PubMed]
- Straczkowski, M.; Kowalska, I.; Nikolajuk, A.; Dzienis-Straczkowska, S.; Kinalska, I.; Baranowski, M.; Zendzian-Piotrowska, M.; Brzezinska, Z.; Górski, J. Relationship between insulin sensitivity and sphingomyelin signaling pathway in human skeletal muscle. Diabetes 2004, 53, 1215–1221. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Swanson, M.; Sauerbrei, E.E.; Cooperberg, P.L. Medical implications of ultrasonically detected polycystic ovaries. J. Clin. Ultrasound. 1981, 9, 219–222. [Google Scholar] [CrossRef] [PubMed]
- Alberti, K.G.; Zimmet, P.; Shaw, J.; Group IETFC. The metabolic syndrome--a new worldwide definition. Lancet 2005, 366, 1059–1062. [Google Scholar] [CrossRef]
- American Diabetes Association. Classification and Diagnosis of Diabetes: Diabetes Care. Diabetes Care 2019, 42 (Suppl. 1), S13. [Google Scholar] [CrossRef] [Green Version]
- Faddy, M.J.; Gosden, R.G.; Gougeon, A.; Richardson, S.J.; Nelson, J.F. Accelerated disappearance of ovarian follicles in mid-life: Implications for forecasting menopause. Hum. Reprod. 1992, 7, 1342–1346. [Google Scholar] [CrossRef]
- Tufan, E.; Elter, K.; Durmusoglu, F. Assessment of reproductive ageing patterns by hormonal and ultrasonographic ovarian reserve tests. Hum. Reprod. 2004, 19, 2484–2489. [Google Scholar] [CrossRef] [Green Version]
- Bili, H.; Laven, J.; Imani, B.; Eijkemans, M.J.; Fauser, B.C. Age-related differences in features associated with polycystic ovary syndrome in normogonadotrophic oligo-amenorrhoeic infertile women of reproductive years. Eur. J. Endocrinol. 2001, 145, 749–755. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elting, M.W.; Korsen, T.J.; Rekers-Mombarg, L.T.; Schoemaker, J. Women with polycystic ovary syndrome gain regular menstrual cycles when ageing. Hum. Reprod. 2000, 15, 24–28. [Google Scholar] [CrossRef] [PubMed]
- Mulders, A.G.; Laven, J.S.; Eijkemans, M.J.; de Jong, F.H.; Themmen, A.P.; Fauser, B.C. Changes in anti-Müllerian hormone serum concentrations over time suggest delayed ovarian ageing in normogonadotrophic anovulatory infertility. Hum. Reprod. 2004, 19, 2036–2042. [Google Scholar] [CrossRef] [Green Version]
- Elting, M.W.; Kwee, J.; Korsen, T.J.; Rekers-Mombarg, L.T.; Schoemaker, J. Aging women with polycystic ovary syndrome who achieve regular menstrual cycles have a smaller follicle cohort than those who continue to have irregular cycles. Fertil. Steril. 2003, 79, 1154–1160. [Google Scholar] [CrossRef]
- Alsamarai, S.; Adams, J.M.; Murphy, M.K.; Post, M.D.; Hayden, D.L.; Hall, J.E.; Welt, C.K. Criteria for polycystic ovarian morphology in polycystic ovary syndrome as a function of age. J. Clin. Endocrinol. Metab. 2009, 94, 4961–4970. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahmad, A.K.; Kao, C.N.; Quinn, M.; Lenhart, N.; Rosen, M.; Cedars, M.I.; Huddleston, H. Differential rate in decline in ovarian reserve markers in women with polycystic ovary syndrome compared with control subjects: Results of a longitudinal study. Fertil. Steril. 2018, 109, 526–531. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nikolaou, D.; Gilling-Smith, C. Early ovarian ageing: Are women with polycystic ovaries protected? Hum. Reprod. 2004, 19, 2175–2179. [Google Scholar] [CrossRef] [Green Version]
