Venous Thromboembolic Disease in Chronic Inflammatory Lung Diseases: Knowns and Unknowns
Abstract
:1. Introduction
2. Asthma and VTE
3. Chronic Obstructive Pulmonary Disease and VTE
4. Interstitial Lung Diseases and VTE
5. Tuberculosis and VTE
6. In Situ Thrombosis of the Pulmonary Arteries: Another Piece to the Puzzle of Acute VTE in Patients with Chronic Inflammatory Lung Diseases?
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Konstantinides, S.V.; Meyer, G.; Becattini, C.; Bueno, H.; Geersing, G.J.; Harjola, V.P.; Huisman, M.V.; Humbert, M.; Jennings, C.S.; Jiménez, D.; et al. The Task Force for the diagnosis and management of acute pulmonary embolism of the European Society of Cardiology (ESC). 2019 ESC Guidelines for the diagnosis and management of acute pulmonary embolism developed in collaboration with the European Respiratory Society (ERS): The Task Force for the diagnosis and management of acute pulmonary embolism of the European Society of Cardiology (ESC). Eur. Respir J. 2019, 54, 1901647. [Google Scholar] [PubMed] [Green Version]
- Fedullo, P.F.; Tapson, V.F. Clinical practice. The evaluation of suspected pulmonary embolism. N. Engl. J. Med. 2003, 349, 1247–1256. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barco, S.; Mahmoudpour, S.H.; Valerio, L.; Klok, F.A.; Münzel, T.; Middeldorp, S.; Ageno, W.; Cohen, A.T.; Hunt, B.J.; Konstantinides, S.V. Trends in mortality related to pulmonary embolism in the European Region, 2000–2015: Analysis of vital registration data from the WHO Mortality Database. Lancet Respir. Med. 2020, 8, 277–287. [Google Scholar] [CrossRef]
- Di Nisio, M.; van Es, N.; Büller, H.R. Deep vein thrombosis and pulmonary embolism. Lancet 2016, 388, 3060–3073. [Google Scholar] [CrossRef]
- Danwang, C.; Bigna, J.J.; Awana, A.P.; Nzalie, R.N.; Robert, A. Global epidemiology of venous thromboembolism in people with active tuberculosis: A systematic review and meta-analysis. J. Thromb. Thrombolysis. 2021, 51, 502–512. [Google Scholar] [CrossRef]
- Vazquez-Garza, E.; Jerjes-Sanchez, C.; Navarrete, A.; Joya-Harrison, J.; Rodriguez, D. Venous thromboembolism: Thrombosis, inflammation, and immunothrombosis for clinicians. J. Thromb. Thrombolysis. 2017, 44, 377–385. [Google Scholar] [CrossRef]
- Branchford, B.R.; Carpenter, S.L. The Role of Inflammation in Venous Thromboembolism. Front. Pediatr. 2018, 6, 142. [Google Scholar] [CrossRef]
- Schimanski, S.; Linnemann, B.; Luxembourg, B.; Seifried, E.; Jilg, W.; Lindhoff-Last, E.; Schambeck, C.M. Cytomegalovirus infection is associated with venous thromboembolism of immunocompetent adults--a case-control study. Ann. Hematol. 2012, 91, 597–604. [Google Scholar] [CrossRef]
- Valerio, L.; Riva, N. Head, Neck, and Abdominopelvic Septic Thrombophlebitis: Current Evidence and Challenges in Diagnosis and Treatment. Hamostaseologie 2020, 40, 301–310. [Google Scholar] [CrossRef]
- Bray, M.A.; Sartain, S.E.; Gollamudi, J.; Rumbaut, R.E. Microvascular thrombosis: Experimental and clinical implications. Transl. Res. 2020, 225, 105–130. [Google Scholar] [CrossRef]
- Green, C.E.; Turner, A.M. The role of the endothelium in asthma and chronic obstructive pulmonary disease (COPD). Respir. Res. 2017, 18, 20. [Google Scholar] [CrossRef] [Green Version]
- Stockley, R.A. Neutrophils and the pathogenesis of COPD. Chest 2002, 121, 151S–155S. [Google Scholar] [CrossRef] [Green Version]
- Amsellem, V.; Gary-Bobo, G.; Marcos, E.; Maitre, B.; Chaar, V.; Validire, P.; Stern, J.B.; Noureddine, H.; Sapin, E.; Rideau, D.; et al. Telomere dysfunction causes sustained inflammation in chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 2011, 184, 1358–1366. [Google Scholar] [CrossRef]
- Dejana, E.; Lampugnani, M.G. Endothelial cell transitions. Science 2018, 362, 746–747. [Google Scholar] [CrossRef] [PubMed]
