Survival Prediction in Intrahepatic Cholangiocarcinoma: A Proof of Concept Study Using Artificial Intelligence for Risk Assessment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Diagnosis, Treatment and Follow-Up
2.3. Data Acquisition
2.4. Calculation of the Fudan Score
2.5. Design of the Neural Network
2.6. Training and Validation of the ANN
2.7. Statistical Analysis
3. Results
3.1. Baseline Characteristics
3.2. Risk Factor Identification for the ANN-Based Model
3.3. Predictive Performance of the ANN
3.4. Predictive Performance of the Fudan Score
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Von Hahn, T.; Ciesek, S.; Wegener, G.; Plentz, R.R.; Weismüller, T.J.; Wedemeyer, H.; Manns, M.P.; Greten, T.F.; Malek, N.P. Epidemiological trends in incidence and mortality of hepatobiliary cancers in Germany. Scand. J. Gastroenterol. 2011, 46, 1092–1098. [Google Scholar] [CrossRef]
- Yang, J.D.; Kim, B.; Sanderson, S.O.; Sauver, J.L.S.; Yawn, B.P.; Pedersen, R.A.; Larson, J.J.; Therneau, T.M.; Roberts, L.R.; Kim, W.R. Hepatocellular carcinoma in olmsted county, Minnesota, 1976–2008. In Proceedings of the Mayo Clinic Proceedings; Elsevier: Amsterdam, The Netherlands, 2012; Volume 87, pp. 9–16. [Google Scholar]
- Shaib, Y.H.; Davila, J.A.; McGlynn, K.; El-Serag, H.B. Rising incidence of intrahepatic cholangiocarcinoma in the United States: A true increase? J. Hepatol. 2004, 40, 472–477. [Google Scholar] [CrossRef]
- Petrick, J.L.; Braunlin, M.; Laversanne, M.; Valery, P.C.; Bray, F.; McGlynn, K.A. International trends in liver cancer incidence, overall and by histologic subtype, 1978–2007. Int. J. Cancer 2016, 139, 1534–1545. [Google Scholar] [CrossRef] [Green Version]
- Guro, H.; Kim, J.W.; Choi, Y.; Cho, J.Y.; Yoon, Y.-S.; Han, H.-S. Multidisciplinary management of intrahepatic cholangiocarcinoma: Current approaches. Surg. Oncol. 2017, 26, 146–152. [Google Scholar] [CrossRef] [PubMed]
- Park, H.M.; Yun, S.P.; Lee, E.C.; Lee, S.D.; Han, S.-S.; Kim, S.H.; Park, S.-J. Outcomes for patients with recurrent intrahepatic cholangiocarcinoma after surgery. Ann. Surg. Oncol. 2016, 23, 4392–4400. [Google Scholar] [CrossRef]
- Bridgewater, J.; Galle, P.R.; Khan, S.A.; Llovet, J.M.; Park, J.-W.; Patel, T.; Pawlik, T.M.; Gores, G.J. Guidelines for the diagnosis and management of intrahepatic cholangiocarcinoma. J. Hepatol. 2014, 60, 1268–1289. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rizzo, A.; Brandi, G. First-line Chemotherapy in Advanced Biliary Tract Cancer Ten Years After the ABC-02 Trial:“And Yet It Moves!”. Cancer Treat. Res. Commun. 2021, 27, 100335. [Google Scholar] [CrossRef]
- Hyder, O.; Marques, H.; Pulitano, C.; Marsh, J.W.; Alexandrescu, S.; Bauer, T.W.; Gamblin, T.C.; Sotiropoulos, G.C.; Paul, A.; Barroso, E. A nomogram to predict long-term survival after resection for intrahepatic cholangiocarcinoma: An Eastern and Western experience. JAMA Surg. 2014, 149, 432–438. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Li, J.; Xia, Y.; Gong, R.; Wang, K.; Yan, Z.; Wan, X.; Liu, G.; Wu, D.; Shi, L. Prognostic nomogram for intrahepatic cholangiocarcinoma after partial hepatectomy. J. Clin. Oncol. 2013, 31, 1188–1195. [Google Scholar] [CrossRef]