- Macklon, N.S.; Fauser, B.C. Ovarian reserve. Semin. Reprod. Med. 2005, 23, 248–256. [Google Scholar] [CrossRef] [PubMed]
- Lockwood, G.M.; Muttukrishna, S.; Ledger, W.L. Inhibins and activins in human ovulation, conception and pregnancy. Hum. Reprod. Update 1998, 4, 284–295. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Small, C.M.; Manatunga, A.K.; Klein, M.; Feigelson, H.S.; Dominguez, C.E.; McChesney, R.; Marcus, M. Menstrual cycle characteristics: Associations with fertility and spontaneous abortion. Epidemiology 2006, 17, 52–60. [Google Scholar] [CrossRef]
- Brodin, T.; Bergh, T.; Berglund, L.; Hadziosmanovic, N.; Holte, J. Menstrual cycle length is an age-independent marker of female fertility: Results from 6271 treatment cycles of in vitro fertilization. Fertil. Steril. 2008, 90, 1656–1661. [Google Scholar] [CrossRef]
- Broekmans, F.J.; Soules, M.R.; Fauser, B.C. Ovarian aging: Mechanisms and clinical consequences. Endocr. Rev. 2009, 30, 465–493. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dahlgren, E.; Johansson, S.; Lindstedt, G.; Knutsson, F.; Odén, A.; Janson, P.O.; Mattson, L.A.; Crona, N.; Lundberg, P.A. Women with polycystic ovary syndrome wedge resected in 1956 to 1965: A long-term follow-up focusing on natural history and circulating hormones. Fertil. Steril. 1992, 57, 505–513. [Google Scholar] [CrossRef]
- Orentreich, N.; Brind, J.L.; Rizer, R.L.; Vogelman, J.H. Age changes and sex differences in serum dehydroepiandrosterone sulfate concentrations throughout adulthood. J. Clin. Endocrinol. Metab. 1984, 59, 551–555. [Google Scholar] [CrossRef]
- Winters, S.J.; Talbott, E.; Guzick, D.S.; Zborowski, J.; McHugh, K.P. Serum testosterone levels decrease in middle age in women with the polycystic ovary syndrome. Fertil. Steril. 2000, 73, 724–729. [Google Scholar] [CrossRef]
- Morán, C.; Knochenhauer, E.; Boots, L.R.; Azziz, R. Adrenal androgen excess in hyperandrogenism: Relation to age and body mass. Fertil. Steril. 1999, 71, 671–674. [Google Scholar] [CrossRef]
- Birdsall, M.A.; Farquhar, C.M. Polycystic ovaries in pre and post-menopausal women. Clin. Endocrinol. 1996, 44, 269–276. [Google Scholar] [CrossRef] [PubMed]
- Pinola, P.; Piltonen, T.T.; Puurunen, J.; Vanky, E.; Sundström-Poromaa, I.; Stener-Victorin, E.; Ruokonen, A.; Puukka, K.; Tapanainen, J.S.; Morin-Papunen, L.C. Androgen Profile Through Life in Women With Polycystic Ovary Syndrome: A Nordic Multicenter Collaboration Study. J. Clin. Endocrinol. Metab. 2015, 100, 3400–3407. [Google Scholar] [CrossRef] [Green Version]
- Brown, Z.A.; Louwers, Y.V.; Fong, S.L.; Valkenburg, O.; Birnie, E.; de Jong, F.H.; Fauser, B.C.J.M.; Laven, J.S.E. The phenotype of polycystic ovary syndrome ameliorates with aging. Fertil. Steril. 2011, 96, 1259–1265. [Google Scholar] [CrossRef]
- Forslund, M.; Schmidt, J.; Brännström, M.; Landin-Wilhelmsen, K.; Dahlgren, E. Reproductive Hormones and Anthropometry: A Follow-Up of PCOS and Controls From Perimenopause to Older Than 80 Years. J. Clin. Endocrinol. Metab. 2021, 106, 421–430. [Google Scholar] [CrossRef]