- Eapen, M.S.; Lu, W.; Gaikwad, A.V.; Bhattarai, P.; Chia, C.; Hardikar, A.; Haug, G.; Sohal, S.S. Endothelial to mesenchymal transition: A precursor to post-COVID-19 interstitial pulmonary fibrosis and vascular obliteration? Eur. Respir. J. 2020, 56, 2003167. [Google Scholar] [CrossRef]
- Racanelli, A.C.; Kikkers, S.A.; Choi, A.M.K.; Cloonan, S.M. Autophagy and inflammation in chronic respiratory disease. Autophagy 2018, 14, 221–232. [Google Scholar] [CrossRef] [PubMed]
- Chung, W.S.; Lin, C.L.; Ho, F.M.; Li, R.Y.; Sung, F.C.; Kao, C.H.; Yeh, J.J. Asthma increases pulmonary thromboembolism risk: A nationwide population cohort study. Eur. Respir. J. 2014, 43, 801–807. [Google Scholar] [CrossRef] [Green Version]
- Lee, P.H.; Fu, P.K. Pulmonary Embolism and Severe Asthma: Case Report and Literature Review. Medicina 2019, 55, 647. [Google Scholar] [CrossRef] [Green Version]
- Hashimoto, T.; Ando, M.; Kan, T.; Fujishima, N.; Yamasue, M.; Komiya, K.; Umeki, K.; Nureki, S.I.; Kadota, J.I. Asthma Exacerbation Coincident with Saddle Pulmonary Embolism and Paradoxical Embolism. Tohoku J. Exp. Med. 2019, 248, 137–141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Boer, J.D.; Majoor, C.J.; van 't Veer, C.; Bel, E.H.; van der Poll, T. Asthma and coagulation. Blood 2012, 119, 3236–3244. [Google Scholar] [CrossRef]
- Yeh, J.J.; Wang, Y.C.; Kao, C.H. Asthma-Chronic Obstructive Pulmonary Disease Overlap Syndrome Associated with Risk of Pulmonary Embolism. PLoS ONE 2016, 11, e0162483. [Google Scholar]
- Corbett, V.; Hassouna, H.; Girgis, R. In situ thrombosis of the pulmonary arteries: An emerging new perspective on pulmonary embolism. Med. Student Res. J. 2015, 4, 54–58. [Google Scholar]
- Majoor, C.J.; Kamphuisen, P.W.; Zwinderman, A.H.; Ten Brinke, A.; Amelink, M.; Rijssenbeek-Nouwens, L.; Sterk, P.J.; Büller, H.R.; Bel, E.H. Risk of deep vein thrombosis and pulmonary embolism in asthma. Eur. Respir. J. 2013, 42, 655–661. [Google Scholar] [CrossRef]
- Zöller, B.; Pirouzifard, M.; Memon, A.A.; Sundquist, J.; Sundquist, K. Risk of pulmonary embolism and deep venous thrombosis in patients with asthma: A nationwide case−control study from Sweden. Eur. Respir. J. 2017, 49, 1601014. [Google Scholar] [CrossRef] [PubMed]
- Johannesdottir, S.A.; Horváth-Puhó, E.; Dekkers, O.M.; Cannegieter, S.C.; Jørgensen, J.O.; Ehrenstein, V.; Vandenbroucke, J.P.; Pedersen, L.; Sørensen, H.T. Use of glucocorticoids and risk of venous thromboembolism: A nationwide population-based case-control study. JAMA Intern. Med. 2013, 173, 743–752. [Google Scholar] [CrossRef] [Green Version]
- Stuijver, D.J.F.; Majoor, C.J.; van Zaane, B.; Souverein, P.C.; de Boer, A.; Dekkers, O.M.; Büller, H.R.; Gerdes, V.E.A. Use of oral glucocorticoids and the risk of pulmonary embolism: A population-based case-control study. Chest 2013, 143, 1337–1342. [Google Scholar] [CrossRef]
- Alzghoul, B.N.; Reddy, R.; Chizinga, M.; Innabi, A.; Zou, B.; Papierniak, E.S.; Faruqi, I. Pulmonary Embolism in Acute Asthma Exacerbation: Clinical Characteristics, Prediction Model and Hospital Outcomes. Lung 2020, 198, 661–669. [Google Scholar] [CrossRef] [PubMed]
- Sneeboer, M.M.S.; Majoor, C.J.; de Kievit, A.; Meijers, J.C.M.; van der Poll, T.; Kamphuisen, P.W.; Bel, E.H. Prothrombotic state in patients with severe and prednisolone-dependent asthma. J. Allergy Clin. Immunol. 2016, 137, 1727–1732. [Google Scholar] [CrossRef] [Green Version]
- Global Initiative for Chronic Obstructive Lung Disease (GOLD), Global Strategy for The Diagnosis, Management, And Prevention of Chronic Obstructive Pulmonary Disease. 2020. Available online: https://goldcopd.org/wp-content/uploads/2019/12/GOLD-2020-FINAL-ver1.2-03Dec19_WMV.pdf (accessed on 3 March 2021).