- Raoof, M.; Dumitra, S.; Ituarte, P.H.G.; Melstrom, L.; Warner, S.G.; Fong, Y.; Singh, G. Development and validation of a prognostic score for intrahepatic cholangiocarcinoma. JAMA Surg. 2017, 152, e170117. [Google Scholar] [CrossRef] [Green Version]
- Doussot, A.; Groot-Koerkamp, B.; Wiggers, J.K.; Chou, J.; Gonen, M.; DeMatteo, R.P.; Allen, P.J.; Kingham, T.P.; D’Angelica, M.I.; Jarnagin, W.R. Outcomes after resection of intrahepatic cholangiocarcinoma: External validation and comparison of prognostic models. J. Am. Coll. Surg. 2015, 221, 452–461. [Google Scholar] [CrossRef] [Green Version]
- Hahn, F.; Müller, L.; Mähringer-Kunz, A.; Schotten, S.; Düber, C.; Hinrichs, J.B.; Maschke, S.K.; Galle, P.R.; Bartsch, F.; Lang, H.; et al. Risk prediction in intrahepatic cholangiocarcinoma: Direct comparison of the MEGNA score and the 8th edition of the UICC/AJCC Cancer staging system. PLoS ONE 2020, 15, e0228501. [Google Scholar] [CrossRef]
- Jiang, W.; Zeng, Z.-C.; Tang, Z.-Y.; Fan, J.; Sun, H.-C.; Zhou, J.; Zeng, M.-S.; Zhang, B.-H.; Ji, Y.; Chen, Y.-X. A prognostic scoring system based on clinical features of intrahepatic cholangiocarcinoma: The Fudan score. Ann. Oncol. Off. J. Eur. Soc. Med. Oncol. 2011, 22, 1644–1652. [Google Scholar] [CrossRef]
- Mähringer-Kunz, A.; Wagner, F.; Hahn, F.; Weinmann, A.; Brodehl, S.; Schotten, S.; Hinrichs, J.B.; Düber, C.; Galle, P.R.; Pinto dos Santos, D.; et al. Predicting survival after transarterial chemoembolization for hepatocellular carcinoma using a neural network: A Pilot Study. Liver Int. 2020, 40, 694–703. [Google Scholar] [CrossRef] [Green Version]
- Cucchetti, A.; Piscaglia, F.; Grigioni, A.D.; Ravaioli, M.; Cescon, M.; Zanello, M.; Grazi, G.L.; Golfieri, R.; Grigioni, W.F.; Pinna, A.D. Preoperative prediction of hepatocellular carcinoma tumour grade and micro-vascular invasion by means of artificial neural network: A pilot study. J. Hepatol. 2010, 52, 880–888. [Google Scholar] [CrossRef]
- Yamashita, R.; Long, J.; Longacre, T.; Peng, L.; Berry, G.; Martin, B.; Higgins, J.; Rubin, D.L.; Shen, J. Deep learning model for the prediction of microsatellite instability in colorectal cancer: A diagnostic study. Lancet Oncol. 2021, 22, 132–141. [Google Scholar] [CrossRef]
- Bagante, F.; Spolverato, G.; Merath, K.; Weiss, M.; Alexandrescu, S.; Marques, H.P.; Aldrighetti, L.; Maithel, S.K.; Pulitano, C.; Bauer, T.W. Intrahepatic cholangiocarcinoma tumor burden: A classification and regression tree model to define prognostic groups after resection. Surgery 2019, 166, 983–990. [Google Scholar] [CrossRef]
- Li, Z.; Yuan, L.; Zhang, C.; Sun, J.; Wang, Z.; Wang, Y.; Hao, X.; Gao, F.; Jiang, X. A Novel Prognostic Scoring System of Intrahepatic Cholangiocarcinoma With Machine Learning Basing on Real-World Data. Front. Oncol. 2021, 10, 3146. [Google Scholar]
