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Abstract: Polycystic ovary syndrome (PCOS) is the most common endocrine condition in
reproductive-age women. By comprising reproductive, endocrine, metabolic and psychological
features—the cause of PCOS is still unknown. Consequently, there is no cure, and management is
persistently suboptimal as it depends on the ad hoc management of symptoms only. Recently it
has been revealed that androgens have an important role in regulating female fertility. Androgen
actions are facilitated via the androgen receptor (AR) and transgenic Ar knockout mouse models have
established that AR-mediated androgen actions have a part in regulating female fertility and ovarian
function. Considerable evidence from human and animal studies currently reinforces the hypothesis
that androgens in excess, working via the AR, play a key role in the origins of polycystic ovary
syndrome (PCOS). Identifying and confirming the locations of AR-mediated actions and the molecular
mechanisms involved in the development of PCOS is critical to provide the knowledge required for
the future development of innovative, mechanism-based interventions for the treatment of PCOS.
This review summarises fundamental scientific discoveries that have improved our knowledge of
androgen actions in PCOS etiology and how this may form the future development of effective
methods to reduce symptoms in patients with PCOS.
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1. Introduction

Polycystic ovary syndrome (PCOS) is a heterogeneous condition, which affects approximately
6% to 20% of women of reproductive age. It is the most common endocrine condition in women
of this age group [1–3]. Although there have been numerous diagnostic criteria for PCOS from the
Androgen Excess and PCOS Society (AE-PCOS), Rotterdam, and the National Institutes of Health
(NIH) (NIH criteria), an international evidence-based guideline for the assessment and management of
PCOS was released in late 2018 which endorses the use of the Rotterdam diagnostic criteria [4]. For a
woman to be diagnosed with PCOS, she must exhibit two out of the following three PCOS features:
clinical and/or biochemical androgen excess, oligo-ovulation or anovulation, and polycystic ovarian
morphology (PCOM) on ultrasound [3,5]. Nevertheless, PCOS can be accompanied by a much wider
range of co-morbidities, as patients with PCOS can also display reproductive, endocrine, metabolic
and psychological features [5,6]. Disturbed hormonal and reproductive features include luteinizing
hormone (LH) excess, hyperandrogenism, ovulatory perturbations, aberrant follicular development,
diminished fertility, and an increased risk of miscarriage [2]. Moreover, if pregnancy is attained,
women with PCOS have a considerably greater risk of pregnancy difficulties, including gestational
diabetes, hypertensive disorders and premature delivery [7]. PCOS also has a significant metabolic
component as it is linked with obesity, metabolic syndrome, hyperinsulinemia, insulin resistance,
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hepatic steatosis and dyslipidemia, which amplify the risk of type-2 diabetes and cardiovascular
disease [2,8,9]. Furthermore, the long-term risk of PCOS-related defects in offspring from women with
PCOS is an area of increasing interest, as existing data implies that maternal PCOS is linked with a
susceptibility to unfavourable PCOS-associated health consequences in their children [10].

Notwithstanding the pervasiveness of PCOS and its noteworthy health impact, a cure for PCOS
does not exist, and current strategies for its management are insufficient, as they depend on ad hoc
and imperfect treatment of symptoms. Given no drug has ever been approved specifically for the
PCOS condition [3], the majority of drugs used to treat PCOS symptoms are administered in an
off-label fashion. Currently, the genesis of PCOS continues to evade us; therefore, mechanism-based
interventions persist elusively. A significant need exists for continuing research to characterise the
etiology of PCOS, and hence deliver the required knowledge for the advancement of mechanism-based
directed interventions for this condition.

2. The Relationship between Hyperandrogenism and the Pathophysiology of PCOS

Hyperandrogenism represents a chief attribute of PCOS as elevated androgen levels are the
most constant feature, with the majority (−60%) of patients exhibiting hyperandrogenism (Rotterdam
definition) [11]. Women with hyperandrogenic PCOS present with elevated levels of various androgens,
including testosterone (T) and the pro-androgens androstenedione (A4) and dehydroepiandrosterone
sulfate (DHEAS), as well as the enzyme required to convert pro-androgens to bioactive androgens,
3β-hydroxysteroid dehydrogenase (3β-HSD) in serum [12,13]. Excess androgens can be induced
by insulin resistance and hyperinsulinemia, as they cause a reduction in sex hormone binding
globulin levels, which lead to a subsequent increase in free androgens and unfavourable metabolic
profiles [14,15]. The ovarian PCOS morphological traits of enlarged, multi-cystic ovaries and theca
interstitial hyperplasia are reported in women who are subjected to high levels of androgens as a result
of endogenous adrenal androgen hypersecretion in congenital adrenal hyperplasia [16], or exogenous
testosterone treatment in female-to-male transsexuals [17,18]. Additionally, cultured human theca
interna cells removed from PCOS ovaries exhibit higher androgen secretion that continues during
long-term culture [19]. These observations corroborate a role for androgens in the acquisition of the
PCOS ovarian features.