- Hassen, M.F.; Tilouche, N.; Jaoued, O.; Elatrous, S. Incidence and Impact of Pulmonary Embolism During Severe COPD Exacerbation. Respir. Care 2019, 64, 1531–1536. [Google Scholar] [CrossRef]
- Fogarty, A.W.; Lewis, S.A.; McKeever, T.M.; Lowe, G.D.; Clark, L.; Britton, J. The association between blood coagulation activity and lung function: A population-based study. PLoS ONE 2010, 5, e15014. [Google Scholar] [CrossRef] [PubMed]
- Kubota, Y.; London, S.J.; Cushman, M.; Chamberlain, A.M.; Rosamond, W.D.; Heckbert, S.R.; Zakai, N.; Folsom, A.R. Lung function, respiratory symptoms and venous thromboembolism risk: The Atherosclerosis Risk in Communities Study. J. Thromb. Haemost 2016, 14, 2394–2401. [Google Scholar] [CrossRef]
- Juul, K.; Tybjaerg-Hansen, A.; Mortensen, J.; Lange, P.; Vestbo, J.; Nordestgaard, B.G. Factor V leiden homozygosity, dyspnea, and reduced pulmonary function. Arch. Intern. Med. 2005, 165, 2032–2036. [Google Scholar] [CrossRef]
- Cao, Y.Q.; Dong, L.X.; Cao, J. Pulmonary Embolism in Patients with Acute Exacerbation of Chronic Obstructive Pulmonary Disease. Chin. Med. J. Engl. 2018, 131, 1732–1737. [Google Scholar] [CrossRef] [PubMed]
- Rizkallah, J.; Man, S.F.P.; Sin, D.D. Prevalence of pulmonary embolism in acute exacerbations of COPD: A systematic review and metaanalysis. Chest 2009, 135, 786–793. [Google Scholar] [CrossRef] [Green Version]
- Pourmand, A.; Robinson, H.; Mazer-Amirshahi, M.; Pines, J.M. Pulmonary Embolism Among Patients With Acute Exacerbation Of Chronic Obstructive Pulmonary Disease: Implications For Emergency Medicine. J. Emerg. Med. 2018, 55, 339–346. [Google Scholar] [CrossRef] [PubMed]
- Aleva, F.E.; Voets, L.W.; Simons, S.O.; de Mast, Q.; van der Ven, A.J.A.M.; Heijdra, Y.F. Prevalence and Localization of Pulmonary Embolism in Unexplained Acute Exacerbations of COPD: A Systematic Review and Meta-analysis. Chest 2017, 151, 544–554. [Google Scholar] [CrossRef]
- Dentali, F.; Pomero, F.; Micco, P.D.; La Regina, M.; Landini, F.; Mumoli, N.; Pieralli, F.; Giorgi-Pierfranceschi, M.; Re, R.; Vitale, J.; et al. Prevalence and risk factors for pulmonary embolism in patients with suspected acute exacerbation of COPD: A multi-center study. Eur. J. Intern. Med. 2020, 80, 54–59. [Google Scholar] [CrossRef] [PubMed]
- Bertoletti, L. The paradoxical association between pulmonary embolism and COPD. Eur. Respir. J. 2017, 50, 1700959. [Google Scholar] [CrossRef]
- Kahn, S.R.; Lim, W.; Dunn, A.S.; Cushman, M.; Dentali, F.; Akl, E.A.; Cook, D.J.; Balekian, A.A.; Klein, R.C.; Le, H.; et al. Prevention of VTE in nonsurgical patients: Antithrombotic Therapy and Prevention of Thrombosis, 9th ed: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines. Chest 2012, 141, e195S–e226S. [Google Scholar] [CrossRef] [Green Version]
- Park, H. Pulmonary embolism is more prevalent than deep vein thrombosis in cases of chronic obstructive pulmonary disease and interstitial lung diseases. Springerplus 2016, 5, 1777. [Google Scholar] [CrossRef] [Green Version]
- Gunen, H.; Gulbas, G.; In, E.; Yetkin, O.; Hacievliyagil, S.S. Venous thromboemboli and exacerbations of COPD. Eur. Respir. J. 2010, 35, 1243. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Akpinar, E.E.; Hoşgün, D.; Akpinar, S.; Ataç, G.K.; Doğanay, B.; Gülhan, M. Incidence of pulmonary embolism during COPD exacerbation. J. Bras. Pneumol 2014, 40, 38–45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fraisse, F.; Holzapfel, L.; Couland, J.M.; Simonneau, G.; Bedock, B.; Feissel, M.; Herbecq, P.; Pordes, R.; Poussel, J.F.; Roux, L. Nadroparin in the prevention of deep vein thrombosis in acute decompensated COPD. The Association of Non-University Affiliated Intensive Care Specialist Physicians of France. Am. J. Respir. Crit. Care Med. 2000, 161, 1109–1114. [Google Scholar] [CrossRef]
- Choi, K.J.; Cha, S.I.; Shin, K.M.; Lee, J.; Hwangbo, Y.; Yoo, S.S.; Lee, J.; Lee, S.Y.; Kim, C.H.; Park, J.Y.; et al. Prevalence and predictors of pulmonary embolism in Korean patients with exacerbation of chronic obstructive pulmonary disease. Respiration 2013, 85, 203–209. [Google Scholar] [CrossRef] [PubMed]