- Jeong, S.; Ge, Y.; Chen, J.; Gao, Q.; Luo, G.; Zheng, B.; Sha, M.; Shen, F.; Cheng, Q.; Sui, C. Latent Risk Intrahepatic Cholangiocarcinoma Susceptible to Adjuvant Treatment After Resection: A Clinical Deep Learning Approach. Front. Oncol. 2020, 10, 143. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Collins, G.S.; Reitsma, J.B.; Altman, D.G.; Moons, K.G.M. Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD) the TRIPOD statement. Circulation 2015, 131, 211–219. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vandenbroucke, J.P.; Von Elm, E.; Altman, D.G.; Gøtzsche, P.C.; Mulrow, C.D.; Pocock, S.J. The strengthening the reporting of observational studies in epidemiology (strobe) statement: Guidelines for reporting. Ann. Intern. Med. 2007, 147, 573–578. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weinmann, A.; Koch, S.; Niederle, I.M.; Schulze-Bergkamen, H.; König, J.; Hoppe-Lotichius, M.; Hansen, T.; Pitton, M.B.; Düber, C.; Otto, G. Trends in epidemiology, treatment, and survival of hepatocellular carcinoma patients between 1998 and 2009: An analysis of 1066 cases of a German HCC Registry. J. Clin. Gastroenterol. 2014, 48, 279–289. [Google Scholar] [CrossRef]
- Meng, Z.-W.; Pan, W.; Hong, H.-J.; Chen, J.-Z.; Chen, Y.-L. Macroscopic types of intrahepatic cholangiocarcinoma and the eighth edition of AJCC/UICC TNM staging system. Oncotarget 2017, 8, 101165. [Google Scholar] [CrossRef] [Green Version]
- Hahn, F.; Müller, L.; Stöhr, F.; Mähringer-Kunz, A.; Schotten, S.; Düber, C.; Bartsch, F.; Lang, H.; Galle, P.R.; Weinmann, A.; et al. The role of sarcopenia in patients with intrahepatic cholangiocarcinoma: Prognostic marker or hyped parameter? Liver Int. 2019, 39, 1307–1314. [Google Scholar] [CrossRef] [PubMed]
- Chakedis, J.; Spolverato, G.; Beal, E.W.; Woelfel, I.; Bagante, F.; Merath, K.; Sun, S.H.; Chafitz, A.; Galo, J.; Dillhoff, M. Pre-operative sarcopenia identifies patients at risk for poor survival after resection of biliary tract cancers. J. Gastrointest. Surg. 2018, 22, 1697–1708. [Google Scholar] [CrossRef]
- Hidden Layer. Available online: https://deepai.org/machine-learning-glossary-and-terms/hidden-layer-machine-learning (accessed on 23 April 2021).
- Uno, H.; Cai, T.; Pencina, M.J.; D’Agostino, R.B.; Wei, L.-J. On the C-statistics for evaluating overall adequacy of risk prediction procedures with censored survival data. Stat. Med. 2011, 30, 1105–1117. [Google Scholar] [CrossRef] [Green Version]
- Schnitzbauer, A.A.; Eberhard, J.; Bartsch, F.; Brunner, S.M.; Ceyhan, G.O.; Walter, D.; Fries, H.; Hannes, S.; Hecker, A.; Li, J. The MEGNA score and preoperative anemia are major prognostic factors after resection in the German intrahepatic cholangiocarcinoma cohort. Ann. Surg. Oncol. 2019, 27, 1147–1155. [Google Scholar] [CrossRef]
- Swets, J.A. Measuring the accuracy of diagnostic systems. Science 1988, 240, 1285–1293. [Google Scholar] [CrossRef] [Green Version]
- Duncan, I.G. Healthcare Risk Adjustment and Predictive Modeling; Actex Publications: Winsted, TX, USA, 2011; ISBN 1566987695. [Google Scholar]