- Hudecova, M.; Holte, J.; Moby, L.; Olovsson, M.; Stridsberg, M.; Larsson, A.; Berglund, L.; Berne, C.; Sundström-Poromaa, I. Androgen levels, insulin sensitivity, and early insulin response in women with polycystic ovary syndrome: A long-term follow-up study. Fertil. Steril. 2011, 95, 1146–1148. [Google Scholar] [CrossRef] [PubMed]
- Rittmaster, R.S.; Deshwal, N.; Lehman, L. The role of adrenal hyperandrogenism, insulin resistance, and obesity in the pathogenesis of polycystic ovarian syndrome. J. Clin. Endocrinol. Metab. 1993, 76, 1295–1300. [Google Scholar] [CrossRef]
- Pigny, P.; Merlen, E.; Robert, Y.; Cortet-Rudelli, C.; Decanter, C.; Jonard, S.; Dewailly, D. Elevated serum level of anti-mullerian hormone in patients with polycystic ovary syndrome: Relationship to the ovarian follicle excess and to the follicular arrest. J. Clin. Endocrinol. Metab. 2003, 88, 5957–5962. [Google Scholar] [CrossRef] [Green Version]
- Adams, J.; Polson, D.W.; Franks, S. Prevalence of polycystic ovaries in women with anovulation and idiopathic hirsutism. Br. Med. J. (Clin. Res. Ed.) 1986, 293, 355–359. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carmina, E.; Campagna, A.M.; Lobo, R.A. A 20-year follow-up of young women with polycystic ovary syndrome. Obstet Gynecol. 2012, 119 Pt 1, 263–269. [Google Scholar] [CrossRef] [Green Version]
- Sundström, I.; Ildgruben, A.; Högberg, U. Treatment-related and treatment-independent deliveries among infertile couples, a long-term follow-up. Acta Obstet. Gynecol. Scand. 1997, 76, 238–243. [Google Scholar] [CrossRef] [PubMed]
- Koivunen, R.; Pouta, A.; Franks, S.; Martikainen, H.; Sovio, U.; Hartikainen, A.L.; McCarthy, M.I.; Ruokonen, A.; Bloigu, A.; Järvelin, M.R.; et al. Fecundability and spontaneous abortions in women with self-reported oligo-amenorrhea and/or hirsutism: Northern Finland Birth Cohort 1966 Study. Hum. Reprod. 2008, 23, 2134–2139. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- West, S.; Vähäsarja, M.; Bloigu, A.; Pouta, A.; Franks, S.; Hartikainen, A.L.; Järvelin, M.R.; Corbett, S.; Vääräsmäki, M.; Morin-Papunen, L. The impact of self-reported oligo-amenorrhea and hirsutism on fertility and lifetime reproductive success: Results from the Northern Finland Birth Cohort. Hum. Reprod. 2014, 29, 628–633. [Google Scholar] [CrossRef] [Green Version]
- Szostak-Węgierek, D.; Waśkiewicz, A.; Piotrowski, W.; Stepaniak, U.; Pająk, A.; Kwaśniewska, M.; Nadrowski, P.; Niklas, A.; Puch-Walczak, A.; Drygas, W. Metabolic syndrome and its components in Polish women of childbearing age: A nationwide study. BMC Public Health 2017, 18, 15. [Google Scholar] [CrossRef] [Green Version]
- Luo, L.; Gu, F.; Jie, H.; Ding, C.; Zhao, Q.; Wang, Q.; Zhou, C. Early miscarriage rate in lean polycystic ovary syndrome women after euploid embryo transfer–A matched-pair study. Reprod. Biomed. Online 2017, 35, 576–582. [Google Scholar] [CrossRef] [Green Version]
- Mayrhofer, D.; Hager, M.; Walch, K.; Ghobrial, S.; Rogenhofer, N.; Marculescu, R.; Seemann, R.; Ott, J. The Prevalence and Impact of Polycystic Ovary Syndrome in Recurrent Miscarriage: A Retrospective Cohort Study and Meta-Analysis. J. Clin. Med. 2020, 9, 2700. [Google Scholar] [CrossRef] [PubMed]