- Ra, S.W.; Sin, D.D. Should We Screen for Pulmonary Embolism in Severe COPD Exacerbations? Not Just Yet, Primum Non Nocere. Chest 2017, 151, 523–524. [Google Scholar] [CrossRef] [Green Version]
- Tuder, R.M.; Cool, C.D. Pulmonary Arteries and Microcirculation in COPD With Pulmonary Hypertension: Bystander or Culprit? Chest 2019, 156, 4–6. [Google Scholar] [CrossRef] [Green Version]
- Bazan, I.S.; Fares, W.H. Hypercoagulability in Pulmonary Hypertension. Clin. Chest Med. 2018, 39, 595–603. [Google Scholar] [CrossRef] [PubMed]
- Le Mao, R.; Tromeur, C.; Bazire, A.; Gouillou, M.; Guegan, M.; Lacut, K.; Delluc, A.; Mottier, D.; Leroyer, C.; Couturaud, F. Risk of recurrent venous thromboembolism in COPD patients: Results from a prospective cohort study. Eur. Respir. J. 2017, 50, 1700094. [Google Scholar] [CrossRef] [Green Version]
- Antoniou, K.M.; Margaritopoulos, G.A.; Tomassetti, S.; Bonella, F.; Costabel, U.; Poletti, V. Interstitial lung disease. Eur. Respir. Rev. 2014, 23, 40–54. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sgalla, G.; Biffi, A.; Richeldi, L. Idiopathic pulmonary fibrosis: Diagnosis, epidemiology and natural history. Respirology 2016, 21, 427–437. [Google Scholar] [CrossRef] [Green Version]
- Margaritopoulos, G.A.; Kokosi, M.A.; Wells, A.U. Diagnosing complications and co-morbidities of fibrotic interstitial lung disease. Expert. Rev. Respir. Med. 2019, 13, 645–658. [Google Scholar] [CrossRef] [PubMed]
- Keane, M.P.; Arenberg, D.A.; Lynch, J.P., 3rd; Whyte, R.I.; Iannettoni, M.D.; Burdick, M.D.; Wilke, C.A.; Morris, S.B.; Glass, M.C.; DiGiovine, B.; et al. The CXC chemokines, IL-8 and IP-10, regulate angiogenic activity in idiopathic pulmonary fibrosis. J. Immunol. 1997, 159, 1437–1443. [Google Scholar]
- Renzoni, E.A.; Walsh, D.A.; Salmon, M.; Wells, A.U.; Sestini, P.; Nicholson, A.G.; Veeraraghavan, S.; Bishop, A.E.; Romanska, H.M.; Pantelidis, P.; et al. Interstitial vascularity in fibrosing alveolitis. Am. J. Respir. Crit. Care Med. 2003, 167, 38–43. [Google Scholar] [CrossRef] [PubMed]
- Cosgrove, G.P.; Brown, K.K.; Schiemann, W.P.; Serls, A.E.; Parr, J.E.; Geraci, M.W.; Schwarz, M.I.; Cool, C.D.; Worthen, G.S. Pigment epithelium-derived factor in idiopathic pulmonary fibrosis: A role in aberrant angiogenesis. Am. J. Respir. Crit. Care Med. 2004, 170, 242–251. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Rodríguez, N.A.; Cambrey, A.D.; Harrison, N.K.; Chambers, R.C.; Gray, A.J.; Southcott, A.M.; duBois, R.M.; Black, C.M.; Scully, M.F.; McAnulty, R.J. Role of thrombin in pulmonary fibrosis. Lancet 1995, 346, 1071–1073. [Google Scholar] [CrossRef]
- Alagha, K.; Secq, V.; Pahus, L.; Sofalvi, T.; Palot, A.; Bourdin, A.; Chanez, P. We should prohibit warfarin in idiopathic pulmonary fibrosis. Am. J. Respir. Crit. Care Med. 2015, 191, 958–960. [Google Scholar] [CrossRef] [PubMed]
- Imokawa, S.; Sato, A.; Hayakawa, H.; Kotani, M.; Urano, T.; Takada, A. Tissue factor expression and fibrin deposition in the lungs of patients with idiopathic pulmonary fibrosis and systemic sclerosis. Am. J. Respir. Crit. Care Med. 1997, 156, 631–636. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kobayashi, H.; Gabazza, E.C.; Taguchi, O.; Wada, H.; Takeya, H.; Nishioka, J.; Yasui, H.; Kobayashi, T.; Hataji, O.; Suzuki, K.; et al. Protein C anticoagulant system in patients with interstitial lung disease. Am. J. Respir. Crit. Care Med. 1998, 157, 1850–1854. [Google Scholar] [CrossRef] [Green Version]
- Olman, M.A.; Mackman, N.; Gladson, C.L.; Moser, K.M.; Loskutoff, D.J. Changes in procoagulant and fibrinolytic gene expression during bleomycin-induced lung injury in the mouse. J. Clin. Investig. 1995, 96, 1621–1630. [Google Scholar] [CrossRef] [PubMed]
- Navaratnam, V.; Fogarty, A.W.; McKeever, T.; Thompson, N.; Jenkins, G.; Johnson, S.R.; Dolan, G.; Kumaran, M.; Pointon, K.; Hubbard, R.B. Presence of a prothrombotic state in people with idiopathic pulmonary fibrosis: A population-based case-control study. Thorax 2014, 69, 207–215. [Google Scholar] [CrossRef] [Green Version]
- Sprunger, D.B.; Olson, A.L.; Huie, T.J.; Fernandez-Perez, E.R.; Fischer, A.; Solomon, J.J.; Brown, K.K.; Swigris, J.J. Pulmonary fibrosis is associated with an elevated risk of thromboembolic disease. Eur. Respir. J. 2012, 39, 125–132. [Google Scholar] [CrossRef]