- Xue, B.; Wu, S.; Zheng, M.; Jiang, H.; Chen, J.; Jiang, Z.; Tian, T.; Tu, Y.; Zhao, H.; Shen, X. Development and Validation of a Radiomic-Based Model for Prediction of Intrahepatic Cholangiocarcinoma in Patients With Intrahepatic Lithiasis Complicated by Imagologically Diagnosed Mass. Front. Oncol. 2021, 10, 2807. [Google Scholar] [CrossRef] [PubMed]
- Chu, H.; Liu, Z.; Liang, W.; Zhou, Q.; Zhang, Y.; Lei, K.; Tang, M.; Cao, Y.; Chen, S.; Peng, S. Radiomics using CT images for preoperative prediction of futile resection in intrahepatic cholangiocarcinoma. Eur. Radiol. 2020, 31, 2368–2376. [Google Scholar] [CrossRef] [PubMed]
- Ji, G.-W.; Zhu, F.-P.; Zhang, Y.-D.; Liu, X.-S.; Wu, F.-Y.; Wang, K.; Xia, Y.-X.; Zhang, Y.-D.; Jiang, W.-J.; Li, X.-C. A radiomics approach to predict lymph node metastasis and clinical outcome of intrahepatic cholangiocarcinoma. Eur. Radiol. 2019, 29, 3725–3735. [Google Scholar] [CrossRef]
- Coussens, L.M.; Werb, Z. Inflammation and cancer. Nature 2002, 420, 860–867. [Google Scholar] [CrossRef] [PubMed]
- Sun, K.; Chen, S.; Xu, J.; Li, G.; He, Y. The prognostic significance of the prognostic nutritional index in cancer: A systematic review and meta-analysis. J. Cancer Res. Clin. Oncol. 2014, 140, 1537–1549. [Google Scholar] [CrossRef] [PubMed]
- Lamarca, A.; Barriuso, J.; Chander, A.; McNamara, M.G.; Hubner, R.A.; OReilly, D.; Manoharan, P.; Valle, J.W. 18F-fluorodeoxyglucose positron emission tomography (18FDG-PET) for patients with biliary tract cancer: Systematic review and meta-analysis. J. Hepatol. 2019, 71, 115–129. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seidensticker, M.; Schütte, K.; Seidensticker, R.; Mühlmann, M.; Schulz, C. Multi-modal and sequential treatment of liver cancer and its impact on the gastrointestinal tract. Best Pract. Res. Clin. Gastroenterol. 2020, 48–49, 101709. [Google Scholar] [CrossRef]
- Facciorusso, A.; Bhoori, S.; Sposito, C.; Mazzaferro, V. Repeated transarterial chemoembolization: An overfitting effort? J. Hepatol. 2015, 62, 1440–1442. [Google Scholar] [CrossRef] [Green Version]
All (n = 293) | Training Set (n = 233) | Validation Set (n = 60) | p-Value | ||
---|---|---|---|---|---|
Age, years | Median (IQR) | 66.0 (57–73) | 66.1 (57–73) | 65.4 (57–73) | 0.79 † |
Sex, n (%) | Male | 176 (60.1) | 143 (61.4) | 33 (55.0) | 0.38 ‡ |
Female | 117 (39.9) | 90 (38.6) | 27 (45.0) | ||
Number of intrahepatic lesions, n (%) | 1 | 174 (59.4) | 135 (57.9) | 39 (65.0) | 0.07 †† |
2 | 30 (10.2) | 28 (12.0) | 2 (3.3) | ||
3 | 14 (4.8) | 14 (6.0) | 0 (0.0) | ||
4 | 14 (4.8) | 10 (4.3) | 4 (6.7) | ||
≥5 | 61 (20.8) | 46 (19.8) | 15 (25.0) | ||
Tumor size, mm | Median (IQR) | 89 (56–146) | 88 (56–145) | 98 (55–153) | 0.90 † |
Tumor boundary type, n (%) | Distinct | 105 (35.8) | 88 (37.8) | 17 (28.3) | 0.23 ‡ |
Obscure | 188 (64.2) | 145 (62.2) | 43 (71.7) | ||
Tumor spread, n (%) | Unifocal or intra-lobar metastasis | 206 (70.3) | 161 (69.1) | 45 (75.0) | 0.43 ‡ |
Translobar metastasis | 87 (29.7) | 72 (30.1) | 15 (25.0) | ||
UICC T stage ≥ 3, n (%) | Yes | 64 (21.8) | 51 (21.9) | 13 (21.7) | 0.58 ‡ |