3. Clinical Targeting of Androgen Excess—Potential for Mitigating Against PCOS

Androgen receptor antagonists have proven useful in the treatment of PCOS phenotypes.
Through its actions on the hypothalamus, pituitary and ovarian steroidogenesis, the use of the
oral contraceptive pill has the overarching effect of reducing hyperandrogenism [20]. These effects
make the oral contraceptive pill an effective pharmacological intervention for the treatment of menstrual
irregularity, hirsutism, acne and androgenic alopecia associated with PCOS [21–24]. In PCOS patients,
third generation combined oral contraceptive pills that comprise antiandrogenic compounds, have
demonstrated a beneficial effect on the metabolic phenotypes of PCOS, with patients displaying
enhanced lipid and adipokine profiles [22]. However, oral contraceptive pills are suitable only for those
females who are not attempting to conceive. For those patients desiring to conceive, the administration
of AR blockers such as spironolactone, cyproterone acetate and flutamide, or the 5 alpha-reductase
inhibitor finasteride have shown similar efficacy for ameliorating the adverse effects of PCOS when
treating PCOS patients [3,21].

Flutamide, a competitive antagonist of the AR, is most widely used and has been reported to have
a favourable effect in women with PCOS as it decreases hirsutism and acne [25–27]. PCOS patients
under flutamide treatment also experienced improved menstrual cycle regularity and ovulation [28,29].
Additionally, treatment of both obese and lean PCOS women with flutamide revealed that independent
of weight changes, flutamide improved the lipid profile of women with PCOS, with a significant
decrease in total cholesterol, low-density lipoproteins (LDL) and triglycerides [30]. The different effects
observed between treatments are summarised in Figure 1. However, interventions that reduce levels of
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excess androgens may still not be effective in patients desiring children as it appears hyperandrogenism
may impart adverse legacies on fertility, even after follicles and oocytes have been removed from the
hyperandrogenic environment [31].

Figure 1. PCOS features and the reported effects of androgen blocking treatments in women with PCOS.

Alternative anti-androgens include spironolactone and cyproterone acetate, steroidal AR blockers
that compete with T and DHT for binding the AR. Both of these AR blockers are observed to be
effective in significantly decreasing levels of hirsutism and acne in PCOS patients [3,21]. Moreover,
spironolactone therapy in one study was reported to positively improve metabolic traits in women
with PCOS [32]. Another treatment used to appease hyperandrogenic symptoms of PCOS is finasteride,
a 5-alpha reductase inhibitor that prevents the conversion of T to DHT (a more potent androgen), and
is effective for the management of hirsutism in PCOS patients [33,34].

Taken together, results from the use of anti-androgenic drugs in PCOS patients either alone
or in combination have demonstrated that targeted inhibition of hyperandrogenism, and therefore
androgenic actions, has a beneficial effect with improvements observed in numerous PCOS traits.
Since the AR facilitates the actions of androgens, these observations provide support for an association
between hyperandrogenism and the development of an extensive array of PCOS traits. Nevertheless,
these treatments are not restorative, and such pharmacological interventions simply provide an
opportunity for PCOS women to alleviate PCOS symptoms. However, evidence suggests that
antiandrogens have unacceptable hepatotoxicity [21], which offsets their benefits for use in non-lethal
disorders, such as PCOS. Therefore, although universal androgen blockade is a rational strategy for
treating PCOS, a more targeted pharmacological approach is required. However, this necessitates a
profound understanding of the biological mechanisms supporting its development.