- Sagle, M.; Bishop, K.; Ridley, N.; Alexander, F.M.; Michel, M.; Bonney, R.C.; Beard, R.W.; Franks, S. Recurrent early miscarriage and polycystic ovaries. BMJ 1988, 297, 1027–1028. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rai, R.; Backos, M.; Rushworth, F.; Regan, L. Polycystic ovaries and recurrent miscarriage--A reappraisal. Hum. Reprod. 2000, 15, 612–615. [Google Scholar] [CrossRef]
- Rahman, T.U.; Ullah, K.; Guo, M.X.; Pan, H.T.; Liu, J.; Ren, J.; Jin, L.Y.; Zhou, Y.Z.; Cheng, Y.; Sheng, J.Z.; et al. Androgen-induced alterations in endometrial proteins crucial in recurrent miscarriages. Oncotarget 2018, 9, 24627–24641. [Google Scholar] [CrossRef] [Green Version]
- Okon, M.A.; Laird, S.M.; Tuckerman, E.M.; Li, T.C. Serum androgen levels in women who have recurrent miscarriages and their correlation with markers of endometrial function. Fertil. Steril. 1998, 69, 682–690. [Google Scholar] [CrossRef]
- Pluchino, N.; Drakopoulos, P.; Wenger, J.M.; Petignat, P.; Streuli, I.; Genazzani, A.R. Hormonal causes of recurrent pregnancy loss (RPL). Hormones 2014, 13, 314–322. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, L.; Cao, Y.; Ma, Y.; Zhai, J. Association between hyperandrogenism and adverse pregnancy outcomes in patients with different polycystic ovary syndrome phenotypes undergoing. Gynecol. Endocrinol. 2021, 2021, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Tulppala, M.; Stenman, U.H.; Cacciatore, B.; Ylikorkala, O. Polycystic ovaries and levels of gonadotrophins and androgens in recurrent miscarriage: Prospective study in 50 women. Br. J. Obstet. Gynaecol. 1993, 100, 348–352. [Google Scholar] [CrossRef]
- Yang, W.; Yang, R.; Lin, M.; Yang, Y.; Song, X.; Zhang, J.; Yang, S.; Song, Y.; Li, J.; Pang, T.; et al. Body mass index and basal androstenedione are independent risk factors for miscarriage in polycystic ovary syndrome. Reprod. Biol. Endocrinol. 2018, 16, 119. [Google Scholar] [CrossRef]
- Bussen, S.; Sütterlin, M.; Steck, T. Endocrine abnormalities during the follicular phase in women with recurrent spontaneous abortion. Hum. Reprod. 1999, 14, 18–20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marques, P.; Ferreira, F.; Soares, A.P.; Nunes, J.; Sousa, S.; Aguiar, A.; Calhaz-Jorge, C. Clinico-biochemical characteristics of 229 Portuguese infertile women with polycystic ovary syndrome: Clinical relevance and relationship with fertility treatment results. Clin. Exp. Obstet. Gynecol. 2016, 43, 812–817. [Google Scholar]
- Watson, H.; Kiddy, D.S.; Hamilton-Fairley, D.; Scanlon, M.J.; Barnard, C.; Collins, W.P.; Bonney, R.C.; Franks, S. Hypersecretion of luteinizing hormone and ovarian steroids in women with recurrent early miscarriage. Hum. Reprod. 1993, 8, 829–833. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Lv, H.; Wei, W.; Zhang, D.; Guan, Y. Angiotensin-converting enzyme D/I and plasminogen activator inhibitor-1 4G/5G gene polymorphisms are associated with increased risk of spontaneous abortions in polycystic ovarian syndrome. J. Endocrinol. Invest. 2010, 33, 77–82. [Google Scholar] [CrossRef] [PubMed]