No | 229 (78.2) | 182 (78.1) | 47 (78.3) | ||
Lymph node metastases, n (%) | Yes | 88 (30.0) | 70 (30.0) | 18 (30.0) | 1.00 ‡ |
No | 205 (70.0) | 163 (70.0) | 42 (70.0) | ||
Distant metastases, n (%) | Yes | 74 (25.3) | 57 (24.5) | 17 (28.3) | 0.62 ‡ |
No | 219 (74.7) | 176 (75.5) | 43 (71.7) | ||
AP serum levels, U/L | Median (IQR) | 161 (102–290) | 158 (99–306) | 168 (116–256) | 0.50 † |
Ca 19-9 serum levels, U/mL | Median (IQR) | 80 (22–800) | 82 (18–773) | 70 (31–1046) | 0.46 † |
Albumin, g/dL | Median (IQR) | 3.8 (3.4–4.2) | 3.9 (3.4–4.2) | 3.8 (3.4–4.1) | 0.29 † |
Initial therapy | Resection | 143 (48.8) | 116 (49.8) | 27 (45.0) | 0.19 †† |
Ablation | 3 (1.0) | 1 (0.4) | 2 (3.3) | ||
TACE * | 14 (4.8) | 9 (3.9) | 5 (8.3) | ||
SIRT * | 29 (9.9) | 24 (10.3) | 5 (8.3) | ||
Chemotherapy only | 54 (18.4) | 41 (17.6) | 13 (21.7) | ||
BSC | 50 (17.1) | 42 (18.0) | 8 (13.3) |
Factor | Univariate | |
---|---|---|
HR (95% CI) | p-Value | |
Age > 60 years | 1.2 (0.9–1.6) | 0.140 |
Max. tumor size > 10 cm | 1.9 (1.5–2.5) | <0.001 |
Multifocality | 2.0 (1.6–2.6) | <0.001 |
Obscure tumor boundary | 2.4 (1.8–3.2) | <0.001 |
Translobar spread | 2.9 (2.2–3.8) | <0.001 |
Extrahepatic tumor growth | 1.6 (1.2–2.2) | <0.001 |
Lymph node metastases | 2.1 (1.6–2.7) | <0.001 |
Distant metastases | 4.2 (3.1–5.7) | <0.001 |
Ca 19-9 > 37 U/mL | 2.2 (1.7–2.9) | <0.001 |
AP > 147 U/L | 2.0 (1.5–2.5) | <0.001 |
Albumin < 3.5 g/dL | 2.6 (2.0–3.5) | <0.001 |
Low PMI | 1.6 (1.2–2.0) | <0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Müller, L.; Mähringer-Kunz, A.; Gairing, S.J.; Foerster, F.; Weinmann, A.; Bartsch, F.; Heuft, L.-K.; Baumgart, J.; Düber, C.; Hahn, F.; et al. Survival Prediction in Intrahepatic Cholangiocarcinoma: A Proof of Concept Study Using Artificial Intelligence for Risk Assessment. J. Clin. Med. 2021, 10, 2071. https://doi.org/10.3390/jcm10102071
Müller L, Mähringer-Kunz A, Gairing SJ, Foerster F, Weinmann A, Bartsch F, Heuft L-K, Baumgart J, Düber C, Hahn F, et al. Survival Prediction in Intrahepatic Cholangiocarcinoma: A Proof of Concept Study Using Artificial Intelligence for Risk Assessment. Journal of Clinical Medicine. 2021; 10(10):2071. https://doi.org/10.3390/jcm10102071
Chicago/Turabian StyleMüller, Lukas, Aline Mähringer-Kunz, Simon Johannes Gairing, Friedrich Foerster, Arndt Weinmann, Fabian Bartsch, Lisa-Katharina Heuft, Janine Baumgart, Christoph Düber, Felix Hahn, and et al. 2021. "Survival Prediction in Intrahepatic Cholangiocarcinoma: A Proof of Concept Study Using Artificial Intelligence for Risk Assessment" Journal of Clinical Medicine 10, no. 10: 2071. https://doi.org/10.3390/jcm10102071
APA StyleMüller, L., Mähringer-Kunz, A., Gairing, S. J., Foerster, F., Weinmann, A., Bartsch, F., Heuft, L.-K., Baumgart, J., Düber, C., Hahn, F., & Kloeckner, R. (2021). Survival Prediction in Intrahepatic Cholangiocarcinoma: A Proof of Concept Study Using Artificial Intelligence for Risk Assessment. Journal of Clinical Medicine, 10(10), 2071. https://doi.org/10.3390/jcm10102071