4. Development of Pre-Clinical Animal Models of PCOS

A powerful method to study PCOS is through animal models that mimic the features present
in the human condition of PCOS. Animal research is necessary as research in humans is hampered
due to the inability to perform fully controlled human studies that have considerable ethical and
logistical restrictions. Studies using animal models provide insights into basic biological mechanisms
stimulating the development of PCOS, and thus provide the opportunity to locate novel targets for
the treatment of PCOS that surpass current medical practice of symptom-based treatments. While
animal models of PCOS have been developed using different approaches including treatment with
androgens, estrogens, antiprogestins and genetic manipulation [35,36], the most relevant information
on the genesis of PCOS has resulted from PCOS animal model studies developed using androgen
excess [35,37,38].
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Hyperandrogenism has been postulated to play a key role in the origins of PCOS, as PCOS animal
models created through the induction of hyperandrogenism consistently produce animals that present
a broad range of reproductive, endocrine and metabolic features of PCOS [39]. These observations
are appreciated in a variety of mammalian species, including rodents, sheep and rhesus monkeys, in
which exposure to high levels of androgens during prenatal or early postnatal life has successfully
induced a breadth of PCOS features.

PCOS is most closely recapitulated in animal models with either prenatal exposure to testosterone
or DHT, or early postnatal exposure to DHEA or DHT in rodents, and in sheep and nonhuman
primates by excess prenatal exposure to testosterone (Figure 2). These animal models effectively
exhibit a PCOS-like phenotype, however, variations in the appearance of PCOS features is observed
depending on the time of androgen excess exposure, suggesting that there are developmental windows
of androgen exposure that are key in the pathogenesis of PCOS. Rodents, sheep and primates exposed
prenatally to excess levels of androgens have been reported to exhibit most of the key endocrine,
reproductive, and metabolic traits of PCOS found in women [35–38,40]. These studies support a foetal
origin for the genesis of PCOS and postulate that normal programming during gestation is altered by
excess levels of androgens in utero, leading to aberrant reproductive, endocrine and metabolic function
in women [41,42]. Prenatally androgenized rodent, sheep and nonhuman primate models of PCOS all
exhibit the clinical features of hyperandrogenism, LH hypersecretion and the development of the classic
polycystic ovarian morphology of numerous arrested antral follicles and ovulatory dysfunction [36].

Figure 2. Proposed optimal period for exposure of excess androgens to induce the PCOS phenotype
in animal models. Diagram of rodent, sheep and primate PCOS animal models and their prenatal or
postnatal period of exposure to androgens to give rise to the PCOS phenotype observed in humans.
T = Testosterone DHT = Dihydrotestosterone DHEA = Dehydroepiandrosterone.

Metabolic features of PCOS are also present in animal models of PCOS with obesity and aberrant
adipose function observed in several androgen-induced PCOS animal models. Androgenized female
mice display increased fat mass, enlarged adipocyte cells accompanied by decreased adiponectin
levels inferring adipose tissue dysfunction [43–47], whereas the rhesus monkey PCOS model exhibits
hindered preadipocyte differentiation [48]. Moreover, insulin resistance and glucose intolerance have
emerged as a result to excess androgen levels in rodent, sheep and primate PCOS animal models, once
more mimicking the clinical PCOS traits [36–38].

Additional evidence promoting androgens as significant drivers in the etiology of PCOS come
from studies reporting that treatment with AR antagonists on PCOS animal models prevented or
reversed the manifestation of some PCOS traits. For example, the prenatally androgenized PCOS
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sheep model with ovulatory dysfunction, displayed restoration of LH surges necessary for ovulation
when co-treated with the AR antagonist flutamide [49]. In a mouse model of PCOS, co-treatment with
flutamide restored estrous cycling, reduced the number of cyst-like follicles in the ovaries and reduced
body weight and adipocyte size [50]. In the brain, the use of flutamide has also been observed to
amend changes in GABAergic drive to GnRH neurons in a PCOS mouse model [51], as well as changes
observed in agouti-related peptide (AgRP) neurons in a PCOS sheep model [52]. Together, these
intervention studies demonstrate that AR mediated actions play a significant role in the development
of PCOS features in experimental models.

5. Insights into the Origin of PCOS from Studies in Pre-Clinical PCOS Animal Models

Recent research has focused on identifying the site(s) of androgen action involved in the
development of PCOS. A number of recent studies have incorporated the use of androgen receptor
knockout (ARKO) mouse models as a means to explain the direct role of androgens in PCOS
development, since androgen actions are directly mediated via the AR. It was observed in global
ARKO female mice exposed to androgen excess that PCOS could not be induced [45,53], confirming
that a functional AR is needed to develop a PCOS animal model. Moreover, androgen excess has
been suggested to act via the AR at different locations in the body, such as the hypothalamus, ovary,
adipocyte cells and/or skeletal muscle, and give rise to PCOS.