- Hubbard, R.B.; Smith, C.; Le Jeune, I.; Gribbin, J.; Fogarty, A.W. The association between idiopathic pulmonary fibrosis and vascular disease: A population-based study. Am. J. Respir. Crit. Care Med. 2008, 178, 1257–1261. [Google Scholar] [CrossRef]
- Dalleywater, W.; Powell, H.A.; Fogarty, A.W.; Hubbard, R.B.; Navaratnam, V. Venous thromboembolism in people with idiopathic pulmonary fibrosis: A population-based study. Eur. Respir. J. 2014, 44, 1714–1715. [Google Scholar] [CrossRef] [PubMed]
- Boonpheng, B.; Ungprasert, P. Risk of venous thromboembolism in patients with idiopathic pulmonary fibrosis: A systematic review and meta-analysis. Sarcoidosis Vasc. Diffuse Lung Dis. 2018, 35, 109–114. [Google Scholar] [PubMed]
- Sode, B.F.; Dahl, M.; Nielsen, S.F.; Nordestgaard, B.G. Venous thromboembolism and risk of idiopathic interstitial pneumonia: A nationwide study. Am. J. Respir. Crit. Care Med. 2010, 181, 1085–1092. [Google Scholar] [CrossRef] [PubMed]
- Luo, Q.; Xie, J.; Han, Q.; Tang, C.; Chen, X.; Wu, L.; Chen, R. Prevalence of venous thromboembolic events and diagnostic performance of the wells score and revised geneva scores for pulmonary embolism in patients with interstitial lung disease: A prospective study. Heart Lung Circ. 2014, 23, 778–785. [Google Scholar] [CrossRef] [PubMed]
- Noth, I.; Anstrom, K.J.; Calvert, S.B.; de Andrade, J.; Flaherty, K.R.; Glazer, C.; Kaner, R.J.; Olman, M.A. Idiopathic Pulmonary Fibrosis Clinical Research Network (IPFnet). A placebo-controlled randomized trial of warfarin in idiopathic pulmonary fibrosis. Am. J. Respir. Crit. Care Med. 2012, 186, 88–95. [Google Scholar] [CrossRef]
- Ungprasert, P.; Srivali, N.; Wijarnpreecha, K.; Thongprayoon, C. Sarcoidosis and risk of venous thromboembolism: A systematic review and meta-analysis. Sarcoidosis. Vasc. Diffuse Lung Dis. 2015, 32, 182–187. [Google Scholar]
- Ungprasert, P.; Crowson, C.S.; Matteson, E.L. Association of Sarcoidosis with Increased Risk of VTE: A Population-Based Study, 1976 to 2013. Chest 2017, 151, 425–430. [Google Scholar] [CrossRef] [Green Version]
- European Lung White Book. European Respiratory Society. Available online: www.erswhitebook.org/chapters/tuberculosis/ (accessed on 3 March 2021).
- Turken, O.; Kunter, E.; Sezer, M.; Solmazgul, E.; Cerrahoglu, K.; Bozkanat, E.; Ozturk, A.; Ilvan, A. Hemostatic changes in active pulmonary tuberculosis. Int. J. Tuberc. Lung Dis. 2002, 6, 927–932. [Google Scholar]
- Robson, S.C.; White, N.W.; Aronson, I.; Woollgar, R.; Goodman, H.; Jacobs, P. Acute-phase response and the hypercoagulable state in pulmonary tuberculosis. Br. J. Haematol. 1996, 93, 943–949. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.; Dorhoi, A.; Mollenkopf, H.J.; Yin, H.; Dong, Z.; Mao, L.; Zhou, J.; Bi, A.; Weber, S.; Maertzdorf, J.; et al. Platelets direct monocyte differentiation into epithelioid-like multinucleated giant foam cells with suppressive capacity upon mycobacterial stimulation. J. Infect. Dis. 2014, 210, 1700–1710. [Google Scholar] [CrossRef] [Green Version]
- Ogawa, T.; Uchida, H.; Kusumoto, Y.; Mori, Y.; Yamamura, Y.; Hamada, S. Increase in tumor necrosis factor alpha- and interleukin-6-secreting cells in peripheral blood mononuclear cells from subjects infected with Mycobacterium tuberculosis. Infect. Immun. 1991, 59, 3021–3025. [Google Scholar] [CrossRef] [Green Version]
- Hussain, R.; Shiratsuchi, H.; Phillips, M.; Ellner, J.; Wallis, R.S. Opsonizing antibodies (IgG1) up-regulate monocyte proinflammatory cytokines tumour necrosis factor-alpha (TNF-alpha) and IL-6 but not anti-inflammatory cytokine IL-10 in mycobacterial antigen-stimulated monocytes-implications for pathogenesis. Clin. Exp. Immunol. 2001, 123, 210–218. [Google Scholar] [CrossRef]
- Kothari, H.; Rao, L.V.M.; Vankayalapati, R.; Pendurthi, U.R. Mycobacterium tuberculosis infection and tissue factor expression in macrophages. PLoS ONE 2012, 7, e45700. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Borjas-Howard, J.F.; Bierman, W.F.W.; Meijer, K.; van der Werf, T.S.; Tichelaar, Y.I.G.V. Venous thrombotic events in patients admitted to a tuberculosis centre. QJM 2017, 110, 215–218. [Google Scholar] [CrossRef] [PubMed]