- Glueck, C.J.; Sieve, L.; Zhu, B.; Wang, P. Plasminogen activator inhibitor activity, 4G5G polymorphism of the plasminogen activator inhibitor 1 gene, and first-trimester miscarriage in women with polycystic ovary syndrome. Metabolism 2006, 55, 345–352. [Google Scholar] [CrossRef] [PubMed]
- Bañuls, C.; Rovira-Llopis, S.; de Marañon, A.M.; Veses, S.; Jover, A.; Gomez, M.; Rocha, M.; Hernandez-Mijares, A.; Victor, V.M. Metabolic syndrome enhances endoplasmic reticulum, oxidative stress and leukocyte-endothelium interactions in PCOS. Metabolism 2017, 71, 153–162. [Google Scholar] [CrossRef] [PubMed]
- Blumenfeld, Z. The Possible Practical Implication of High CRP Levels in PCOS. Clin. Med. Insights Reprod. Health 2019, 13, 1179558119861936. [Google Scholar] [CrossRef]
Characteristic | Baseline | Follow-Up |
---|---|---|
PCOS * | 100% (31) | 45.16% (14) a |
Phenotype A ** | 70.97% (22) | 57.14% *** (8) |
Hyperandrogenism | 77.42% (24) | 67.74% (21) |
Biochemical hyperandrogenism | 61.29% (19) | 41.93% (13) |
Increased TT | 41.94% (13) | 19.35% (6) |
Increased FAI | 48.39% (15) | 35.48% (11) |
Clinical hyperandrogenism | 51.61% (16) | 41.93% (13) |
Hirsutism | 45.16% (14) | 32.26% (10) |
Acne | 48.39% (15) | 16.13% (5) a |
Alopecia | 3.23% (1) | 3.23% (1) |
Oligomenorrhea | 96.77% (30) | 41.93% (13) a |
Polycystic ovarian morphology | 96.77% (30) | 48.39% (15) a |
Characteristic | Concentration/Value |
---|---|
LH (mIU/mL) | 7.8 (4.9–10.8) |
FSH (mIU/mL) | 5.9 (4.7–7.19) |
LH/FSH | 1.3 (0.94–1.96) |
TT (ng/mL) | 0.63 (0.46–0.88) |
SHBG (nmol/l) | 42.6 (23.68–61.5) |
FAI | 4.63 (3.67–10.3) |
Estradiol (pg/mL) | 49.0 (34.0–66.0) |
Prolactin (ng/mL) | 12.43 (9.0–18.5) |
AMH (ng/mL) | 9.24 (6.35–12.62) |
Characteristic | Regular Menses de novo (n = 17) | Sustained OM (n = 13) | p-Value |
---|---|---|---|
Age at follow-up (years) | 37.60 (35.0–42.2) | 34.4 (29.7–34.9) | 0.07 |
BMI at follow-up (kg/m2) | 24.8 (21.07–31.69) | 32.47 (23.98–39.13) | 0.04 |
BMI at baseline (kg/m2) | 22.85 (21.45–27.82) | 29.14 (25.46–36.77) | 0.07 |
Waist circumference at follow-up (cm) | 84 (75–97) | 105 (90–126) | 0.01 |
Waist circumference at baseline (cm) | 77 (71–80) | 93 (79–110) | 0.02 |
Fat mass at follow-up (%) | 31.3 (22.7–37.5) | 45 (32.7–50) | 0.008 |
Fat mass at baseline (%) | 32 (27.5–38.5) | 42 (29.6–48.1) | NS |
Glucose 0′ at follow-up (mg/dL) | 90 (89–102) | 101 (94.00–103.00) | NS |
Glucose 0′ at baseline (mg/dL) | 83 (78–89) | 86.1 (81–88) | NS |
Mean glucose at follow-up (mg/dL) | 102.25 (97.25–123.75) | 138.5 (123–152) | 0.004 |
Mean glucose at baseline (mg/dL) | 100.5 (91.25–113) | 118 (102.25–125.75) | NS |
Insulin 0′ at follow-up (uIU/mL) | 7.73 (6.15–11.54) | 16.75 (9.44–19.57) | 0.008 |
Insulin 0′ at baseline (uIU/mL) | 10.53 (7.4–14.54) | 18.5 (11.7–25.8) | 0.05 |
Mean insulin at follow-up (uIU/mL) | 45.61 (35.55–52.66) | 78.09 (58.64–105.37) | 0.02 |
Mean insulin at baseline (uIU/mL) | 54.5 (37.55–83.25) | 102.15 (66.63–116.93) | 0.02 |
M-clamp value at baseline (mg/kgffm/min) | 9.84 (8.4–11.99) | 5.83 (4.17–7.92) | 0.006 |
Matsuda index at follow-up | 5.27 (3.06–6.56) | 1.99 (1.57–3.41) | 0.008 |