To explore the location of these sites, recent studies have used PCOS mouse models in combination
with global and cell-specific ARKO mouse models to better understand the mechanisms behind
the androgen-induced PCOS environment. To locate the main sites of AR actions, PCOS has been
induced in mice with a non-functional AR in either ovarian granulosa cells, theca cells or in the
brain. Female mice with a loss of AR function only in the granulosa cells displayed the majority
of PCOS characteristics and were only safeguarding against increased granulosa cell degeneration
in antral follicles [45]. Inactivation of AR signalling in ovarian theca cells was observed to be able
to only partially prevent the development of acyclicity, ovulatory dysfunction and infertility in an
androgen induced PCOS mouse model [45,54]. These findings indicate that the ovary is not the
primary pathophysiological site for the development of PCOS. However, silencing of AR actions in the
brain inhibited the appearance of most reproductive and metabolic traits of PCOS, pinpointing the
brain as a leading site in the pathophysiology for developing PCOS [45,55]. Further evidence ruling
out ovaries as the major pathological site of androgen actions in PCOS development was revealed
in elegant experiments using ovarian transplants. PCOS was observed to still develop in animals
when transplanting ARKO ovaries (with a non-functional AR) into ovariectomized hyperandrogenic
wild-type mice (with a functional AR)—animals which had a functional AR in all tissues except for in
the ovary [45]. In contrast, in hyperandrogenized and ovariectomized global ARKO mice that received
control ovaries containing a functional AR, PCOS did not develop [45]. These observations further
corroborate that extra-ovarian mechanism are the main drivers in the development of PCOS. Moreover,
these findings indicate that while ovarian AR signalling may be involved in the development of
reproductive features observed in PCOS, neuroendocrine androgen-driven mechanisms in the brain
are the key mediators in the developmental origins of PCOS.

6. Translation of Basic Research in PCOS for the Development of Androgen-Targeted
Interventions

There is significant evidence advocating for androgen excess mediated actions through the AR in
the origin of PCOS. However, current generations of anti-androgens are systemic and, as mentioned
earlier, lead to unacceptable liver toxicity, which disqualifies them for use in non-lethal chronic
disorders such as PCOS. Therefore, the focus of current research has been directed at identifying ways
to specifically target and suppress hyperandrogenic effects in women with PCOS.
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6.1. Neuroendocrine Pathways

A potentially effective strategy is to target AR-signalling in neuroendocrine pathways, as specific
loss of AR actions in the brain prevented hyperandrogenized mice from developing PCOS traits,
identifying the brain as a main site involved in experimental PCOS [45]. Women with PCOS, often
display an increase in LH to FSH ratio and LH pulse frequency [2], which is also observed in
rat [56], mouse [40,57] and sheep [58] PCOS models. Although GnRH neurons regulate LH and
FSH secretion, they do not express AR [59]. AR are expressed in the upstream neuronal network,
the kisspeptin-neurokinin B (NKB)-Dynorphin “KNDy” system within the arcuate nucleus, which is
involved in GnRH secretion [60–62]. Studies have shown that AR-mediated signalling participates
in the regulation of the KNDy system [63] and increased kisspeptin is observed in some PCOS
patient cohorts [64–66]. Furthermore, its expression and circuitry has been reported to be altered in
hyperandrogenized rodent and sheep PCOS animal models [46,67–69]. These results denote the KNDy
system as a potential therapeutic target to lessen AR-driven neuroendocrine actions in women with
PCOS. Yet of note, not all population studies of women with PCOS have reported changed kisspeptin
levels; however, this could be due to variations in PCOS phenotype. Nonetheless, a recent clinical study
treating PCOS patients with a neurokin-3 (NK3) receptor antagonist reduced LH and T concentrations
plus LH pulse frequency [70], favouring the KNDy system as a site of target.

6.2. Metabolic Pathways

Specific loss of AR signalling in the brain also protects hyperandrogenized PCOS mice from
developing metabolic PCOS traits, suggesting that metabolic dysfunction in PCOS patients may also
be mediated via central mechanisms regulated by the AR [45]. There is even evidence proposing that
an androgen-brain-adipocyte axis might be involved in the development of metabolic dysfunction
observed in PCOS. In a mouse model of androgen excess, leptin, a hormone predominantly made in
adipocytes and involved in energy homeostasis, has reduced homeostatic capabilities as it failed to
increase expression of uncoupling protein-1 in brown adipose tissue (BAT) [43]. Furthermore, leptin
is known to target the proopiomelanocortin (POMC) and neuropeptide Y/Agouti-related peptide
(NPY/AgRP) neurons [71]. In a PCOS mouse model, POMC mRNA and fiber projections were
reduced [43]. In contrast, in a sheep model of PCOS, androgen excess led to increased NPY/AgRP
cell number and fiber projections [52]. However, flutamide treatment blocks the NPY/AgRP neuron
changes in the sheep PCOS model [52]. Collectively, these studies support the premise that central
AR driven mechanisms are involved in the development of metabolic traits in PCOS and should be
further investigated.