- Shitrit, D.; Izbicki, G.; Shitrit, A.B.; Raz, M.; Sulkes, J.; Kramer, M.R. Normal D-dimer levels in patients with latent tuberculosis infection. Blood Coagul. Fibrinolysis 2005, 16, 85–87. [Google Scholar] [CrossRef] [PubMed]
- Teklu, T.; Wondale, B.; Taye, B.; Hailemariam, M.; Bekele, S.; Tamirat, M.; Zewude, A.; Mohamed, T.; Medhin, G.; Legesse, M.; et al. Differences in plasma proteomes for active tuberculosis, latent tuberculosis and non-tuberculosis mycobacterial lung disease patients with and without ESAT-6/CFP10 stimulation. Proteome Sci. 2020, 18, 10. [Google Scholar] [CrossRef] [PubMed]
- Dentan, C.; Epaulard, O.; Seynaeve, D.; Genty, C.; Bosson, J.L. Active tuberculosis and venous thromboembolism: Association according to international classification of diseases, ninth revision hospital discharge diagnosis codes. Clin. Infect. Dis. 2014, 58, 495–501. [Google Scholar] [CrossRef]
- Marjani, M.; Tabarsi, P.; Baghaei, P.; Shamaei, M.; Gorgi Biani, P.; Mansouri, D.; Masjedi, M.R.; Velayati, A.A. Incidence of thromboembolism in hospitalized patients with tuberculosis and associated risk factors. Arch. Clin. Infect. Dis. 2012, 7, 56–59. [Google Scholar] [CrossRef] [Green Version]
- White, N.W. Venous thrombosis and rifampicin. Lancet 1989, 2, 434–435. [Google Scholar] [CrossRef]
- Alikhan, R.; Cohen, A.T.; Combe, S.; Samama, M.M.; Desjardins, L.; Eldor, A.; Janbon, C.; Leizorovicz, A.; Olsson, C.G.; Turpie, A.G.; et al. Risk factors for venous thromboembolism in hospitalized patients with acute medical illness: Analysis of the MEDENOX Study. Arch. Intern. Med. 2004, 164, 963–968. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maina, M.W.; Pastakia, S.D.; Manji, I.; Kirui, N.; Kirwa, C.; Karwa, R. Describing the profile of patients on concurrent rifampin and warfarin therapy in western Kenya: A case series. Drugs R. D. 2013, 13, 191–197. [Google Scholar] [CrossRef] [Green Version]
- Sekaggya, C.; Nalwanga, D.; Von Braun, A.; Nakijoba, R.; Kambugu, A.; Fehr, J.; Lamorde, M.; Castelnuovo, B. Challenges in achieving a target international normalized ratio for deep vein thrombosis among HIV-infected patients with tuberculosis: A case series. BMC Hematol. 2016, 16, 16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fiore, M.; Maraolo, A.E.; Chiodini, P.; Cerchione, C.; Gentile, I.; Borgia, G.; Pace, M.C. Is Anticoagulation with Novel Oral Anticoagulants an Effective Treatment for Tuberculosis Patients not Achieving a Therapeutic Range with Vitamin K Antagonists? A Systematic Review. Cardiovasc. Hematol. Disord. Drug Targets 2017, 17, 105–110. [Google Scholar] [CrossRef]
- Yamashita, Y.; Yoshikawa, Y.; Morimoto, T.; Amano, H.; Takase, T.; Hiramori, S.; Kim, K.; Oi, M.; Akao, M.; Kobayashi, Y.; et al. The association of recurrence and bleeding events with mortality after venous thromboembolism: From the COMMAND VTE Registry. Int. J. Cardiol. 2019, 292, 198–204. [Google Scholar] [CrossRef]
- Marongiu, F.; Mameli, A.; Grandone, E.; Barcellona, D. Pulmonary Thrombosis: A Clinical Pathological Entity Distinct from Pulmonary Embolism? Semin. Thromb. Hemost. 2019, 45, 778–783. [Google Scholar] [CrossRef] [PubMed]
- Stern, J.B.; Abehsera, M.; Grenet, D.; Friard, S.; Couderc, L.J.; Scherrer, A.; Stern, M. Detection of pelvic vein thrombosis by magnetic resonance angiography in patients with acute pulmonary embolism and normal lower limb compression ultrasonography. Chest 2002, 122, 115–121. [Google Scholar] [CrossRef] [Green Version]
- van Langevelde, K.; Sramek, A.; Vincken, P.W.J.; van Rooden, J.K.; Rosendaal, F.R.; Cannegieter, S.C. Finding the origin of pulmonary emboli with a total-body magnetic resonance direct thrombus imaging technique. Haematologica 2013, 98, 309–315. [Google Scholar] [CrossRef] [Green Version]
Study | Type of Study | Timeframe | Population | VTE Incidence Rate | Standardized Rate Ratio for VTE | Adjusted Odds Ratio for VTE | Adjusted Hazard Ratio for VTE | Estimated Time of Risk VTE |
---|---|---|---|---|---|---|---|---|
