Next Article in Journal
Composite Membranes for High Temperature PEM Fuel Cells and Electrolysers: A Critical Review
Previous Article in Journal
Role of Cation Structure in CO2 Separation by Ionic Liquid/Sulfonated Polyimide Composite Membrane
Previous Article in Special Issue
Process Simulation and Cost Evaluation of Carbon Membranes for CO2 Removal from High-Pressure Natural Gas
Open AccessArticle

Influence of Blend Composition and Silica Nanoparticles on the Morphology and Gas Separation Performance of PU/PVA Blend Membranes

1
Department of Chemical Engineering, Isfahan University of Technology, Isfahan 84156–83111, Iran
2
Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Kyoto 606–8501, Japan
*
Authors to whom correspondence should be addressed.
Membranes 2019, 9(7), 82; https://doi.org/10.3390/membranes9070082
Received: 20 May 2019 / Revised: 27 June 2019 / Accepted: 3 July 2019 / Published: 5 July 2019
(This article belongs to the Special Issue New Advances in Membrane Technologies for CO2 Separation)
Polymer blending and mixed-matrix membranes are well-known modification techniques for tuning the gas separation properties of polymer membranes. Here, we studied the gas separation performance of mixed-matrix membranes (MMMs) based on the polyurethane/poly(vinyl alcohol) (PU/PVA) blend containing silica nanoparticles. Pure (CO2, CH4, N2, O2) and mixed-gas (CO2/N2 and CO2/CH4) permeability experiments were carried out at 10 bar and 35 °C. Poly(vinyl alcohol) (PVA) with a molecular weight of 200 kDa (PVA200) was blended with polyurethane (PU) to increase the CO2 solubility, while the addition of silica particles to the PU/PVA blend membranes augmented the CO2 separation performance. The SEM images of the membranes showed that the miscibility of the blend improved by increasing the PVA contents. The membrane containing 10 wt % of PVA200 (PU/PVA200–10) exhibited the highest CO2/N2~32.6 and CO2/CH4~9.5 selectivities among other blend compositions, which increased to 45.1 and 15.2 by incorporating 20 wt % nano-silica particles. View Full-Text
Keywords: blend membranes; mixed-matrix membranes; polyurethanes; poly(vinyl alcohol); gas permeability blend membranes; mixed-matrix membranes; polyurethanes; poly(vinyl alcohol); gas permeability
Show Figures

Graphical abstract

MDPI and ACS Style

Shirvani, H.; Maghami, S.; Pournaghshband Isfahani, A.; Sadeghi, M. Influence of Blend Composition and Silica Nanoparticles on the Morphology and Gas Separation Performance of PU/PVA Blend Membranes. Membranes 2019, 9, 82.

Show more citation formats Show less citations formats
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

1
Back to TopTop