Matsuda index at baseline | 4.23 (2.71–6.42) | 1.83 (1.59–3.4) | 0.02 |
Prediabetes at follow-up n (%) | 5 (29.41%) | 9 (69.23%) | 0.03 |
Triglycerides at follow-up (mg/dL) | 63 (50–97) | 113 (74–210) | 0.01 |
Triglycerides at baseline (mg/dL) | 74 (51–92) | 109.2 (76–172) | NS |
LDL-c at follow-up (mg/dL) | 111.4 (100.4–117.6) | 104 (101–110) | NS |
LDL-c at baseline (mg/dL) | 92.8 (78.2–139.8) | 99 (88.4–127.4) | NS |
HDL-c at follow-up (mg/dL) | 68.0 (56.0–71.0) | 50 (42–100) | NS |
HDL-c at baseline (mg/dL) | 58.2 (53.0–69.0) | 56 (43–66) | NS |
HsCRP at follow-up (mg/L) | 0.38 (0.26–1.06) | 3.49 (1.09–6.16) | 0.003 |
HsCRP at baseline (mg/L) | 0.94 (0.14–1.61) | 2.13 (1.47–4.76) | 0.01 |
E-selectin at follow-up (ng/mL) | 10.6 (9.3–12.49) | 16.42 (13.22–30.67) | 0.009 |
E-selectin at baseline (ng/mL) | 27.2 (16.72–36.15) | 39.23 (26.59–55.94) | 0.04 |
Systolic blood pressure at follow-up (mmHg) | 122 (109–125) | 130 (122–135) | 0.01 |
Systolic blood pressure at baseline (mmHg) | 120 (110–125) | 120 (110–130) | NS |
Metabolic syndrome according to IDF at follow-up n (%) | 3 (17.65%) | 8 (61.54%) | 0.01 |
Metabolic syndrome according to IDF at baseline n (%) | 1 (5.88%) | 5 (38.46%) | 0.03 |
FSH at follow-up (mIU/mL) | 6.65 (5.5–7.99) | 5.08 (4.55–5.26) | 0.02 |
FSH at baseline (mIU/mL) | 6.9 (5.6–7.6) | 4.9 (3.64–5.9) | 0.04 |
LH/FSH at follow-up | 0.65 (0.49–0.87) | 1.27 (0.81–1.88) | 0.004 |
LH/FSH at baseline | 1.14 (0.79–1.44) | 1.96 (1.29–2.26) | 0.01 |
TT at follow-up (ng/mL) | 0.39 (0.32–0.48) | 0.58 (0.5–0.74) | 0.01 |
TT at baseline (ng/mL) | 0.57 (0.45–0.71) | 0.77 (0.61–1.06) | NS |
SHBG at follow-up (nmol/L) | 51.79 (37.66–66.32) | 29.34 (23.36–105.09) | NS |
SHBG at baseline (nmol/L) | 45.13 (34.35–60.90) | 27.20 (20.45–54.42) | NS |
AMH at follow-up (ng/mL) | 2.51 (1.49–3.45) | 8.14 (7.44–12.13) | 0.0009 |
AMH at baseline (ng/mL) | 7.24 (5.46–9.45) | 11.28 (9.91–13.88) | 0.04 |
Attempts of pregnancy a (months) | 2 (1–12) (n = 11) | 42 (18–66) (n = 8) | 0.02 |
Characteristic | Normalized Ovarian Morphology (n = 15) | Persistent PCOM (n = 15) | p-Value |
---|---|---|---|
Age at follow-up (years) | 38.1 (35–42.2) | 33.6 (28–34.9) | 0.004 |
Age of first menorrhea (years) | 13 (12–15) | 12 (12–13) | 0.07 |
FSH at follow-up (mIU/mL) | 6.64 (5.26–8.2) | 4.92 (4.54–5.88) | 0.04 |
FSH at baseline (mIU/mL) | 6.90 (5.6–8.27) | 5 (3.64–5.9) | 0.006 |
LH/FSH at follow-up | 0.70 (0.49–1.07) | 0.84 (0.75–1.8) | 0.07 |
LH/FSH at baseline | 1.14 (0.83–1.46) | 1.66 (1.1–2.46) | 0.04 |
TT at follow-up (ng/mL) | 0.39 (0.29–0.53) | 0.58 (0.44–0.89) | 0.01 |
∆TT (ng/mL) | −0.34 (−0.72–(−0.06)) | −0.01 (−0.18–0.22) | 0.003 |
FAI at follow-up | 2.25 (1.20–2.80) | 6.83 (2.16–10.01) | 0.04 |
∆FAI | −2.06 (−6.68–(−0.80)) | −0.5 (−1.57–2.3) | 0.05 |
A4 at follow-up (ng/mL) | 3.75 (2.65–4.57) | 4.92 (3.84–5.68) | 0.02 |
OHP-17 at follow-up (ng/mL) | 1.03 (0.89–1.38) | 1.4 (1.16–1.72) | 0.04 |
E2 at follow-up (pg/mL) | 50.75 (35.5–84.44) | 73.82 (63.21–91.28) | 0.06 |
∆E2 (pg/mL) | 9.27 (–0.20–38.32) | 34.82 (−4.08–48.57) | NS |
AMH at follow-up (ng/mL) | 2.20 (1.03–2.94) | 8.57 (5.46–14.1) | 0.00002 |