Zöller et al., 2017 [24] | Nationwide case-control retrospective study | 1981–2010 | 114,366 Swedish-born asthma patients with hospital PE diagnosis, 76,494 asthma patients with DVT, 6854 asthma patients with both PE and DVT Age-, gender-and eductional attainment matched controls for each case | Not provided | Not provided | PE: 1.4 (95% CI 1.4–1.5) * | Not provided | 1981–2010 |
DVT: 1.6 (95% CI 1.5–1.7) * | ||||||||
Combined PE/DVT: 1.6 (95% CI 1.3–2.0) * * adjusted for comorbidities | ||||||||
Chung et al., 2014 [17] | Nationwide-population retrospective study | 2002–2008 | 31,356 patients with newly diagnosed asthma, 125,157 age- and gender-matched nonasthmatics | Not provided | PE: 3.3 (95% CI 3.2–3.4) | Not provided | PE: 3.2 (95% CI 1.7–6.0) * | Until the end of 2010 |
PE: 3.4 (95% CI 1.7–6.7) * * adjusted for sex, age, comorbidities and estrogen use | During the first 5 years after asthma diagnosis | |||||||
Majoor et al., 2013 [23] | Prospective study | 1 December 2010–1 May 2011 | 648 asthma patients (283 severe and 365 mild-to-moderate asthma patients) visiting outpatient asthma clinics | PE: Severe asthma: 0.9 (95% CI 0.4–1.4) per 1000 person-years Mild-to-moderate asthma: 0.3 (95% CI 0.1–0.6) per 1000 person-years General population: 0.2 (95% CI 0.0–0.3) per 1000 person-years | PE: Severe asthma: 8.9 (95% CI 4.6–15.6) Mild to moderate asthma: 4.0 (95% CI 1.0–9.1) | Not provided | PE: Severe asthma: 3.3 (95% CI 1.2–9.9) | Mean risk time: 39 years (range 20–63 years) |
DVT: Severe asthma: 0.4 (95% CI 0.0–0.7) per 1000 person-years, Mild to moderate asthma: 0.6 (95% CI 0.3–1.0) per 1000 person-years General population: 0.3 (95% CI 0.1–0.5) per 1000 person-years | DVT: Severe asthma; 1.6 (95% CI 0.4–4.1) Mild to moderate asthma: 1.5 (95% CI 0.3–4.2) | DVT: was not associated with asthma |
Study | Type of Study | Timeframe | Population | Prevalence of VTE | Relative Risk | Estimated Time of Risk |
---|---|---|---|---|---|---|
Dentali et al., 2020 [38] | Multicenter retrospective cohort study | 1 January 2011–31 December 2011 | 1043 patients with an AE-COPD and suspected PE | PE: 12.7% (95% CI 10.7–14.8) | Not provided | Not provided |
DVT: 6.4% (95% CI 5.0–8.1) (among 178 patients tested) | Not provided | |||||
Hassen et al., 2020 [30] | Prospective cohort study | March 2013–May 2017 | 131 patients with AE-COPD requiring mechanical ventilation | PE: 13.7% | Not provided | Not provided |
Pourmand et al., 2018 [36] | Systematic review | 1990–2017 | Sample sizes of 5 studies ranged from 49–197 patients admitted to the hospital with a clinical diagnosis of AE-COPD | PE: 3.3–29.1% according to the study setting | Not provided | Not provided |
Aleva et al., 2017 [37] | Systematic review and meta-analysis | 1974–October 2015 | 880 patients with AE-COPD admitted or hospitalized (7 studies) | PE: 16.1% (95% CI 8.3–25.8) | Not provided | Not provided |
DVT: 10.5% (95% CI 4.3–19.0) (among 831 patients) | Not provided | |||||
Park et al., 2016 [41] | Retrospective study | January 2011–December 2011 | 15,686 COPD patients 859 ILD patients 640,177 general population and 7280 CTD patients | PE: 11.3 (95% CI 9.6–13.2) | Not provided | One year risk |
DVT: 4.8 (95% CI 3.9–5.9) | ||||||
Gunen et al., 2010 [42] | Prospective cohort study | 131 patients with AE-COPD | PE: 13.7% (95% CI 7.8–19.6) | 2.528 (95% CI 1.144–5.588) | One year risk | |
DVT: 10.6% (95% CI 5.3–15.9) | ||||||
Rizkallah et al., 2009 [35] | Systematic review and meta-analysis | 1949–April 2008 | 550 patients who did and did not require hospitalization (5 studies) | PE: 19.9% (95% CI 6.7–33.0) of the whole study group | Not provided | Not provided |
PE: 24.7% (95% CI 17.9–31.4) in hospitalized patients | Not provided |
Study | Type of Study | Timeframe | Population | Prevalence of VTE | Adjusted Odds Ratio for VTE | Rate Ratio for VTE | Risk Ratio for VTE | Adjusted Hazard Ratio for VTE | Estimated Time of Risk |
---|---|---|---|---|---|---|---|---|---|
Boonpheng et al., 2018 [65] | Systematic review and meta-analysis | February 2017–2018 | Sample sizes of 5 studies ranged from 211–218,991 IPF patients | Not provided | Not provided | Not provided | Pooled risk ratio: 2.1 (95% CI, 1.3–3.5) | Not provided | Not provided |