Androgen receptor-driven actions occurring in adipose tissue are also of interest for the
development of new strategies to treat PCOS. Studies have shown that the observed increase in
intra-abdominal fat mass in women with PCOS, is positively correlated with circulating androgen
levels [72]. Changes in adipocyte morphology and/or function are also replicated in hyperandrogenized
rodent, sheep and primate models of PCOS [45,48,73]. Interestingly, modifications in adipocyte
morphology are observed before the onset of insulin insensitivity in the sheep model, therefore, aberrant
adipocyte function may be present before the start of metabolic dysfunction [73]. This information
stresses the importance of conducting research that identifies the mechanisms underpinning these
alterations, as it may potentially lead to treatment of PCOS from an earlier stage and thus prevent
its progression.

Another potential androgen excess-AR-driven mechanism leading to aberrant adipose tissue
function in PCOS could be the inability of adipocytes to generate adequate levels of the adipokines.
Adiponectin, an adipokine involved in glucose and lipid metabolism, has been observed to be
lower in women with PCOS [74], and several PCOS mouse models [45,75,76]. However, this
decrease was reversed in a study where brown adipose tissue (BAT) from healthy control rats was
transplanted into hyperandrogenic PCOS female rats, resulting in enhanced BAT activity, increased
serum adiponectin levels and rescue of several PCOS traits such as irregular cycles and insulin
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resistance [77]. Additionally, exogenous adiponectin administration reiterated the favourable effects
that came from BAT transplantation [77]. This result was also replicated in another study utilising a
hyperandrogenized PCOS mouse model [75]. The importance and potential therapeutic approach by
modulation of adipokines is further drawn in transgenic studies where overexpression of adiponectin
protected hyperandrogenized mice from developing metabolic PCOS traits, while lack of adiponectin
lead to amplified or comparable features to those observed in the androgen-induced PCOS mouse
model [76]. However, investigations focusing on consequential mechanisms are required.

7. Future Perspectives

New innovative approaches aimed at reducing overall androgen excess have been tested in
pre-clinical research and some clinical trials. One compound tested is dietary medium-chain fatty
acid (decanoic acid), which reduces androgen biosynthesis in vitro by modulating the actions of the
steroidogenic enzyme 3β-HSD leading to androgen reduction [78]. A study using decanoic acid as
a treatment in a rat model of PCOS reported restoration of cyclicity and reduction of T and fasting
insulin levels [78]. Another possible novel therapeutic is resveratrol, a polyphenol whose action is
to inhibit androgen production by lowering CYP17 and CYP21 protein expression and activity [79].
Moreover, resveratrol has been observed to improve some ovarian features in a rat model of PCOS [80].
The beneficial effects of resveratrol, a sirtuin (SIRT) 1 activator, have also been reported in a clinical
trial conducted in women with PCOS where resveratrol led to a decrease in total T, fasting insulin
levels, and also increased the insulin sensitivity index in these women [81]. The Sirtuin group of
proteins possesses important roles in the regulation of both metabolic and reproductive functions;
therefore, further work is required to fully dissect the roles of the SIRTs in PCOS for the development
of innovative interventions.

8. Conclusions

There is significant evidence from human and animal studies demonstrating that excess androgens
through the AR play a key role in the origin of PCOS (Figure 3). Research using hyperandrogenic animal
models of PCOS have advanced our understanding of the genesis of this condition, and have provided
insights into potential new treatments for PCOS. With continued research, the combination of clinical
observations and basic science will give way to defining the specific androgenic mechanisms governing
female reproductive function and how to develop target specific treatments for women with PCOS.

Figure 3. The most recent understanding of androgen receptor mechanisms proposed to be involved in
PCOS trait development. Here we illustrate the two proposed axes involved in the development of
reproductive and metabolic features of PCOS resulting from androgen excess and the consequential
PCOS traits developed.
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