∆AMH (ng/mL) | −5.26 (−7.04–(−2.31)) | −2.03 (−4.88–0.79) | 0.06 |
Ovarian follicle number at follow-up (n = 30) | 11 (9–14) | 23.5 (19–28) | 0.00001 |
Ovarian volume at follow-up (mL) | 7.49 (5.87–9.6) | 13.7 (12.39–21.09) | 0.0004 |
Oligomenorrhea at follow-up n (%) | 3 (20%) | 9 (60%) | 0.03 |
↑TT/FAI at follow-up n (%) | 3 (20%) | 10 (66.67%) | 0.01 |
E-selectin at follow-up (ng/mL) | 10.60 (6.18–12.3) | 16.65 (12.18–18.69) | 0.002 |
E-selectin at baseline (ng/mL) | 25.76 (15.27–37.15) | 35.02 (26.59–46.20) | 0.06 |
Characteristic | Resolved PCOS (n = 17) | Persistent PCOS (n = 14) | p-Value |
---|---|---|---|
Age at follow-up (years) | 37.6 (35–42.2) | 34.2 (30.2–34.9) | 0.05 |
BMI at follow-up (kg/m2) | 25.56 (21.07–28.83) | 33.38 (21.98–39.13) | 0.08 |
BMI at baseline (kg/m2) | 23.80 (21.45–27.82) | 30.09 (21.77–36.77) | NS |
Waist circumference at follow-up (cm) | 86 (76–95) | 107.5 (80–126) | 0.04 |
Waist circumference at baseline (cm) | 78 (71–85) | 95 (71–110) | NS |
Fat mass at follow-up (%) | 31.3 (22.7–37.5) | 41.5 (27.7–50) | 0.03 |
Fat mass at baseline (%) | 34.0 (27.5–38.5) | 38.05 (27.5–48.1) | NS |
Glucose 0′ at follow-up (mg/dL) | 91 (89–102) | 96 (90–103) | NS |
Glucose 0′ at baseline (mg/dL) | 81 (78–86) | 86.55 (83–94.4) | 0.08 |
Mean glucose at follow-up (mg/dL) | 104.75 (97.25–147.25) | 125.63 (109.5–147) | NS |
Mean glucose at baseline (mg/dL) | 101.5 (91.25–114.75) | 112.39 (96–123.25) | NS |
Insulin 0′ at follow-up (uIU/mL) | 8.2 (6.15–11.54) | 16.54 (7.3–20.31) | 0.02 |
Insulin 0′ at baseline (uIU/mL) | 10.53 (7.4–14.54) | 16.22 (11.7–25.8) | 0.04 |
Mean insulin at follow-up (uIU/mL) | 45.8 (35.62–52.66) | 69.25 (35.68–105.37) | 0.08 |
Mean insulin at baseline (uIU/mL) | 54.5 (37.55–83.25) | 84.81 (63.26–116.93) | 0.09 |
Matsuda index at follow-up | 5.2 (3.06–6.56) | 2.07 (1.7–5.62) | 0.07 |
Matsuda index at baseline | 4.23 (2.71–6.42) | 2.29 (1.8–4.02) | 0.04 |
HOMA-IR score at follow-up | 1.82 (1.35–2.71) | 4.15 (1.52–5.09) | 0.03 |
HOMA-IR score at baseline | 2.24 (1.41–2.99) | 3.52 (2.51–5.91) | 0.02 |
HOMA-%β at follow-up | 90.31 (75.2–109.31) | 141.57 (115.16–192.38) | 0.006 |
HOMA-%β at baseline | 190.29 (164.77–346.5) | 252.44 (195.88–298.59) | NS |
Prediabetes at follow-up n (%) | 7 (41%) | 7 (50%) | NS |
Triglycerides at follow-up (mg/dL) | 63 (50–83) | 116 (58–210) | 0.03 |
Triglycerides at baseline (mg/dL) | 65 (48.6–86) | 120.1 (76–172) | 0.02 |
HDL-c at follow-up (mg/dL) | 69 (56–73) | 52.5 (42–85) | NS |
HDL-c at baseline (mg/dL) | 63 (53–69) | 56 (43–66.2) | NS |
Systolic blood pressure at follow-up (mmHg) | 122 (110–125) | 127 (116–132) | NS |
Systolic blood pressure at baseline (mmHg) | 120 (110–125) | 120 (110–130) | NS |
LH at follow-up (mIU/mL) | 4.53 (3.78–5.56) | 4.68 (3.81–9.91) | NS |
LH at baseline (mIU/mL) | 7.7 (4.5–10.62) | 8.3 (5.5–11.2) | NS |
FSH at follow-up (mIU/mL) | 6.64 (5.5–7.99) | 4.86 (4.54–5.26) | 0.01 |
FSH at baseline (mIU/mL) | 6.9 (5.6–8.01) | 4.95 (3.64–5.9) | 0.01 |
LH/FSH at follow-up | 0.7 (0.49–0.87) | 1.05 (0.76–1.88) | 0.02 |
LH/FSH at baseline | 1.1 (0.83–1.44) | 1.81 (1.29–2.26) | 0.01 |
TT at follow-up (ng/mL) | 0.37 (0.32–0.48) | 0.63 (0.5–0.89) | 0.0002 |