Park et al., 2016 [41] | Retrospective cohort study | January 2011–December 2011 | 859 ILD patients 640,177 general population 15,686 COPD and 7280 CTD patients | Not provided | PE: 16.4 (95% CI 9.7–27.4) | Not provided | Not provided | Not provided | One year risk |
DVT: 4.4 (95% CI 1.8–10.6) | |||||||||
Dalleywater et al., 2014 [64] | Prospective database cohort study | 2000–2006 | 3211 incident cases of IPF-clinical syndrome and 12,307 matched controls | PE: 2.4% | Not provided | PE: 9.3 (95% CI, 7.4–11.7) * | VTE: 3.7 (95% CI, 1.2–11.0) | Not provided | Median (interquartile range) follow-up after the index date was 1.7 (0.6–3.6) years in cases and 3.3 (1.5–5.8) years for controls. |
DVT: 1.1% | DVT: 4.3 (95%CI 3.0–6.0) * * adjusted for matching variables, smoking habit and warfarin prescription | Not provided | |||||||
Sprunger et al., 2012 [62] | Cross-sectional study database study | 1988–2007 | 218,991 records with IPF | VTE: 1.74% | VTE: 1.3 (95% CI 1.3–1.4) * * adjusted for age, sex and year of death | Not provided | VTE: 1.3 (95% CI, 1.3–1.4) | Not provided | 1988–1998 |
Sode et al., 2009 [66] | Retrospective cohort | 1980–2007 | 19,557 individuals with IPF and 34,493 individuals with ILDs and 7260,277 controls | Not provided | Not provided | Not provided | Not provided | IPF: PE 2.4 (95% CI, 2.3–2.6) | Not provided |
IPF: DVT: 1.3 (95% CI, 1.2–1.4) | |||||||||
ILD: PE: 2.2 (95% CI, 2.1–2.3) | |||||||||
ILD: DVT: 1.4 (95% CI, 1.3–1.4) | |||||||||
Hubbard et al., 2008 [63] | Comparative retrospective and prospective database study | 1991–2003 | 920 incident case subjects of IPF and 3593 matched control subjects | Not provided | DVT: 2.0 (95% CI, 1.1–3.5) * * adjusted for age, sex, smoking habit and medications | Not provided | VTE: 3.4 (95% CI, 1.6–7.3) | Not provided | Mean duration before index date: 7.8 ± 3.9 years for case subjects (7.7 ± 3.9 years for control subjects) |
Study | Type of Study | Timeframe | Population | Prevalence of VTE | Odds Ratio for VTE | Estimated Time of Risk |
---|---|---|---|---|---|---|
Danwang et al., 2021 [5] | Systematic review and meta-analysis | Until 15 December 2019 | 16,190 participants (9 studies included) | VTE: 3.5% (95% CI 2.2–5.2) 16,190 participants (9 studies included) | VTE: 2.9 (95% CI 2.3–3.7) | Not provided |
PE: 5.8% (95%) CI 2.2–10.7) 6 studies; 5512 participants | PE: 3.58 (95% CI 2.5–5.1) | |||||
DVT: 1.3% (95% CI 0.0–4.1) 5 studies; 12,928 participants | DVT: 2.47 (95% CI 1.8–3.4) | |||||
Borjas-Howard et al., 2017 [78] | Retrospective study | 2000–2010 | 750 participants | 2.4 (95% CI 1.4–3.8) | VTE in HIV-positive: 8.2 (CI 95% 2.9–22.7) * * Adjusted for gender and hospitalization | Not provided |
Dentan et al., 2014 [81] | Retrospective database cohort study | 1 January 2006–31 December 2006 | 27,659, 947 TB admissions | VTE: 2.1% (95% CI, 1.6–2.6) | VTE: 1.55 (95% CI, 1.2–2.0) | One year risk |
PE: 0.9% (95% CI, 0.7–1.3) | ||||||
DVT: 1.1% (95% CI 0.8–1.5) | ||||||
Marjani et al., 2012 [82] | Prospective study | 2007–2009 | 1153 participants | VTE: 2.8% (95% CI, 1.9–3.9) | Not provided | Not provided |
PE: 1% (95% CI, 0.5–1.7) | ||||||
DVT: 2% (95% CI, 1.3–3) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Keramidas, G.; Gourgoulianis, K.I.; Kotsiou, O.S. Venous Thromboembolic Disease in Chronic Inflammatory Lung Diseases: Knowns and Unknowns. J. Clin. Med. 2021, 10, 2061. https://doi.org/10.3390/jcm10102061
Keramidas G, Gourgoulianis KI, Kotsiou OS. Venous Thromboembolic Disease in Chronic Inflammatory Lung Diseases: Knowns and Unknowns. Journal of Clinical Medicine. 2021; 10(10):2061. https://doi.org/10.3390/jcm10102061
Chicago/Turabian StyleKeramidas, George, Konstantinos I. Gourgoulianis, and Ourania S. Kotsiou. 2021. "Venous Thromboembolic Disease in Chronic Inflammatory Lung Diseases: Knowns and Unknowns" Journal of Clinical Medicine 10, no. 10: 2061. https://doi.org/10.3390/jcm10102061
APA StyleKeramidas, G., Gourgoulianis, K. I., & Kotsiou, O. S. (2021). Venous Thromboembolic Disease in Chronic Inflammatory Lung Diseases: Knowns and Unknowns. Journal of Clinical Medicine, 10(10), 2061. https://doi.org/10.3390/jcm10102061