TT at baseline (ng/mL) | 0.63 (0.46–0.73) | 0.63 (0.52–0.88) | NS |
SHBG at follow-up (nmol/L) | 56.75 (43.35–70.97) | 32.44 (23.36–87.35) | 0.09 |
SHBG at baseline (nmol/L) | 45.13 (31.62–60.90) | 31.98 (20.45–61.5) | NS |
FAI at follow-up | 2.2 (1.36–2.44) | 8.12 (3.53–10.01) | 0.006 |
FAI at baseline | 4.3 (3.74–7.74) | 5.16 (3.67–10.34) | NS |
A4 at follow-up (ng/mL) | 3.75 (2.65–4.69) | 5.06 (3.84–6.32) | 0.01 |
DHEAS at follow-up (µg/dL) | 179.3 (155–281) | 253.15 (217.6–299.3) | NS |
17-OHP at follow-up (ng/mL) | 1.03 (0.89–1.38) | 1.32 (1.1–1.72) | 0.07 |
AMH at follow-up (ng/mL) | 2.51 (1.49–3.45) | 8.68 (6.36–14.1) | 0.0003 |
AMH at baseline (ng/mL) | 7.24 (5.46–9.45) | 11.39 (8.39–14.1) | 0.02 |
E-selectin at follow-up (ng/mL) | 11.34 (10.49–16.80) | 14.4 (12.14–18.69) | NS |
E-selectin at baseline (ng/mL) | 27.20 (16.72–37.15) | 30.91 (26.59–46.2) | NS |
Ovarian follicle number at follow-up (n = 30) | 12 (10–17) | 23 (17–28) | 0.003 |
Ovarian volume at follow-up (mL) | 8.3 (7.24–12.8) | 13.4 (10.13–20.4) | 0.04 |
Attempts of pregnancy a (months) | 2.5 (1.25–12) n = 12 | 48 (24–84) n = 7 | 0.02 |
Covariates—Parameters Stated at the Beginning of the Follow-Up | OR | 95% CI for OR | p-Value | |
---|---|---|---|---|
Lower | Upper | |||
Age at the follow-up ** (years) | 0.84 | 0.72 | 0.98 | 0.03 |
BMI (kg/m2) | 1.05 | 0.94 | 1.17 | NS |
Waist circumference (cm) | 1.03 | 0.98 | 1.08 | NS |
Glucose 0′ (mg/dL) | 1.03 | 0.94 | 1.14 | NS |
Insulin 0′ (uIU/mL) | 1.09 | 0.98 | 1.21 | NS |
M-clamp value (mg/kgffm/min) | 0.88 | 0.70 | 1.09 | NS |
Metabolic syndrome according to IDF | 4.62 | 0.47 | 45.39 | NS |
hsCRP (mg/L) | 1.07 | 0.87 | 1.31 | NS |
E-selectin (ng/mL) | 1.08 | 1.01 | 1.17 | 0.03 |
Clinical hyperandrogenism | 0.86 | 0.21 | 3.58 | NS |
LH (mIU/mL) | 1.07 | 0.89 | 1.29 | NS |
FSH (mIU/mL) | 0.39 | 0.20 | 0.78 | 0.007 |
TT (ng/mL) | 0.56 | 0.05 | 6.57 | NS |
SHBG (nmol/L) | 0.99 | 0.96 | 1.03 | NS |
FAI | 1.06 | 0.88 | 1.28 | NS |
AMH (ng/mL) | 1.19 | 0.99 | 1.43 | 0.06 |
Prolactin (ng/mL) | 1.02 | 0.91 | 1.15 | NS |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jacewicz-Święcka, M.; Wołczyński, S.; Kowalska, I. The Effect of Ageing on Clinical, Hormonal and Sonographic Features Associated with PCOS—A Long-Term Follow-Up Study. J. Clin. Med. 2021, 10, 2101. https://doi.org/10.3390/jcm10102101
Jacewicz-Święcka M, Wołczyński S, Kowalska I. The Effect of Ageing on Clinical, Hormonal and Sonographic Features Associated with PCOS—A Long-Term Follow-Up Study. Journal of Clinical Medicine. 2021; 10(10):2101. https://doi.org/10.3390/jcm10102101
Chicago/Turabian StyleJacewicz-Święcka, Małgorzata, Sławomir Wołczyński, and Irina Kowalska. 2021. "The Effect of Ageing on Clinical, Hormonal and Sonographic Features Associated with PCOS—A Long-Term Follow-Up Study" Journal of Clinical Medicine 10, no. 10: 2101. https://doi.org/10.3390/jcm10102101
APA StyleJacewicz-Święcka, M., Wołczyński, S., & Kowalska, I. (2021). The Effect of Ageing on Clinical, Hormonal and Sonographic Features Associated with PCOS—A Long-Term Follow-Up Study. Journal of Clinical Medicine, 10(10), 2101. https://doi.org/10.3390/jcm10102101